• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 67
  • 7
  • 5
  • 5
  • 4
  • 2
  • 1
  • Tagged with
  • 112
  • 112
  • 88
  • 71
  • 35
  • 33
  • 27
  • 19
  • 17
  • 15
  • 14
  • 14
  • 14
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Synthesis and Aggregation Behavior of Pluronic F87/Poly(acrylic acid) Block Copolymer with Doxorubicin

Tian, Y., Ravi, P., Bromberg, Lev, Hatton, T. Alan, Tam, K. C. 01 1900 (has links)
Poly(acrylic acid) (PAA) was grafted onto both termini of Pluronic F87 (PEO₆₇-PPO₃₉-PEO₆₇) via atom transfer radical polymerization to produce a novel muco-adhesive block copolymer PAA₈₀-b-F₈₇-b-PAA₈₀. It was observed that PAA₈₀-F₈₇-PAA₈₀ forms stable complexes with weakly basic anti-cancer drug, Doxorubicin. Thermodynamic changes due to the drug binding to the copolymer were assessed at different pH by isothermal titration calorimetry (ITC). The formation of the polymer/drug complexes was studied by turbidimetric titration and dynamic light scattering. Doxorubicin and PAA-b-F87-b-PAA block copolymer are found to interact strongly in aqueous solution via non-covalent interactions over a wide pH range. At pH>4.35, drug binding is due to electrostatic interactions. Hydrogen-bond also plays a role in the stabilization of the PAA₈₀-F₈₇-PAA₈₀/DOX complex. At pH 7.4 (α=0.8), the size and stability of polymer/drug complex depend strongly on the doxorubicin concentration. When CDOX <0.13mM, the PAA₈₀-F₈₇-PAA₈₀ copolymer forms stable inter-chain complexes with DOX (110 ~ 150 nm). When CDOX >0.13mM, as suggested by the light scattering result, the reorganization of the polymer/drug complex is believed to occur. With further addition of DOX (CDOX >0.34mM), sharp increase in the turbidity indicates the formation of large aggregates, followed by phase separation. The onset of a sharp enthalpy increase corresponds to the formation of a stoichiometric complex. / Singapore-MIT Alliance (SMA)
22

Synthesis of Functionalized Organic Molecules Using Copper Catalyzed Cyclopropanation, Atom Transfer Radical Reactions and Sequential Azide-Alkyne Cycloaddition

