• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 38
  • 21
  • 8
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 81
  • 81
  • 81
  • 34
  • 32
  • 19
  • 18
  • 17
  • 16
  • 14
  • 14
  • 13
  • 13
  • 12
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

A new set of tethered balloon-borne instrument payloads for collocated turbulence and radiation measurements in the cloudy Arctic boundary layer - First applications

Egerer, Ulrike 27 September 2021 (has links)
Diese Arbeit stellt das neue Fesselballonsystem 'Balloon-bornE moduLar Utility for profilinG the lower Atmosphere' (BELUGA) vor, das für die Messung turbulenter Energie- und Strahlungsflüsse in der bewölkten arktischen atmosphärischen Grenzschicht entwickelt wurde. Mit dem Schwerpunkt auf Turbulenz werden der technische Aufbau und die drei Instrumentenpakete von BELUGA sowie Methoden zur Analyse von Turbulenzdaten beschrieben. BELUGA wurde während zweier Feldkampagnen in der Arktis eingesetzt, die auf dem arktischen Meereis im Juni 2017 und in Grönland im März/April 2018 stattfanden. Anhand zweier Fallstudien liefern die BELUGA-Messungen wertvolle Einblicke in die kleinskaligen turbulenten Prozesse und Strahlungsprozesse, die in der arktischen Grenzschicht wechselwirken. Eine erste Studie analysiert eine Inversion der spezifischen Luftfeuchte über einem beständigen Stratocumulus und die turbulente Kopplung zwischen diesen Regionen. Die Ergebnisse zeigen, dass ein turbulenter Austausch von Wärme und Feuchtigkeit zwischen der Feuchteinversion und der Wolke durch die stabile Inversionsschicht hindurch möglich ist, wenn sich die Feuchteinversion direkt über der Wolkendecke befindet. Die Bereitstellung von Feuchtigkeit durch turbulenten Transport trägt wahrscheinlich zur Langlebigkeit der arktischen Wolken bei. Die zweite Studie befasst sich mit einem Grenzschichtstrahlstrom, d.h. einem lokalen Windmaximum in niedriger Höhe, der in der spätwinterlichen stabilen arktischen Grenzschicht beobachtet wurde. Der Grenzschichtstrahlstrom zeigt eine charakteristische Vertikalstruktur von Turbulenzparametern wie lokalen Dissipationsraten, die direkt ober- und unterhalb des Windmaximums erhöht sind. Daraus folgt, dass das Vorhandensein eines Grenzschichtstrahlstromes die vertikale Durchmischung in der stabilen Grenzschicht unterstützt, was sich auf die vertikale Verteilung von advehierter Feuchtigkeit, Aerosolpartikeln und anderen Substanzen auswirken kann. Beide Fallstudien unterstreichen die Bedeutung der kleinskaligen Turbulenz für die Entwicklung der Grenzschicht in einer stabilen thermodynamischen Schichtung. Damit tragen die BELUGA-Messungen zu einem besseren Prozessverständnis in einer sich verstärkt erwärmenden Arktis mit vielfältigen Rückkopplungsprozessen bei. / This thesis introduces the new tethered balloon system Balloon-bornE moduLar Utility for profilinG the lower Atmosphere (BELUGA) that has been developed for collocated measurements of turbulent and radiative energy fluxes in the cloudy Arctic atmospheric boundary layer (ABL). With a focus on turbulence, the technical setup and the three instrument packages of BELUGA are presented together with turbulence data analysis methods. BELUGA was deployed during two field campaigns in the Arctic, which took place on Arctic sea ice in June 2017 and in Greenland in March/April 2018. By means of two case studies, the BELUGA measurements provide valuable insights into the small-scale turbulent and radiative processes interacting in the Arctic ABL. A first study analyzes a specific humidity inversion (SHI) above a persistent stratocumulus and the turbulent coupling between these regions. The results show that turbulent exchange of heat and moisture between the SHI and the cloud is possible through the stable inversion layer, when the SHI is located directly above the cloud top. Providing moisture via turbulent transport probably contributes to the persistence of Arctic clouds. The second study addresses a low-level jet (LLJ) observed in the late-winter stable Arctic ABL. The LLJ is associated with a characteristic vertical structure of turbulence parameters such as local dissipation rates, with enhanced intensity just above and below the jet core. It is concluded that the presence of a LLJ promotes vertical mixing in the stable ABL, which can impact the vertical distribution of advected moisture, aerosol particles, and other substances. Both case studies highlight the importance of small-scale turbulence for shaping the ABL under conditions of stable thermodynamic stratification. Thus, the BELUGA measurements contribute to an improved understanding of interacting atmospheric processes in Arctic amplification.
42

