• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 6
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 33
  • 33
  • 11
  • 8
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Dynamical and thermodynamical influences of the tropics and midlatitudes on arctic hydroclimate variability

Hegyi, Bradley Michael 21 September 2015 (has links)
The Arctic is an important component of the Earth’s climate system, and it is a region dynamically coupled to climate phenomena at lower latitudes, through both atmospheric and oceanic paths. The coupling has significant effects on the hydroclimate variability in the Arctic, including effects on sea ice and Arctic precipitation. In this dissertation, we explore the coupling of the lower latitudes and the Arctic hydroclimate through atmospheric mechanisms with dynamical and thermodynamical components, with a focus on the following examples of variability: i) the decadal variability of boreal winter Arctic precipitation, ii) the variability of the strength of the stratospheric polar vortex in boreal winter, and iii) the initial melt of Arctic sea ice in late boreal spring. The goal of the research is to understand what drives the Arctic hydroclimate variability in each of these examples through improved knowledge of the mechanisms linking them to the tropics and Northern Hemisphere midlatitudes. In the first part of the analysis, we explore the mechanisms responsible for the decadal variability of boreal winter Arctic precipitation. We find that the decadal variability of cool-season Arctic precipitation is at least partly connected to decadal modulation of tropical central Pacific sea surface temperatures related to the El Niño-Southern Oscillation (ENSO). The modulation can be described as the oscillation between periods favoring central and eastern Pacific warming events [CPW and EPW, respectively], which are two common types of ENSO variability. By analyzing a collection of CPW and EPW events in reanalysis data, we establish the following connecting mechanism. First, the increase of central Pacific SSTs drive a Rossby wave train that destructively interferes with the zonal wavenumber 1 component of the background extratropical planetary wave in the subpolar region. Next, as a result of this interference, the magnitude of the vertical Rossby wave propagation from the troposphere to the stratosphere decreases and the stratospheric polar vortex strengthens. Finally, the strengthening of the vortex translates into a tendency towards a positive Arctic Oscillation (AO) in the troposphere and a poleward shift of the Northern Hemisphere midlatitude storm tracks, increasing moisture transport from lower latitudes and increasing total Arctic precipitation. In a further investigation of a crucial component of the above mechanism, the initial response of the stratospheric polar vortex to the influence of CPW and EPW is investigated. A 20-member ensemble run of an idealized model experiment in the NCAR Whole Atmosphere Community Climate Model (WACCM) is conducted with prescribed CPW and EPW pattern SST anomalies. Both CPW and EPW events weaken the polar vortex in the ensemble mean. The weakening is mainly tied to changes in the eddy-driven mean meridional circulation, with some contribution from eddy momentum flux convergence. There is a significant spread between ensemble members with identical CPW and EPW forcing, where a few of the ensemble members exhibit a weak strengthening response. The initial conditions of the extratropical atmosphere and subsequent internal variability after the introduction of the CPW and EPW forcing help drive the spread in response between individual members. In the last part of the analysis, using MERRA reanalysis data, the means by which atmospheric eddies affect the trend and variability of the initial melt of Arctic sea ice are explored. We focus specifically on the effects of lower troposphere (i.e. 1000-500 mb average) meridional heat transport by atmospheric eddies, a dynamical component of the atmospheric eddy mechanism, and eddy-generated surface downwelling shortwave and longwave radiation anomalies, a thermodynamical component. Although in a climatological sense, atmospheric eddies in all major frequency bands transport heat poleward into the Arctic, we find that the lower-troposphere eddy meridional heat transport does not contribute to the trend of an earlier initial melt date. However, eddy heat transport still plays an important role in the initialization of individual episodes of initial melt with large areal coverage. In the investigation of two specific episodes, the meridional heat transport term that represents the interaction between the eddy wind and mean temperature fields (i.e. the product of the meridional eddy wind and the mean temperature fields) is most associated with the initial melt in both episodes. Additionally, melt in one of the episodes is also associated with surface downwelling longwave and shortwave radiation anomalies, a result of eddy-generated cloud cover anomalies. Therefore, in individual melt events, the combination of direct eddy meridional heat transport and surface longwave and eddy-driven shortwave radiation anomalies may significantly contribute to the initial melt of Arctic sea ice. This combination may be especially important in episodes where significant initial melt occurs over a large area and over a period of a few days.
12