Ricardo, Carolynne Lacar 19 June 2012 (has links)
Copper-catalyzed regeneration in atom transfer radical addition (ATRA) utilizes reducing agents, which continuously regenerate the activator (CuI) from the deactivator (CuII) species. This technique was originally found for mechanistically similar atom transfer radical polymerization (ATRP) and its application in ATRA and ATRC has allowed significant reduction of catalyst loadings to ppm amounts. In order to broaden the synthetic utility of in situ catalyst regeneration technique, this was applied in copper-catalyzed atom transfer radical cascade reaction in the presence of free radical diazo initiators such as 2,2’-azobis(isobutyronitrile) (AIBN) and (2,2’-azobis(4-methoxy-2,4-dimethyl valeronitrile) (V-70), which is the first part of this dissertation. This methodology can be translated to sequential ATRA/ATRC reaction, in which the addition of CCl4 to 1,6-dienes results in the formation 5-hexenyl radical intermediate, which undergoes expedient 1,5-ring closure in the exo- mode to form 1,2-disubstituted cyclopentanes. When [CuII(TPMA)Cl][Cl] complex was used in conjunction with AIBN at 60 0C, cyclic products derived from the addition of CCl4 to 16-heptadiene, diallyl ether and N,N­-diallyl-2,2,2-trifluoroacetamide were synthesized in nearly quantitative yields using as low as 0.02 mol% of the catalyst (relative to 1,6-diene). Even more impressive were the results obtained utilizing tert­-butyl-N,N-diallylcarbamate and diallyl malonate using only 0.01 mol% of the catalyst. Cyclization was also found to be efficient at ambient temperature when V-70 was used as the radical initiator. High product yields (&gt;80%) were obtained for mixtures having catalyst concentrations between 0.02 and 0.1 mol%. Similar strategy was also conducted utilizing unsymmetrical 1,6-diene esters. It was found out that dialkyl substituted substrates (dimethyl-2-propenyl acrylate and ethylmethyl-2-propenyl acrylate) underwent 5-exocyclization producing halogenated g-lactones after the addition of CCl4 in the presence of 0.2 mol% of [CuII(TPMA)Cl][Cl]. Based on calculations using density functional theory (DFT) and natural bond order (NBO) analysis, cyclization of 1,6-diene esters was governed by streoelectronic factors. &lt;br&gt;As a part of broadening the synthetic usefulness of in situ copper(I) regeneration, scope was further extended to sequential organic transformations. Based on previous studies, copper(I) catalyzed [3+2] azide-alkyne cycloaddition is commonly conducted via in situ reduction of CuII to CuI species by sodium ascorbate or ascorbic acid. At the same time, ATRA reactions have been reported to proceed efficiently via in situ reduction of CuII complex to the activator species or CuI complex has been fulfilled in the presence of ascorbic acid. Since the aforementioned reactions share similar catalyst in the form of copper(I), a logical step was taken in performing these reactions in one-pot sequential manner. Reactions involving azidopropyl methacrylate and 1-(azidomethyl)-4-vinylbenzene in the presence of a variety of alkynes and alkyl halides, catalyzed by as low as 0.5 mol-% of [CuII(TPMA)X][X] (X=Br-, Cl-) complex, proceeded efficiently to yield highly functionalized (poly)halogenated esters and aryl compounds containing triazolyl group in almost quantitative yields (&gt;90%). Additional reactions that were carried out utilizing tri-, di- and monohalogenated alkyl halides in the ATRA step provided reasonable yields of functionalized trriazoles. A slightly different approach involving a ligand-free catalytic system (CuSO4 and ascorbic acid) in the first step followed by addition of the TPMA ligand in the second step was applied in the synthesis of polyhalogened polytriazoles. Sequential reactions involving vinylbenzyl azide, tripropargylamine and polyhalogenated methane (CCl4 and CBr4) provided the desired products in quantitative yield in the presence of 10 mol% of the catalyst. Modest yields of functionalized polytriazoles were obtained from the addition of less active tri- and dihalogenated alkyl halides utilizing the same catalyst loading. &lt;br&gt;The last part focuses on copper(I) complexes, which were used catalysts in cyclopropanation reaction. One class represented cationic copper(I)/2,2-bipyridine complexes with p-coordinated styrene [CuI(bpy)(p-CH2CHC6H5)][A] (A = CF3SO3- (1) and PF6- (2) and ClO4- (3). Structural data suggested that the axial coordination of the counterion in these complexes observed in the solid state weak to non-coordinating (2.4297(11) Å 1, 2.9846(12) Å 2, and 2.591(4) Å 3). When utilized in cyclopropanation, complexes 1-3 provided similar product distribution suggesting that counterions have negligible effect on catalytic activity. Furthermore, the rate of decomposition of EDA in the presence of styrene catalyzed by 3 (kobs=(7.7±0.32)´10-3 min-1) was slower than the rate observed for 1 (kobs=(1.4±0.041)´10-2 min-1) or 2 (kobs=(1.0±0.025)´10-2 min-1). On the other hand, tetrahedral copper(I) complexes with bipyridine and phenanthroline based ligands have been reported to have strongly coordinated tetraphenylborate anions. CuI(bpy)(BPh4), CuI(phen)(BPh4) and CuI(3,4,7,8-Me4phen)(BPh4) complexes are the first examples in which BPh4- counterion chelates a transition metal center in bidentate fashion through h2 p-interactions with two of its phenyl rings. The product distribution revealed that the mole percent of trans and cis cyclopropanes were very similar. The observed rate constants (kobs) shown in for decomposition of EDA in the presence of externally added styrene were determined to be kobs=(1.5±0.12)´10-3 min-1, (6.8±0.30)´10-3 min-1 and (5.1±0.19)´10-3 min-1. / Bayer School of Natural and Environmental Sciences / Chemistry and Biochemistry / PhD / Dissertation
23