CFD investigation of the atmospheric boundary layer under different thermal stability conditions

Pieterse, Jacobus Erasmus 03 1900 (has links)
Thesis (MScEng)--Stellenbosch University, 2013. / ENGLISH ABSTRACT: An accurate description of the atmospheric boundary layer (ABL) is a prerequisite for computational fluid dynamic (CFD) wind studies. This includes taking into account the thermal stability of the atmosphere, which can be stable, neutral or unstable, depending on the nature of the surface fluxes of momentum and heat. The diurnal variation between stable and unstable conditions in the Namib Desert interdune was measured and quantified using the wind velocity and temperature profiles that describe the thermally stratified atmosphere, as derived by Monin- Obukhov similarity theory. The implementation of this thermally stratified atmosphere into CFD has been examined in this study by using Reynoldsaveraged Navier-Stokes (RANS) turbulence models. The maintenance of the temperature, velocity and turbulence profiles along an extensive computational domain length was required, while simultaneously allowing for full variation in pressure and density through the ideal gas law. This included the implementation of zero heat transfer from the surface, through the boundary layer, under neutral conditions so that the adiabatic lapse rate could be sustained. Buoyancy effects were included by adding weight to the fluid, leading to the emergence of the hydrostatic pressure field and the resultant density changes expected in the real atmosphere. The CFD model was validated against measured data, from literature, for the flow over a cosine hill in a wind tunnel. The standard k-ε and SST k-ω turbulence models, modified for gravity effects, represented the data most accurately. The flow over an idealised transverse dune immersed in the thermally stratified ABL was also investigated. It was found that the flow recovery was enhanced and re-attachment occurred earlier in unstable conditions, while flow recovery and re-attachment took longer in stable conditions. It was also found that flow acceleration over the crest of the dune was greater under unstable conditions. The effect of the dune on the flow higher up in the atmosphere was also felt at much higher distances for unstable conditions, through enhanced vertical velocities. Under stable conditions, vertical velocities were reduced, and the influence on the flow higher up in the atmosphere was much less than for unstable or neutral conditions. This showed that the assumption of neutral conditions could lead to an incomplete picture of the flow conditions that influence any particular case of interest. / AFRIKAANSE OPSOMMING: 'n Akkurate beskrywing van die atmosferiese grenslaag (ABL) is 'n voorvereiste vir wind studies met berekenings-vloeimeganika (CFD). Dit sluit in die inagneming van die termiese stabiliteit van die atmosfeer, wat stabiel, neutraal of onstabiel kan wees, afhangende van die aard van die oppervlak vloed van momentum en warmte. Die daaglikse variasie tussen stabiele en onstabiele toestande in die Namib Woestyn interduin is gemeet en gekwantifiseer deur gebruik te maak van die wind snelheid en temperatuur profiele wat die termies gestratifiseerde atmosfeer, soos afgelei deur Monin-Obukhov teorie, beskryf. Die implementering van hierdie termies gestratifiseerde atmosfeer in CFD is in hierdie studie aangespreek deur gebruik te maak van RANS turbulensie modelle. Die handhawing van die temperatuur, snelheid en turbulensie profiele in die lengte van 'n uitgebreide berekenings domein is nodig, en terselfdertyd moet toegelaat word vir volledige variasie in die druk en digtheid, deur die ideale gaswet. Dit sluit in die implementering van zero hitte-oordrag vanaf die grond onder neutrale toestande sodat die adiabatiese vervaltempo volgehou kan word. Drykrag effekte is ingesluit deur die toevoeging van gewig na die vloeistof, wat lei tot die ontwikkeling van die hidrostatiese druk veld, en die gevolglike digtheid veranderinge, wat in die werklike atmosfeer verwag word. Die CFD-model is gevalideer teen gemete data, vanaf die literatuur, vir die vloei oor 'n kosinus heuwel in 'n windtonnel. Die standaard k-ε en SST k-ω turbulensie modelle, met veranderinge vir swaartekrag effekte, het die data mees akkuraat voorgestel. Die vloei oor 'n geïdealiseerde transversale duin gedompel in die termies gestratifiseerde ABL is ook ondersoek. Daar is bevind dat die vloei herstel is versterk en terug-aanhegging het vroeër plaasgevind in onstabiele toestande, terwyl vloei herstel en terug-aanhegging langer gevat het in stabiele toestande. Daar is ook bevind dat vloei versnelling oor die kruin van die duin groter was onder onstabiele toestande. Die effek van die duin op die vloei hoër op in die atmosfeer is ook op hoër afstande onder onstabiele toestande gevoel, deur middel van verhoogte vertikale snelhede. Onder stabiele toestande, is vertikale snelhede verminder, en die invloed op die vloei hoër op in die atmosfeer was veel minder as vir onstabiel of neutrale toestande. Dit het getoon dat die aanname van neutrale toestande kan lei tot 'n onvolledige beeld van die vloei toestande wat 'n invloed op 'n bepaalde geval kan hê.
43