Monte Carlo simulation of the Jovian plasma torus interaction with Io’s atmosphere and the resultant aurora during eclipse

Moore, Christopher Hudson 12 October 2011 (has links)
Io, the innermost Galilean satellite of Jupiter, exhibits a wide variety of complex phenomena such as interaction with Jupiter’s magnetosphere, volcanic activity, and a rarefied multi-species sublimating and condensing atmosphere with an ionosphere. Io’s orbital resonance with Jupiter and the other Galilean satellites produces intense tidal heating. This makes Io the most volcanically active body in the solar system with plumes that rise hundreds of kilometers above the surface. In the present work, the interaction of Io’s atmosphere with the Jovian plasma torus is simulated via the Direct Simulation Monte Carlo (DSMC) method and the aurora produced via electron-neutral excitation collisions is examined using electron transport Monte Carlo simulation. The electron-transport Monte Carlo simulation models the electron collisions with the neutral atmosphere and their transport along field lines as they sweep past Io, using a pre-computed steady atmosphere and magnetic field. As input to the Monte Carlo simulation, the neutral atmosphere was first modeled using prior 2D sunlit continuum simulations of Io’s atmosphere produced by others. In order to justify the use of a sunlit atmosphere for eclipse, 1D two-species (SO2 and a non-condensable) DSMC simulations of Io’s atmospheric dynamics during and immediately after eclipse were performed. It was found that the inclusion of a non-condensable species (SO or O2) leads to the formation of a diffusion layer which prevents rapid collapse. The degree to which the diffusion layer slowed the atmospheric collapse was found to be extremely sensitive to both the initial non-condensable mole fraction and the reaction (or sticking) probability on the surface of the “non-condensable”. Furthermore, upon egress, vertical stratification of the atmosphere occurred with the non-condensable species being lifted to higher altitudes by the rapid sublimation of SO2 as the surface warms. Simulated aurorae (specifically the [OI] 6300 Å and the S2, SO, and SO2 molecular band emission in the middle ultraviolet) show good agreement with observations of Io in eclipse and an attempt was made to use the simulations to constrain the upstream torus electron temperature and Io’s atmospheric composition, structure, and volcanic activity. It is found that the position of the bright [OI] 6300 Å wake spot relative to Io’s equator depends on the position of Io relative to the plasma torus’ equator and the asymmetric electron number flux that results. Using HST/STIS UV-Vis spectra, the upstream electron temperature is weakly constrained to be between 3 eV and 8 eV depending on the flux of a low energy (35 eV), non-thermal component of the plasma (more non-thermal flux requires lower thermal plasma temperatures to fit the spectrum). Furthermore, an upper limit of 5% of the thermal torus density (or 180 cm−3 based on the Galileo J0 plasma density at Io) is obtained for the low energy non-thermal component of the plasma. These limits are consistent with Galileo observations of the upstream torus temperature and estimates for the the non-thermal component. Finally, plume activity and S2 content during eclipse observations with HST/STIS were constrained by examining the emission intensity along the spatial axis of the aperture. During the August 1999 UV-Vis observations, the auroral simulations indicate that the large volcanoes Pele and Surt were inactive whereas Tvashtar was active and that Dazhbog and possibly Loki were also actively venting gas. The S2 content inferred for the large Pele-type plumes was between 5% (Tvashtar) and 30% (Loki, if active), consistent with prior observations (Spencer et al., 2000; Jessup et al., 2007). A 3D DSMC simulation of Io’s sublimation and sputtered atmosphere including photo- and plasma-chemistry was developed. In future work these atmospheric simulations will replace the continuum target atmosphere in the auroral model and thus enable a better match to the observed high altitude auroral emission. In the present work, the plasma interaction is modeled by a flux of ions and electrons which flow around and through Io’s atmosphere along pre-computed fields and interact with the neutral gas. A 3D DSMC simulation of Io’s atmosphere assuming a simple thermal model for the surface just prior to ingress into eclipse and uniform frost coverage has been performed in order to understand how Io’s general atmospheric dynamics are affected by the new plasma model with chemistry and sputtering. Sputtering was found to supply most of the nightside atmosphere (producing an SO2 column of ~5×1013 cm−2); however, the dense dayside sublimation atmosphere was found to block sputtering of the surface. The influence of the dynamic plasma pressure on the day-to-night circumplanetary flow was found to be quite substantial causing the day-to-night wind across the dawn terminator to flow slightly towards the equator. This results in a region of high density near the equator that extends far (~2000 km for the condensable species) onto the nightside across the dawn terminator. Thus, even without thermal lag due to rotation or variable surface frost, highly asymmetric equatorial column densities relative to the subsolar point are obtained. The non-condensable O2, which is a trace species on the dayside, is the dominant species on the nightside despite increased SO2 sputtering because the loss rate of O2 is slow. Finally, a very intriguing O2 flow feature was observed near the dusk terminator where the flow from the leading hemisphere (pushed by the plasma) meets the flow from the dayside trailing hemisphere. Since the O2 does not condense on the surface, it slowly convects towards the poles and then back onto the nightside, eventually to be dissociated or stripped away by the plasma. / text
13