Synthesis and electrochemical studies of nitroxide radical polymer brushes via surface-initiated atom transfer radical polymerization

Wang, Yu-Hsuan 27 July 2010 (has links)
A non-crosslinking approach that covalently bonds nitroxide polymer brushes onto the ITO substrates via surface-initiated atom transfer radical polymerization (ATRP) was develpoed. Since the indium tin oxide (ITO)-silane covalent bonding providesvery strong chemical bonds to adsorb the nitroxide polymer brushes on ITO, it prevents polymers from dissolving into electrolyte solvent and thus improves its electrochemical properties. Moreover, micro-contact printing technology was used to pattern nitroxide polymer brushes on an ITO surface for the potential application in microbatteries. The morphology of electrodes was observed by atomic force microscopy.The electrochemical properties of the cathode were also studies.
24

Nitroxide Polymer Brushes Grafted onto Silica Nanoparticles as Cathodes for Organic Radical Batteries

Lin, Hsiao-chien 13 October 2011 (has links)
Nitroxide polymer brushes grafted on silica nanoparticles as binder-free cathode for organic radical battery have been investigated. Scanning electron microscopy, transmission electron microscopy, infrared spectroscopy and electron spin resonance confirm that the nitroxide polymer brushes are successfully grafted onto silica nanoparticles via surface-initiated atom transfer radical polymerization. The thermogravimetric analysis results indicate that the onset decomposition temperature of these nitroxide polymer brushes is found to be ca. 201 ◦C. The grafting density of the nitroxide polymer brushes grafted on silica nanoparticles is 0.74¡V1.01 chains nm−2. The results of the electrochemical quartz crystal microbalance indicate that the non-crosslinking nitroxide polymer brushes prevent the polymer from dissolving into organic electrolytes. Furthermore, the electrochemical results show that the discharge capacity of the polymer brushes is 84.9¡V111.1 mAh g−1 at 10 C and the cells with the nitroxide polymer brush electrodes have a very good cycle-life performance of 96.3% retention after 300 cycles.
25

Metal-Ligand Multiple Bonds in High-Spin Complexes

King, Evan 18 December 2012 (has links)
The chemistry of late first row transition metals supported by dipyrromethane and dipyrromethene ligands bearing sterically bulky substituents was explored. Transition metal complexes (Mn, Fe, Co, Ni, Zn) of the dipyrromethane ligand 1,9-dimesityl-5,5-dimethyldipyrromethane (dpma) were prepared. Structural and magnetic characterization (SQUID, EPR) of the bis-pyridine adducts \((dpma)Mn(py)_2\), \((dpma)Fe(py)_2\), and \((dpma)Co(py)_2\) showed each tetrahedral divalent ion to be high-spin, while square planar \((dpma)Ni^{II}(py)_2\) and tetrahedral \((dpma)Zn(py)_2\) were shown to be diamagnetic. Electrochemical experiments revealed oxidative events at common potentials independent of metal identity or spin state, consistent with ligand-based oxidation. Dipyrromethene ligand scaffolds were synthesized bearing large aryl \((Ar = 2,4,6-Ph_{3}C_{6}H_{2}, Mes = 2,4,6-Me_{3}C_{6}H_{2})\) or alkyl \((^{t}Bu = CMe_3, Ad = 1-adamantyl)\) flanking groups to afford three new disubstituted ligands \((^{R}dpme, 1, 9-R_2-5-mesityldipyrromethene, R = Ar, Mes, ^{t}Bu, Ad)\). While high-spin \((S=2)\), four-coordinate iron complexes of the type \((^{R}dpme)FeCl(solv)\) were obtained when R was Mes, tBu, or Ad, use of the sterically encumbered aryl-substituted ligand gave a three-coordinate high-spin \((S=2)\) complex \((^{Ar}dpme)FeCl\). Intramolecular C−H amination was discovered in the reaction of organic azides with \((^{Mes}dpme)FeCl(thf)\), though no intermediate was observed by UV/Vis, IR, or \(^{1}H\) VT-NMR experiments. Reaction of \((^{Ad}dpme)FeCl(OEt_2)\) with alkyl azides resulted in the catalytic amination of C–H bonds or aziridination of olefins at room temperature. Reaction of \(p-^{t}BuC_{6}H_{4}N_{3}\) with \((^{Ar}dpme)FeCl\) permitted isolation of a high-spin \((S=2)\) iron complex \((^{Ar}dpme)FeCl(N(p-^{t}BuC_6H_4))\), featuring a terminal imidyl radical antiferromagnetically coupled to high-spin \(Fe^{III}\), as determined by \(^{1}H\) NMR, X-ray crystallography, and \(^{57}Fe\) Mössbauer. A three-coordinate CoI complex \((^{Ar}dpme)Co(py)\) was synthesized and characterized by \(^{1}H\) NMR, SQUID magnetometry, and X-ray crystallography. Reaction of \((^{Ar}dpme)Co(py)\) with \(^{t}BuN_3\) afforded an isolable three-coordinate Co imide complex \((^{Ar}dpme)Co(N^{t}Bu)\) that exhibits spin crossover from a singlet to a quintet. Reaction of \((^{Ar}dpme)Co(py)\) with mesityl azide produces a spectroscopically observed intermediate, consistent with an \(S=1\) terminal imide complex, that converted via benzylic C–H activation into the metallacycloindoline \((^{Ar}dome)Co(\kappa^{2}-NHC_{6}H_{2}-2,4-Me_{2}-6-CH_2)\). / Chemistry and Chemical Biology
26