Simulation and analysis of wind turbine loads for neutrally stable inflow turbulence

Sim, Chungwook 2009 August 1900 (has links)
Efficient temporal resolution and spatial grids are important in simulation of the inflow turbulence for wind turbine loads analyses. There have not been many published studies that address optimal space-time resolution of generated inflow velocity fields in order to estimate accurate load statistics. This study investigates turbine extreme and fatigue load statistics for a utility-scale 5MW wind turbine with a hub-height of 90 m and a rotor diameter of 126 m. Load statistics, spectra, and time-frequency analysis representations are compared for various alternative space and time resolutions employed in inflow turbulence field simulation. Conclusions are drawn regarding adequate resolution in space of the inflow turbulence simulated on the rotor plane prior to extracting turbine load statistics. Similarly, conclusions are drawn with regard to what constitutes adequate temporal filtering to preserve turbine load statistics. This first study employs conventional Fourier-based spectral methods for stochastic simulation of velocity fields for a neutral atmospheric boundary layer. In the second part of this study, large-eddy simulation (LES) is employed with similar resolutions in space and time as in the earlier Fourier-based simulations to again establish turbine load statistics. A comparison of extreme and fatigue load statistics is presented for the two approaches used for inflow field generation. The use of LES-generated flows (enhanced in deficient high-frequency energy by the use of fractal interpolation) to establish turbine load statistics in this manner is computationally very expensive but the study is justified in order to evaluate the ability of LES to be used as an alternative to more common approaches. LES with fractal interpolation is shown to lead to accurate load statistics when compared with stochastic simulation. A more compelling reason for using LES in turbine load studies is the following: for stable boundary layers, it is not possible to generate realistic inflow velocity fields using stochastic simulation. The present study presents a demonstration that, despite the computational costs involved, LES-generated inflows can be used for loads analyses for utility-scale turbines. The study sets the stage for future computations in the stable boundary layer where low-level jets, large speed and direction shears across the rotor, etc. can possibly cause large turbine loads; then, LES will likely be the inflow turbulence generator of choice. / text
44

Études du transport de la neige par le vent en conditions alpines : observations et simulations à l'aide d'un modèle couplé atmosphère/manteau neigeux / Blowing and drifting snow in alpine terrain : observations and modeling using a snowpack-atmosphere coupled system