NUMERICAL SIMULATIONS OF ATMOSPHERIC DYNAMICS ON THE GIANT PLANETS

Lian, Yuan January 2009 (has links)
The giant planets exhibit banded zonal jet streams that have maintained theirstructures over decades. There are long-standing questions: how deep the windstructures extend? What mechanisms generate and maintain the observed winds?Why are the wind structures so stable? To answer these questions, we performedthree-dimensional numerical simulations of the atmospheric flow using the primitiveequations.First, we use a simple Newtonian cooling scheme as a crude approach to gener-ate atmospheric latitudinal temperature differences that could be caused by latentheating or radiation. Our Jupiter-like simulations show that shallow thermal forcingconfined to pressures near the cloud tops can produce deep zonal winds from thetropopause all the way down to the bottom of the simulated atmosphere (a fewhundred bars). These deep winds can attain speeds comparable to the zonal jetspeeds within the shallow, forced layer; they are pumped by Coriolis accelerationacting on a deep meridional circulation driven by the shallow-layer eddies.Next, we explicitly include the transport of water vapor and allow condensationand latent heating to occur whenever the water vapor is supersaturated. Our simu-lations show that large-scale moist convection associated with condensation of watervapor can produce multiple zonal jets similar to those on the gas giants (Jupiterand Saturn) and ice giants (Uranus and Neptune). For plausible water abundances(3-5 times solar on Jupiter/Saturn and 30 times solar on Uranus/Neptune), oursimulations produce about 20 zonal jets for Jupiter and Saturn and 3 zonal jetson Uranus and Neptune. Moreover, these Jupiter/Saturn cases produce equatorialsuperrotation whereas the Uranus/Neptune cases produce equatorial subrotation,consistent with the observed equatorial jet direction on these planets. Sensitiv-ity tests show that the water abundance is the controlling factor; modest waterabundances favor equatorial superrotation, whereas large water abundances favorequatorial subrotation. This provides a possible mechanism for the existence ofequatorial superrotation on Jupiter and Saturn and the lack of superrotation onUranus and Neptune.
14

Efeitos na dinâmica da mesosfera no setor brasileiro durante eventos de aquecimento da estratosfera polar