Understanding the mechanisms behind atom transfer radical polymerization : exploring the limit of control

Bergenudd, Helena January 2011 (has links)
Atom transfer radical polymerization (ATRP) is one of the most commonly employed techniques for controlled radical polymerization. ATRP has great potential for the development of new materials due to the ability to control molecular weight and polymer architecture. To fully utilize the potential of ATRP as polymerization technique, the mechanism and the dynamics of the ATRP equilibrium must be well understood. In this thesis, various aspects of the ATRP process are explored through both laboratory experiments and computer modeling. Solvent effects, the limit of control and the use of iron as the mediator have been investigated. It was shown for copper mediated ATRP that the redox properties of the mediator and the polymerization properties were significantly affected by the solvent. As expected, the apparent rate constant (kpapp) increased with increasing activity of the mediator, but an upper limit was reached, where after kpapp was practically independent of the mediator potential. The degree of control deteriorated as the limit was approached. In the simulations, which were based on the thermodynamic properties of the ATRP equilibrium, the same trend of increasing kpapp with increasing mediator activity was seen and a maximum was also reached. The simulation results could be used to describe the limit of control. The maximum equilibrium constant for controlled ATRP was correlated to the propagation rate constant, which enables the design of controlled ATRP systems. Using iron compounds instead of copper compounds as mediators in ATRP is attractive from environmental aspects. Two systems with iron were investigated. Firstly, iron/EDTA was investigated as mediator as its redox properties are within a suitable range for controlled ATRP. The polymerization of styrene was heterogeneous, where the rate limiting step is the adsorption of the dormant species to the mediator surface. The polymerizations were not controlled and it is possible that they had some cationic character. In the second iron system, the intention was to investigate how different ligands affect the properties of an ATRP system with iron. Due to competitive coordination of the solvent, DMF, the redox and polymeri­zation properties were not significantly affected by the ligands. The differences between normal and reverse ATRP of MMA, such as the degree of control, were the result of different FeIII speciation in the two systems. / QC 20110406
27