Vionnet, Vincent 30 November 2012 (has links)
Le transport de la neige par le vent est une composante importante de l'interaction entre l'atmosphère et la cryosphère. En zone de montagne, il influence la distribution temporelle et spatiale de la couverture neigeuse au cours de l'hiver et a en premier lieu des conséquences sur le danger d'avalanche. La modélisation numérique de ce phénomène permet d'étudier les interactions complexes entre le manteau neigeux et le vent et d'en estimer les conséquences de manière distribuée. Dans ce contexte, cette thèse décrit le développement et l'évaluation d'un modèle couplé atmosphère/manteau neigeux dédié à l'étude du transport de la neige par le vent en zone de montagne reposant sur le modèle atmosphérique Meso-NH et le modèle détaillé de manteau neigeux Crocus. Le transport de la neige par le vent a été étudié sur le site expérimental du Col du Lac Blanc (massif des Grandes Rousses, France). Une base de données d'épisodes de transport couvrant dix hivers a tout d'abord été utilisée pour déterminer les caractéristiques principales de ces épisodes. Des simulations avec le modèle Crocus (non couplé à Meso-NH) ont ensuite montré qu'il était nécessaire de tenir compte des transformations mécaniques des grains de neige induites par le vent afin de simuler une évolution réaliste de la vitesse seuil de transport. Le site expérimental a également été le siège de deux campagnes de mesures en 2011 et 2012 visant à collecter de données de validation pour le modèle. Elles renseignent sur les conditions météorologiques près de la surface, sur les quantités de neige transportées et sur la localisation des zones d'érosion et de dépôt de la neige grâce à l'utilisation d'un laser terrestre. Le modèle de transport de neige par le vent Meso-NH/Crocus a été développé. Il intègre le transport de la neige en saltation et en suspension turbulente ainsi que la sublimation des particules de neige transportée. Un schéma à deux moments permet de simuler l'évolution spatiale et temporelle de la distribution en taille des particules. L'utilisation d'un schéma de couche limite de surface à l'interface entre Meso-NH et Crocus s'est révélé nécessaire pour représenter les forts gradients de concentration en particules de neige observés près de la surface. Meso-NH/Crocus est le premier modèle couplé atmosphère/manteau neigeux capable de simuler de manière interactive le transport de la neige par le vent en zone alpine. Meso-NH/Crocus a été évalué en relief réel grâce aux données collectées lors de la première campagne de mesure en 2011. La simulation d'un épisode de transport sans chute de neige simultanée montre que le modèle reproduit de manière satisfaisante les principales structures d'un écoulement en relief complexe ainsi que les profils verticaux de vitesse de vent et de flux de particules de neige en suspension près de la surface. En revanche, la résolution horizontale de 50 m est insuffisante pour reproduire avec précision la localisation des zones d'érosion et de dépôt autour du Col du Lac Blanc. La prise en compte de la sublimation réduit la quantité de neige déposée de l'ordre de 5%.Les techniques de descente d'échelle dynamique (grid nesting) ont ensuite été utilisées pour simuler un second épisode de transport avec chute de neige. L'augmentation de la résolution horizontale intensifie les contrastes de vitesse de vent entre versants au vent et sous le vent. En revanche, elle modifie peu les quantités et les structures spatiales des précipitations solides autour du Col du Lac Blanc. Lorsqu'il est activé, le transport devient la principale source d'hétérogénéités des accumulations neigeuses / Blowing and drifting snow are crucial components of the interaction between the cryosphere and the atmosphere. In mountainous areas, it affects the temporal and spatial distribution of snow depth throughout the winter season and influences avalanche formation. Numerical modeling offers a solution for studying the complex interaction between the snowpack and the wind field and to assess the related processes in a spatially distributed way. In this context, this PhD describes the development and the validation of a coupled snow/atmosphere model which is dedicated to the study of blowing and drifting snow in alpine terrain. The coupled model consists in the atmospheric model Meso-NH and the detailed snowpack model Crocus. Blowing and drifting snow have been monitored at the Col du Lac Blanc (Grandes Rousses range, French Alps) experimental site. A database consisting of blowing snow events observed over 10 years allowed us to identify the main features of these events. Numerical simulations using Crocus illustrated the necessity of taking the wind-dependence of snow grain characteristics into account in order to simulate satisfactorily the occurrence of blowing snow events. We also carried out two measurement campaigns at our experimental site in 2011 and 2012 in order to collect validation data for the model. This includes measurements of vertical profiles of wind speed and snow particle fluxes near the surface and the mapping of areas of erosion and deposition using terrestrial laser scanning. The coupled Meso-NH/Crocus model has been developed in order to account for blowing and drifting snow. It simulates snow transport in saltation and in turbulent suspension and includes the sublimation of suspended snow particles. In the atmosphere, a double-moment scheme allows the model to simulate the spatial and temporal evolution of the snow particle size distribution. The implementation of a surface boundary layer scheme at the interface between Meso-NH and Crocus turned out to be necessary to reproduce the strong vertical gradient of snow particle concentration near the surface. Meso-NH/Crocus is the first coupled snow-atmosphere model that can simulate snow transport in alpine terrain in an interactive way.Meso-NH/Crocus has been evaluated against data collected near Col du Lac Blanc during the first measurement campaign in 2011. The simulation of a blowing snow event without concurrent snowfall showed that the model captures the main structures of atmospheric flow in complex terrain, the vertical profile of wind speed and the snow particle fluxes. However, the horizontal resolution of 50 m is found to be insufficient to simulate the location of areas of snow erosion and deposition observed around Col du Lac Blanc. Blowing snow sublimation leads to a reduction in snow deposition of approximately 5%.We used downscaling techniques (grid nesting) to simulate a second blowing event with concurrent snowfall. The increase in horizontal resolution enhanced the contrast of wind speed between windward and leeward slopes. However, it only slightly affects the amount and the spatial pattern of snow precipitation around Col du Lac Blanc. When activated, blowing and drifting snow are the main sources of spatial variability of snow accumulation
45

Numerical simulation of solid particle transport in atmospheric boundary-layer over obstacles / Transport de particules solides dans une couche limite turbulente en présence de collines gaussiennes