Rodrigues, Chayenny Edna da Silva 23 February 2017 (has links)
Submitted by Jean Medeiros (jeanletras@uepb.edu.br) on 2017-07-27T11:59:51Z No. of bitstreams: 1 PDF - Chayenne Edna da Silva Rodrigues.pdf: 17429390 bytes, checksum: 0bdef27d89dbb3d103280bf8a69a7fd2 (MD5) / Made available in DSpace on 2017-07-27T11:59:51Z (GMT). No. of bitstreams: 1 PDF - Chayenne Edna da Silva Rodrigues.pdf: 17429390 bytes, checksum: 0bdef27d89dbb3d103280bf8a69a7fd2 (MD5) Previous issue date: 2017-02-23 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this study, the winds obtained by meteor radar at São João do Cariri (7.4 S, 35 W) during 2005, 2006, 2007 and 2008 years, and at Cachoeira Paulista (22.7 S, 45.0 W) during 2002, 2003, 2004, 2005, 2006 and 2008, have been used to characterize the dynamics of the mesosphere region over the two sites during the sudden stratospheric warming events on polar stratosphere in the Northern Hemisphere. The wind measurements were subjected to a wavelet spectrum analysis to identify a presence of periodic oscillations. Wave amplitudes were obtained through harmonic analysis by least squares fitting and the 2-day wave momentum fluxes have been estimated from the wind perturbations. The values of the 2-day wave amplitudes and the respective zonal momentum fluxes observed over C. Paulista were higher in the 2003, 2004 and 2006 summers, and over S. J. do Cariri in 2006 summer, when events of SSW Major have occurred. The mean wind behavior it is indicative that the MLT region, during the summer, have been affected by 2-day wave, however, it was not possible to identify pattern associated with the effects of the SSW events on dynamic behavior of the MLT region over two sites. From analyzes, the 2-day wave intensification and their momentum fluxes during years in which SSWs were major, provide additional evidence to stratospheric jet instabilities, which is the main 2-day wave source mechanism in the summer hemisphere. / Nesta pesquisa, estimativas do campo de velocidade dos ventos obtidas por radar meteórico em São João do Cariri (7,4 S, 35 O), durante os anos de 2005, 2006, 2007 e 2008, e em Cachoeira Paulista (22,7 S, 45,0 O), durante os anos de 2002, 2003, 2004, 2005, 2006 e 2008, foram usadas para caracterizar a dinâmica da região da mesosfera sobre ambas as localidades durante eventos de aquecimento abrupto da estratosfera polar do hemisfério norte. As medidas de vento foram submetidas a análise de espectro de ondaletas para identificar a presença de oscilações periódicas. As amplitudes da s ondas foram obtidas através análise harmônica por ajuste de mínimos quadrados e os fluxos de momentum da onda de 2 dias foram estimados a partir das perturbações. Os valores das amplitudes da onda de 2 dias e dos respectivos fluxos de momentum zonais observados em C. Paulista foram maiores nos verões de 2003, 2004 e 2006, e em S. J. do Cariri em 2006, quando ocorreram eventos de SSW fortes. O comportamento do vento médio demostra que a dinâmica da região MLT durante o verão é impactada pela onda de 2 dias, contudo, não foi possível identificar padrão associado a efeitos dos eventos de SSW com o comportamento dinâmico da região MLT sobre as duas localidades, a partir dessas análises. A intensificação da onda de 2 dias e dos fluxos de momentum durante os anos em que ocorreram SSW fortes fornecem indícios de forçamento adicional para instabilidade do jato estratosférico, que é o principal mecanismo de excitação da onda no hemisfério de verão.
15

A dinâmica dos sistemas atmosféricos no verão de 2013-2014 no Estado de São Paulo e sua repercussão no espaço geográfico / The dynamic of atmospheric systems in summer 2013-2014 in the state of São Paulo and its repercussions in geographical space