NANOSCALE FUNCTIONALIZATION AND CHARACTERIZATION OF SURFACES WITH HYDROGEL PATTERNS AND BIOMOLECULES

Chirra Dinakar, Hariharasudhan 01 January 2010 (has links)
The advent of numerous tools, ease of techniques, and concepts related to nanotechnology, in combination with functionalization via simple chemistry has made gold important for various biomedical applications. In this dissertation, the development and characterization of planar gold surfaces with responsive hydrogel patterns for rapid point of care sensing and the functionalization of gold nanoparticles for drug delivery are highlighted. Biomedical micro- and nanoscale devices that are spatially functionalized with intelligent hydrogels are typically fabricated using conventional UV-lithography. Herein, precise 3-D hydrogel patterns made up of temperature responsive crosslinked poly(N-isopropylacrylamide) over gold were synthesized. The XY control of the hydrogel was achieved using microcontact printing, while thickness control was achieved using atom transfer radical polymerization (ATRP). Atomic force microscopy analysis showed that to the ATRP reaction time governed the pattern growth. The temperature dependent swelling ratio was tailored by tuning the mesh size of the hydrogel. While nanopatterns exhibited a broad lower critical solution temperature (LCST) transition, surface roughness showed a sharp LCST transition. Quartz crystal microbalance with dissipation showed rapid response behavior of the thin films, which makes them applicable as functional components in biomedical devices. The easy synthesis, relative biocompatibility, inertness, and easy functionalization of gold nanoparticles (GNPs) have made them useful for various biomedical applications. Although ATRP can be successfully carried out over GNPs, the yield of stable solution based GNPs for biomedical applications prove to be low. As an alternative approach, a novel method of ISOlating, FUnctionalizing, and REleasing nanoparticles (ISOFURE) was proposed. Biodegradable poly(β-amino ester) hydrogels were used to synthesize ISOFURE-GNP composites. ATRP was performed inside the composite, and the final hydrogel coated GNPs were released via matrix degradation. Response analysis confirmed that the ISOFURE method led to the increased stability and yield of the hydrogel coated ISOFURE-GNPs. The ISOFURE protocol was also utilized in functionalizing GNPs with enzyme catalase in the absence of a stabilizing reagent. Biotin-streptavidin affinity was used as the bioconjugation method. Activity analysis of the conjugated enzyme showed that the ISOFURE-GNPs showed enhanced biomolecular loading relative to solution based stabilizing reagent passivated GNPs.
28

Synthetic and kinetic investigations into living free-radical polymerisation used in the preparation of polymer therapeutics

Adash, Uma January 2006 (has links)
The aim of this work was to successfully prepare polymers of N-(2-hydroxypropyl)methacrylamide, (PHPMA) using controlled/"living" free-radical polymerisation technique. For this purpose, atom transfer radical polymerisation (ATRP) and reversible addition-fragmentation (chain) transfer (RAFT) polymerisation were used in preparation of a number of base polymers with the intention of quantitatively converting them into PHPMA. Both methods were applied under varying polymerisation conditions, and the kinetics of the systems investigated. Various rate constants were measured, while computer modelling of the experimental data allowed estimation of other kinetic parameters of interest. Investigations into solvent and ligand effects on the kinetics of ATRP of the activated ester methacryloyloxy succinimide (MAOS) and one of the archetypal methacrylate monomers, methyl methacrylate (MMA) were carried out. The method of RAFT was also employed in polymerisation of MAOS and a number of other monomers in the hope of finding the best synthetic precursor of PHPMA. Polymers of methacryloyl chloride (MAC) and p-nitrophenyl methacrylate (NPMA) were prepared, as well as the polymers of HPMA itself and N-isopropyl methacrylamide. Polymerisation of MMA by RAFT was also attempted in view of adding to current knowledge on the monomer's behaviour and the kinetic characteristics of its RAFT polymerisation. Preparation of PHPMA from PMAOS, PMAC and PNPMA was attempted. Successful preparation of PHPMA from the polymer of the acid chloride was achieved under mild reaction conditions, while displacement of N-hydroxysuccinimide groups of PMAOS resulted in unexpected modification of the polymer under the conditions used. Conversion of PNPMA into PHPMA was not achieved. At this stage these results suggest inadequacy of both PMAOS and PNPMA as reactive polymeric precursors.
29

Kontrollierte Darstellung von Blockcopolymeren durch Atom transfer radical polymerization (ATRP) und Untersuchungen der Oberflächenmorphologie durch Rasterkraftmikroskopie

Reining, Birte. Unknown Date (has links) (PDF)
Techn. Hochsch., Diss., 2000--Aachen.
30

Aufbau definierter Polymerarchitekturen durch radikalische Polymerisation unter Atomtransfer (ATRP)

Wittmann, Gabriele. Unknown Date (has links)
Techn. Universiẗat, Diss., 2003--Darmstadt.

Page generated in 0.088 seconds