Huang, Gang 14 December 2015 (has links)
Afin de mieux comprendre les mécanismes liés à l’érosion du sol sous l’effet du vent, le transport de particules solides dans un écoulement de couche limite turbulente à l’échelle d’une soufflerie est étudié à l’aide de simulations numériques. La présence d’une ou plusieurs collines Gaussiennes au sol permet d’étudier les effets de la topographie sur le transport, le dépôt et la réémission de particules solides. L’écoulement du fluide porteur est résolu par la Simulation des Grandes Échelles (SGE). Des modèles de paroi pour la vitesse du fluide sont implémentés afin de mieux représenter l’écoulement proche d’une colline. Le mouvement des particules est pris en compte par un suivi Lagrangien. Des modèles d’envol et de rebond sont développés et utilisés pour prendre en compte l’émission et l’impact au sol des particules. Dans la première partie, l’écoulement au-dessus de collines transversales est simulé et validé par des comparaisons avec différentes expériences. Selon Oke [1988], l’écoulement dans la canopée urbaine peut être schématiquement caractérisé par différents régimes en fonction du positionnement relatif des obstacles. Ce concept est appliqué au cas des dunes, assimilées à des collines dans notre étude. L’accent est mis sur la zone de recirculation (ZR) formée derrière ces collines. Les variations de la ZR sont examinées en fonction de différents paramètres dont la configuration des collines et le nombre de Reynolds. De plus, une étude portant sur la sous couche rugueuse est effectuée de façon à déterminer l’effet de la rugosité due à la couche de particules solides au sol. La seconde partie du travail porte sur la simulation des particules au-dessus des collines. L’objectif est l’amélioration des modélisations concernant l’envol, le rebond et le couplage entre le fluide et les particules. Un premier travail de validation est réalisé en utilisant le modèle complet de transport des particules solides. En particulier, l’évolution du flux d’émission des particules, estimé par le modèle d’envol, en fonction du nombre de Shields, donne des résultats comparables aux modèles classiques de saltation et aux expériences de la littérature. Au-dessus des collines, le transport des particules solides est étudié par des profils de concentration et de vitesse moyenne. Pour analyser les résultats, deux cartographies sont réalisées. La première donne l’intensité des événements locaux et instantanés qui seraient à l’origine de l’évacuation des particules piégées au sein de la ZR. La seconde montre la distribution des particules déposées au sol. Ces résultats permettent d’identifier des zones sujettes à l’érosion et à l’accumulation autour des collines. Enfin, les flux des particules piégées et déposées à l’intérieur de la ZR sont quantifiés et comparés aux flux des particules émises en amont. Ces flux, bien que faibles par rapport au flux entrant, contribueraient aux migrations des dunes et à l’avancée des déserts. / The transport of solid particles inside a laboratory-scale turbulent boundary-layer is studied by numerical simulations, to obtain a better understanding of the mechanisms associated with wind erosion of soil. The presence of one or several Gaussian hills allows a study of the topographic effects on the transport, deposition and re-emission of solid particles. The carrier fluid motion is resolved in a Large Eddy Simulation (LES). Wall models are implemented to better account for the effects of turbulent flow near the terrain. Particle trajectories are calculated using a Lagrangian tracking. Take-off and rebound models are developed in order to take into account particle emissions and impacts at the wall. In the first part, the flow over transversal Gaussian hills is simulated and validated by comparison with different experiments. According to Oke [1988], the flow inside an urban canopy can be schematically characterised into different flow regimes depending on the relative localisation of the obstacles at the ground. This concept is applied to the case of sand dunes, assimilated to 2D hills in this study. The focus is on the recirculation zone (RZ) on the lee side, which has the characteristic of increasing the residence time and the interaction fluid/particle in general, particle trapping and deposition in particular. The variations of RZ with different hill geometries and Reynolds numbers are examined. A study on the roughness sublayer is conducted in order to determine the roughness effects due to the layer of solid particles on the wall. The second part of the work is devoted to the simulation of solid particle transport over the Gaussian hills. The objective is to improve the modelling of particle take-off, rebound and the two-way coupling between the fluid and the particle. A first work of validation is conducted by using the complete model of solid particle transport developed in this thesis. In particular, the evolution of particle emission flux predicted by the take-off model is in accordance with classical saltation models and experiments from the literature. Over the Gaussian hills, analysis of particle transport is conducted using concentration and mean velocity fields. Two mappings are realised. The first indicates the intensity of the local and instantaneous flow structures that arguably regulate the re-entrainment of particles trapped inside the RZ. The second shows the accumulation of particles on the wall. These results highlight zones prone to wind erosion and particle deposition around the hills. Last but not least, the fluxes of particle trapping and deposition inside the RZ are quantified and compared to the incoming flux from upstream. These fluxes, albeit relatively weak in comparison to the incoming one, contribute potentially to dune migrations and desertification.
46