Bruno César dos Santos 03 October 2016 (has links)
O Estado de São Paulo apresenta índices pluviométricos situados entre 1.200 e 1.600 mm com precipitação concentrada no período situado entre os meses de outubro a março. A passagem de frentes e o processo de frontogênese respondem pelo \"input\" hídrico. Dada a localização que possui (reverso das Cuestas Basálticas) o município de São Carlos apresenta índices pluviométricos ligeiramente superiores ao seu entorno devido a contribuição que recebe das chuvas orográficas. No verão iniciado em 2013 (outubro) e encerrado em 2014 (março), todo Sudeste, assim como as cercanias de São Carlos sofreu com a diminuição das precipitações ocasionadas por mudanças no padrão atmosférico da América do Sul. Atentando para isso, o presente projeto de pesquisa procurou analisar e entender a dinâmica atmosférica desse período chuvoso (Ano Hidrológico) de 2013/2014, descrevendo e caracterizando a dinâmica dos sistemas atmosféricos que nele atuaram e sua variação dentro dos padrões habituais que possuíam, através da metodologia da análise dinâmica, buscando, verificar com base no padrão estabelecido quais foram os principais impactos noticiados pela mídia local (São Carlos) a partir dos índices de precipitação observados. Assim, observou-se que a atuação dos sistemas atmosféricos no período adotado, não ocorreu dentro dos parâmetros habituais da precipitação nas três estações climatológicas que forneceram os dados para a pesquisa. Devendo-se isso a fraca atuação da Zona de Convergência do Atlântico Sul (ZCAS), diante do constante bloqueio atmosférico que se estabeleceu sobre o Atlântico Sul, aliando-se a atuação excepcional de sistemas meteorológicos organizados na Troposfera como a circulação dos vórtices ciclônicos e do Anticiclone do Atlântico Sul (ASAS) sobre o interior do sudeste da América do Sul. A partir dessa análise, constatou-se que o total pluviométrico do ano hidrológico de 2013/2014 apresentou valor abaixo da média, caracterizando os índices da estação do CRHEA/USP no patamar de um Ano Tendente a Seco, a estação do INMET/UFSCar como um Ano Seco e a estação da EMBRAPA/Sudeste na mesma condição da anterior. Entre as três estações climatológicas apenas a estação do CRHEA/USP apresentou valores próximos da média histórica, por se encontrar inserida na transição morfológica da Depressão Periférica Paulista e o Planalto Ocidental Paulista, favorecendo um acúmulo maior de precipitação devido a ocorrência da Chuva Orográfica. Em face disto, esses índices tiveram reflexo na escassez das chuvas e consequentemente repercutiram nos diversos setores socioambientais e econômicos na região de São Carlos-SP, no entanto, não foram suficientes para criar um quadro agravante quanto a suspensão das atividades econômicas ou no abastecimento de água. / The State of São Paulo presents rainfall rates situated between 1,200 and 1,600 mm with concentrated rainfall in the period between the months from October to March. The passage of fronts and frontogenesis process respond for the \"input\" hydrous. Due to the localition of the township, São Carlos (reverse of Basaltic Slopes) presents rainfall indexes slightly higher than its surroundings because of the contribution received from orogenic rains. In the summer started in 2013 (October) and ended in 2014 (March), all Southeast, as well as the environs of São Carlos suffered with the decreasse of precipitations caused by changes in standard atmospheric of South America. Paying attention to this, this research project sought to analyze and understand the atmospheric dynamics of this rainy season (Hydrological Year) of 2013/2014, describing and characterizing the dynamics of atmospheric systems which acted in that period and its variation within the usual patterns already possessed, through the methodology of dynamic analysis, searching, verify based on established standard which were the main impacts reported by local media (São Carlos) from the observed rainfall rates. Thus, it was noticed that the performance of atmospheric systems in the considered period, did not occur within the usual parameters of rainfall in the three climatological season that provided the data for the research. It should be because of the weak performance of the South Atlantic Convergence Zone (SACZ), against the constant atmospheric blockade that has settled over the South Atlantic, allying the exceptional performance of organized meteorological systems in the troposphere as the movement of cyclonic vortices and Anticyclone of the South Atlantic (ASAS) on the interior of the southeastern South America. From this analysis, it was found that the total pluviometric of the hydrological year 2013/2014 showed a value below average, characterizing the indexes of the CRHEA/ USP station on the level of a Year Aimed Dry, the INMET /UFSCar station as a Dry Year and EMBRAPA/Southeast station as the same previous condition. Among the three climatological stations only CRHEA/USP station presented values near the historical average, being that, finding inserted in the morphologic transition of Depression Peripheral Paulista and Western Plateau Paulista favoring a greater accumulation of precipitation due to the occurrence of Orographic Rain. In view of this, these rates were reflected in the scarcity of rainfall and consequently have affected the various environmental and economic sectors in the region of São Carlos-SP, however, were not enough to create an aggravating situation for the suspension of economic activities or the water supply.
16