Adaptation de la modélisation hybride eulérienne/lagrangienne stochastique de Code_Saturne à la dispersion atmosphérique de polluants à l’échelle micro-météorologique et comparaison à la méthode eulérienne / Adaptation of the hybrid Eulerian/Lagrangian stochastic model of the CFD code Code_Saturne to pollutant atmospheric dispersion at the micro-meteorological scale and comparison with the Eulerian method

Bahlali, Meïssam 19 October 2018 (has links)
Cette thèse s'inscrit dans un projet de modélisation numérique de la dispersion atmosphérique de polluants à travers le code de mécanique des fluides numérique Code_Saturne. L'objectif est de pouvoir simuler la dispersion atmosphérique de polluants en environnement complexe, c'est-à-dire autour de centrales, sites industriels ou en milieu urbain. Dans ce contexte, nous nous concentrons sur la modélisation de la dispersion des polluants à micro-échelle, c'est-à-dire pour des distances de l'ordre de quelques mètres à quelques kilomètres et correspondant à des échelles de temps de l'ordre de quelques dizaines de secondes à quelques dizaines de minutes : on parle de modélisation en champ proche. L’approche suivie dans ces travaux de recherche suit une formulation hybride eulérienne/lagrangienne, où les champs dynamiques moyens relatifs au fluide porteur (pression, vitesse, température, turbulence) sont calculés via une approche eulérienne et sont ensuite fournis au solveur lagrangien. Ce type de formulation est couramment utilisé dans la littérature atmosphérique pour son efficacité numérique. Le modèle lagrangien stochastique considéré dans nos travaux est le Simplified Langevin Model (SLM), développé par Pope (1985,2000). Ce modèle appartient aux méthodes communément appelées méthodes PDF (Probability Density Function), et, à notre connaissance, n'a pas été exploité auparavant dans le contexte de la dispersion atmosphérique. Premièrement, nous montrons que le SLM respecte le critère dit de mélange homogène (Thomson, 1987). Ce critère, essentiel pour juger de la bonne qualité d'un modèle lagrangien stochastique, correspond au fait que si des particules sont initialement uniformément réparties dans un fluide incompressible, alors elles doivent le rester. Nous vérifions le bon respect du critère de mélange homogène pour trois cas de turbulence inhomogène représentatifs d'une large gamme d'applications pratiques : une couche de mélange, un canal plan infini, ainsi qu'un cas de type atmosphérique mettant en jeu un obstacle au sein d'une couche limite neutre. Nous montrons que le bon respect du critère de mélange homogène réside simplement en la bonne introduction du terme de gradient de pression en tant que terme de dérive moyen dans le modèle de Langevin (Pope, 1987; Minier et al., 2014; Bahlali et al., 2018c). Nous discutons parallèlement de l'importance de la consistance entre champs eulériens et lagrangiens dans le cadre de telles formulations hybrides eulériennes/lagrangiennes. Ensuite, nous validons le modèle dans le cas d'un rejet de polluant ponctuel et continu, en conditions de vent uniforme et turbulence homogène. Dans ces conditions, nous disposons en effet d'une solution analytique nous permettant une vérification précise. Nous observons que dans ce cas, le modèle lagrangien discrimine bien les deux différents régimes de diffusion de champ proche et champ lointain, ce qui n'est pas le cas d'un modèle eulérien à viscosité turbulente (Bahlali et al., 2018b).Enfin, nous travaillons sur la validation du modèle sur plusieurs campagnes expérimentales en atmosphère réelle, en tenant compte de la stratification thermique de l'atmosphère et de la présence de bâtiments. Le premier programme expérimental considéré dans nos travaux concerne le site du SIRTA (Site Instrumental de Recherche par Télédétection Atmosphérique), dans la banlieue sud de Paris, et met en jeu une stratification stable de la couche limite atmosphérique. La seconde campagne étudiée est l'expérience MUST (Mock Urban Setting Test). Réalisée aux Etats-Unis, dans le désert de l'Utah, cette expérience a pour but de représenter une ville idéalisée, au travers d'un ensemble de lignées de conteneurs. Deux rejets ont été simulés et analysés, respectivement en conditions d'atmosphère neutre et stable (Bahlali et al., 2018a) / This Ph.D. thesis is part of a project that aims at modeling pollutant atmospheric dispersion with the Computational Fluid Dynamics code Code_Saturne. The objective is to simulate atmospheric dispersion of pollutants in a complex environment, that is to say around power plants, industrial sites or in urban areas. In this context, the focus is on modeling the dispersion at micro-scale, that is for distances of the order of a few meters to a few kilometers and corresponding to time scales of the order of a few tens of seconds to a few tens of minutes: this is also called the near field area. The approach followed in this thesis follows a hybrid Eulerian/Lagrangian formulation, where the mean dynamical fields relative to the carrier fluid (pressure, velocity, temperature, turbulence) are calculated through an Eulerian approach and are then provided to the Lagrangian solver. This type of formulation is commonly used in the atmospheric literature for its numerical efficiency. The Lagrangian stochastic model considered in our work is the Simplified Langevin Model (SLM), developed by Pope (1985,2000). This model belongs to the methods commonly referred to as PDF (Probability Density Function) methods, and, to our knowledge, has not been used before in the context of atmospheric dispersion. First, we show that the SLM meets the so-called well-mixed criterion (Thomson, 1987). This criterion, essential for any Lagrangian stochastic model to be regarded as acceptable, corresponds to the fact that if particles are initially uniformly distributed in an incompressible fluid, then they must remain so. We check the good respect of the well-mixed criterion for three cases of inhomogeneous turbulence representative of a wide range of practical applications: a mixing layer, an infinite plane channel, and an atmospheric-like case involving an obstacle within a neutral boundary layer. We show that the good respect of the well-mixed criterion lies simply in the good introduction of the pressure gradient term as the mean drift term in the Langevin model (Pope, 1987; Minier et al., 2014; Bahlali et al., 2018c). Also, we discuss the importance of consistency between Eulerian and Lagrangian fields in the framework of such Eulerian/Lagrangian hybrid formulations. Then, we validate the model in the case of continuous point source pollutant dispersion, under uniform wind and homogeneous turbulence. In these conditions, there is an analytical solution allowing a precise verification. We observe that in this case, the Lagrangian model discriminates well the two different near- and far-field diffusion regimes, which is not the case for an Eulerian model based on the eddy-viscosity hypothesis (Bahlali et al., 2018b).Finally, we work on the validation of the model on several experimental campaigns in real atmosphere, taking into account atmospheric thermal stratification and the presence of buildings. The first experimental program considered in our work has been conducted on the `SIRTA' site (Site Instrumental de Recherche par Télédétection Atmosphérique), in the southern suburb of Paris, and involves a stably stratified surface layer. The second campaign studied is the MUST (Mock Urban Setting Test) experiment. Conducted in the United States, in Utah's desert, this experiment aims at representing an idealized city, through several ranges of containers. Two cases are simulated and analyzed, respectively corresponding to neutral and stable atmospheric stratifications (Bahlali et al., 2018a)
47

Investigação da camada limite atmosférica simulada em túnel de vento no topo de morros utilizando dinâmica dos fluídos computacional (CFD)

Vecina, Tanit-Daniel Jodar January 2017 (has links)
O formato do perfil de velocidades do vento varia de acordo com as características locais da superfície terrestre e de rugosidade do terreno, parâmetros que definem o perfil da Camada-Limite Atmosférica (CLA). As características do escoamento do ar atmosférico sobre e ao redor de acidentes geográficos, tais como morros e colinas, são de grande interesse para aplicações relacionadas à Engenharia de Turbinas e Parques Eólicos. No topo de morros, ocorre a aceleração do vento, fenômeno que pode representar um fator decisivo para a instalação de aerogeradores. Este trabalho dedica-se ao estudo do comportamento da CLA como função da inclinação e rugosidade superficial da elevação, fazendo uso da Dinâmica de Fluidos Computacional (CFD) para construir perfis de velocidade do vento e de intensidade de turbulência. O problema de fechamento das Equações Médias de Reynolds (RANS) é contornado com o uso do modelo de turbulência k-ω SST; os resultados numéricos obtidos são comparados com dados experimentais medidos em túnel de vento sobre modelos em escala dos morros. São testados oito modelos de morros com declives que variam de 25° a 64° para dois tipos de categorias de terreno, em 2D e 3D, e são aplicados dois códigos analíticos para representar o perfil de velocidades de entrada. Resultados numéricos para os perfis de velocidade apresentam diferença inferior a 4% em relação aos respectivos dados obtidos experimentalmente. Os perfis de intensidade de turbulência apresentam diferença máxima na casa dos 7% em comparação aos dados experimentais, o que é explicado pelo fato de que não é possível inserir o perfil de entrada de intensidade de turbulência nas simulações numéricas. Em alternativa, foi usado um valor constante resultado da média dos valores dos perfis usados no túnel de vento. Os modelos de morro em 3D apresentam maior concordância nos resultados de velocidade que os modelos em 2D e que ademais quanto maior é a inclinação do morro maior é a concordância com as medições experimentais. / The shape of the wind velocity profile changes according to local features of terrain shape and roughness, which are parameters responsible for defining the Atmospheric Boundary Layer (ABL) profile. Air flow characteristics over and around landforms, such as hills, are of considerable importance for applications related to Wind Farm and Turbine Engineering. The air flow is accelerated on top of hills, which can represent a decisive factor for Wind Turbine placement choices. The present work focuses on the study of ABL behavior as a function of slope and surface roughness of hill-shaped landforms, using the Computational Fluid Dynamics (CFD) to build wind velocity and turbulent intensity profiles. Reynolds-Averaged Navier-Stokes (RANS) equations are closed using the SST k-ω turbulence model; numerical results are compared to experimental data measured in wind tunnel over scale models of the hills under consideration. Eight hill models with slopes varying from 25° to 64° were tested for two types of terrain categories in 2D and 3D, and two analytical codes are used to represent the inlet velocity profiles. Numerical results for the velocity profiles show differences under 4% when compared to their respective experimental data. Turbulent intensity profiles show maximum differences around 7% when compared to experimental data, this can be explained by not being possible to insert inlet turbulent intensity profiles in the simulations. Alternatively, constant values based on the averages of the turbulent intensity at the wind tunnel inlet were used. The 3D models present greater concordance in the speed results than the 2D models and that in addition the greater the slope of the hill, the greater the agreement with the experimental measurements.
48