Prostorové a časové škály v dynamice atmosféry / Spatial and temporal scales of atmospheric dynamics

Jajcay, Nikola January 2018 (has links)
DOCTORAL THESIS Nikola Jajcay Spatial and temporal scales of atmospheric dynamics Abstract Earth climate, in general, varies on many temporal and spatial scales. In particular, climate observables exhibit recurring patterns and quasi- oscillatory phenomena with different periods. Although these oscillations might be weak in amplitude, they might have a non-negligible influence on variability on shorter time-scales due to cross-scale interactions, recently observed by Paluš[1]. This thesis supplies an introductory material for inferring the cross-scale information transfer from observational data, where the time series of interest are obtained using wavelet transform, and possible information transfer is studied using the tools from information theory. Finally, cross- scale interactions are studied in two climate phenomena: air temperature variability in Europe, in which we study phase-amplitude coupling from a slower oscillatory mode with an 8-year period on faster variability and its effects, and El Niño/ Southern Oscillation where we observe a causal chain of phase-phase and phase-amplitude couplings among distinct oscillatory modes. [1] M. Paluš. Multiscale atmospheric dynamics: cross-frequency phase-amplitude coupling in the air temperature. Physical Review Letters, 112(7):078702, 2014.
17

DYNAMICAL AND CHEMICAL COUPLING OF THE SUMMER MONSOONS AND THE UPPER TROPOSPHERE-LOWER STRATOSPHERE

Xinyue Wang (9529997) 16 December 2020 (has links)
The upper troposphere-lower stratosphere (UTLS) is a transition region between the troposphere and the stratosphere. During the boreal summer, the UTLS is dominated by large-scale anticyclonic circulations over the Asian and North American monsoon regions, exhibiting complex dynamical and chemical characteristics. Re-cent studies have emphasized the important role of the summer monsoon systemin stratosphere-troposphere exchange of water vapor and chemical species, which strongly influences the atmospheric chemistry and climate system. The transport in the UTLS region occurs in both directions, stratosphere-troposphere transport (STT)and troposphere-stratosphere transport (TST). For example, observational studies indicate localized maxima of tropospheric pollutants and stratospheric water vapor(SWV) in the UTLS, which are controlled by deep convection and large-scale circulation. Meanwhile, stratospheric ozone (O3) can fold into tropospheric air and entrain into the planetary boundary layer (PBL) via deep STT, and thus affect air quality at the surface. In this thesis, we aim at improving the understanding of the transport processes in the UTLS that are linked to monsoon dynamics using observations and modelling tools.<div><br></div><div>First, we investigate the TST transport in association with the Asian summer monsoon. We examine the simulation of SWV in the Community Earth System Model, version 1 with the Whole Atmosphere Community Climate Model as its atmospheric component [CESM1(WACCM)]. CESM1(WACCM) generally tends to simulate a SWV maximum over the central Pacific Ocean instead of over the Asian continent as observed, but this bias is largely improved in the high vertical resolution version. The high vertical resolution model with increased vertical layers in the UTLS is found to have a less stratified UTLS over the central Pacific Ocean compared with the low vertical resolution model. It therefore simulates a steepened potential vorticity gradient over the central Pacific Ocean that better closes the upper-level anticyclone and confines the SWV within the enhanced transport barrier.<br></div><div><br></div><div>We further study the transport pathways connecting the Northern Hemisphere sur-face and the North American (NA) UTLS by diagnosing Boundary Impulse Response idealized tracers implemented at the Northern Hemisphere surface during summer. In ensemble average, air masses enter the NA UTLS region above Central America, and then slowly mix into the higher latitudes. However, fast transport pathways with modal age around two weeks are evident in some tracer ensembles. For these rapid transport pathways, the tracers first reach the UTLS region over the eastern Pacific and the Gulf of Mexico as a result of enhanced deep convection and vertical advection, followed by horizontal transport over the United States by a strengthened UTLS anticyclone circulation.<br></div><div><br></div><div>To the end, we evaluate the downward transport of stratospheric O3via STT using simulation from a state-of-the-art chemistry climate model implemented with an artificial stratospheric ozone tracer (O3S). We find that O3transported from the stratosphere makes a significant contribution to the surface O3variability where back-ground surface O3exceeds 95thpercentile, especially over the western U.S. Maximum covariance analysis is applied to O3anomalies paired with stratospheric O3traceranomalies to identify the stratospheric intrusion and the underlying dynamical mechanism. The first leading mode corresponds to deep stratospheric intrusions in the western and northern tier of the U.S., and intensified north easterlies in the mid-to-lower troposphere along the west coast, which also facilitate the transport to the eastern Pacific Ocean. The second leading mode corresponds to deep intrusions over the Intermountain Regions. Both modes are associated with eastward propagating baroclinic systems, which are amplified near the end of the North Pacific storm tracks, leading to strong descents over the western United States.<br></div>
18