Estimation of Emission Strength and Air Pollutant Concentrations by Lagrangian Particle Modeling

Manomaiphiboon, Kasemsan 30 March 2004 (has links)
A Lagrangian particle model was applied to estimating emission strength and air pollutant concentrations specifically for the short-range dispersion of an air pollutant in the atmospheric boundary layer. The model performance was evaluated with experimental data. The model was then used as the platform of parametric uncertainty analysis, in which effects of uncertainties in five parameters (Monin-Obukhov length, friction velocity, roughness height, mixing height, and the universal constant of the random component) of the model on mean ground-level concentrations were examined under slightly and moderately stable conditions. The analysis was performed under a probabilistic framework using Monte Carlo simulations with Latin hypercube sampling and linear regression modeling. In addition, four studies related to the Lagrangian particle modeling was included. They are an alternative technique of formulating joint probability density functions of velocity for atmospheric turbulence based on the Koehler-Symanowski technique, analysis of local increments in a multidimensional single-particle Lagrangian particle model using the algebra of Ito integrals and the Wagner-Platen formula, analogy between the diffusion limit of Lagrangian particle models and the classical theory of turbulent diffusion, and evaluation of some proposed forms of the Lagrangian velocity autocorrelation of turbulence.
49

Land-atmosphere Interaction: from Atmospheric Boundary Layer to Soil Moisture Dynamics

Yin, Jun January 2015 (has links)
<p>Accurate modeling of land-atmosphere interaction would help us understand the persistent weather conditions and further contribute to the skill of seasonal climate prediction. In this study, seasonal variations in radiation and precipitation forcing are included in a stochastic soil water balance model to explore the seasonal evolution of soil moisture probabilistic structure. The theoretical results show soil moisture tends to exhibit bimodal behavior only in summer when there are strong positive feedback from soil moisture to subsequent rainfall. Besides the statistical analysis of soil moisture – rainfall feedback, simplified mixed-layer models, coupled with soil-plant-atmosphere continuum, are also used to study heat flux partitioning, cloud initiation, and strength of moist convection. Approximate analytical solutions to the mixed-layer model are derived by applying Penman-Monteith approach, which help explain the roles of equilibrium evaporation and vapor pressure deficit in controlling the diurnal evolution of boundary layer. Results from mixed-layer model also define four regimes for possible convection in terms of cloud/no-cloud formation and low/high convection intensity. Finally, cloud-topped mixed-layer model is developed to simulate the boundary-layer dynamics after the cloud formation, when the evaporative and radiative cooling other than surface heat flux may significantly contribute to the growth of the boundary layer.</p> / Dissertation
50

Turbulent Fluxes of CO2, H2O and Energy in the Atmospheric Boundary Layer above Tropical Vegetation investigated by Eddy-Covariance Measurements / Turbulente Flüsse von CO2, H2O und Energie in der Atmosphärischen Grenzschicht untersucht mittels Eddy-Kovarianz Messungen

Falk, Ulrike 20 February 2004 (has links)
No description available.

Page generated in 0.0654 seconds