Influence of Global Atmospheric Circulation Variations on Weather and Climate Extremes

Lin, Yen-Heng 01 August 2018 (has links)
Global warming and climate change deeply influence weather and climate extremes, causing substantial property damage and loss every year around the world. Given the importance of heating differences between low-latitude and Arctic regions, which produce heat sources and cold sources that each influence global circulations, we investigate three extreme weather events in different regions in order to better understand the possible connections between extreme events and global circulation changes. This study begins with climate variations in the low-latitude western North Pacific. In early summer, the timing of the wet season has shifted from late May to early June since 1979. This change influences the water supply in Southeast Asia. Our analysis results indicate that the increase in global temperatures is suggested to have induced this change. During the hurricane season, deep convection in the western North Pacific has a 20-year frequency of timing variations, oscillating between July and August and influencing hurricane activity. These variations have not been previously identified and do not have any driven forcings, but a precursor deep-convection signal is found in the spring. Mid-latitude weather and climate can be influenced by tropical deep convection through the Pacific North American teleconnection. Our analysis results suggest that the wintertime Californian drought is mainly modulated by a teleconnection pattern from the tropics and natural variations in North Pacific circulation. Another key factor that influences mid-latitude circulation is Arctic temperature variations. We find an increase in the subseasonal Arctic warming event, suggesting more weather extremes in the mid-latitudes. Evidence suggests that sea-ice loss and the increase in tropical deep convection results in the increased likelihood of a subseasonal Arctic warming event.
19

THE ROLE OF STRATOSPHERIC PATHWAY IN LINKING ARCTIC SEA ICE LOSS TO THE MID-LATITUDE CIRCULATION

Bithi De (7046621) 02 August 2019
<div> <div> <div> <p>Rapid melting of sea ice and an increased warming have been observed over the Arctic since 1990s and is expected to continue in future climate projections. Possible linkage between the Arctic sea ice and the Northern Hemisphere mid-latitude circulation has been studied previously but is not yet fully understood. This dissertation investigates the influence of the Arctic on the mid-latitudes and the underlying dynamical mechanisms. Specifically, we hypothesize that the stratosphere and its coupling with the troposphere play an important role in amplifying and extending the mid-latitude circulation response to arctic warming. </p><p><br></p> <p>First, we assess the robustness of the stratospheric pathway in linking the sea ice variability, specifically over the Barents-Kara Sea (BKS), in late autumn and early winter to the mid-latitude circulation in the subsequent winter using an ensemble of global climate model simulations. We analyze two groups of models from the Coupled Model Intercomparison Project phase 5 (CMIP5) archive, one with a well-resolved stratosphere (high-top models) and the other with a poorly-resolved stratosphere (low-top models) to distinguish the role of the stratospheric pathway. It has been found that, collectively, high-top models are able to capture the persistent mid-latitude circulation response in the subsequent winter. The response in low-top models is, however, weaker and not as long-lasting most likely due to lack of stratospheric variability. Diagnosis of eddy heat flux reveals that stronger vertical wave propagation leads to a stronger response in stratospheric polar vortex in high- top models. The results robustly demonstrate that multi-model ensemble of CMIP5 high-top models are able to capture the prolonged impact of sea ice variability on the mid-latitude circulation and outperforms the low-top models in this regard.</p><p><br></p></div></div></div><div><div><div> <p>We further explore the dynamical linkage between the BKS sea ice loss and the Siberian cold anomalies using a comprehensive Atmospheric General Circulation Model (AGCM), with a well-resolved stratosphere, with prescribed sea ice loss over BKS region. Decomposition of dynamic and thermodynamic components suggests a dynamically induced warm Arctic cold Siberia pattern in the winter following sea ice loss over the BKS in late autumn. Specifically, the results show that the meridional component of the horizontal temperature advection, from the Arctic into the Siberia, dominates in driving a cold temperature anomaly. Additionally, we conduct targeted experiments in order to quantitatively measure the role of the stratospheric pathway. We find that the stratosphere plays a critical role in the tropospheric circulation anomaly characterized by an intensified ridge-trough pattern that is attributable for the enhanced meridional temperature advection from the Arctic into the Siberia. </p><p><br></p> <p>Next, we extend our study to investigate the sensitivity to geographical location of Arctic sea ice loss and associated warming in modulating the atmospheric circulation. In particular, we assess the linear additivity of the regional Arctic sea ice loss and Arctic Amplification (AA), using a simplified dry dynamical core model. We find that the responses to regional AA over three key regions of the Arctic, i.e. Barents- Kara Sea, East Siberia-Chukchi sea and Baffin Bay-Labrador Sea, separately, show similar equatorward shift of the tropospheric jet but differences in the stratospheric polar vortex. In addition, responses to regional Arctic Amplification are not linearly additive and the residual resembles a positive Northern Annular Mode-like structure. Additional targeted experiments further diagnose the role of the stratosphere in the non-linearity. It is found that the stratosphere-troposphere coupling plays an important role in driving the non-linear circulation response to regional AA. </p><p><br></p> <p>The findings of our research leads to a systematic understanding of the role of the stratospheric pathway in modulating the mid-latitude circulation response to Arctic sea ice loss and accompanied surface warming. Our study suggests that the representation of the stratosphere in climate models plays an important role in correctly simulating the mid-latitude circulation response and could be accountable for the some of the discrepancies among recent studies. Additionally, the result indicates that studying the regional sea ice loss might not provide the full picture of pan-Arctic sea ice melting and caution the use of regional sea ice to explain the recent trend.</p></div></div></div>
20

Understanding Miocene Climatic Warmth

Ashley J Dicks (6997760) 13 August 2019 (has links)
<div> <div> <div> <p>The mid-Miocene Climatic Optimum (MMCO), 17-14.50 million years ago, is studied using general circulation models (GCMs). This period of time is characterized by enhanced warming in the deep ocean and in the mid-to-high latitudes. Previous GCMs fail to accurately represent the warmer climate of the MMCO, providing evidence that other warming feedbacks are missing in the models. This study focuses on cloud feedbacks by modifying the Community Earth System Model (CESM 1.0) to explore the MMCO climate. We implement modifications in pre-industrial (284.7 ppm CO2) and modern slab ocean cases (367.0 ppm CO2, 400 ppm CO2, and 800 ppm CO2). One modified case showing the most potential implements an aerosol de- pendent ice nucleation mechanism and a theory based cloud phase separation. This modified case allows the model predicted aerosol concentrations to interact with the cloud microphysics and provide more realistic cloud water contents. The data shows an increase in surface temperature and increase in upper atmospheric cloud fraction when compared to the control case. Preliminary results suggest that this model is able to capture the mid-to-high latitude warming trends and weaker equator to pole temperature gradient. </p> </div> </div> </div>

Page generated in 0.0695 seconds