Spelling suggestions: "subject:"atomic force"" "subject:"atomic sorce""
371 |
AFM Bi-material Cantilever Based Near-field Radiation Heat Transfer MeasurementJanuary 2019 (has links)
abstract: Near-field thermal radiation occurs when the distance between two surfaces at different temperatures is less than the characteristic wavelength of thermal radiation. While theoretical studies predict that the near-field radiative heat transfer could exceed Planck’s blackbody limit in the far-field by orders of magnitudes depending on the materials and gap distance, experimental measurement of super-Planckian near-field radiative heat flux is extremely challenging in particular at sub-100-nm vacuum gaps and few has been demonstrated. The objective of this thesis is to develop a novel thermal metrology based on AFM bi-material cantilever and experimentally measure near-field thermal radiation.
The experiment setup is completed and validated by measuring the near-field radiative heat transfer between a silica microsphere and a silica substrate and comparing with theoretical calculations. The bi-material AFM cantilever made of SiNi and Au bends with temperature changes, whose deflection is monitored by the position-sensitive diode. After careful calibration, the bi-material cantilever works as a thermal sensor, from which the near-field radiative conductance and tip temperature can be deduced when the silica substrate approaches the silica sphere attached to the cantilever by a piezo stage with a resolution of 1 nm from a few micrometers away till physical contact. The developed novel near-field thermal metrology will be used to measure the near-field radiative heat transfer between the silica microsphere and planar SiC surface as well as nanostructured SiC metasurface. This research aims to enhance the fundamental understandings of radiative heat transfer in the near-field which could lead to advances in microelectronics, optical data storage and thermal systems for energy conversion and thermal management. / Dissertation/Thesis / Masters Thesis Mechanical Engineering 2019
|
372 |
Application of Functional Amyloids in Morphological Control and in Self-assembled CompositesClaunch, Elizabeth Carson 14 May 2013 (has links)
Amyloids are self-assembled protein materials containing beta-sheets. While most studies focus on amyloids as the pathogen in neurodegenerative disease, there are instances of "functional" amyloids used to preserve life. Functional amyloids serve as an inspiration in materials design. In this study, it is shown that wheat gluten (WG) and gliadin:myoglobin (Gd:My) amyloid morphology can be varied from predominantly fibrillar at low polypeptide concentration to predominantly globular at high polypeptide concentration as measured at the nanometer scale using atomic force microscopy (AFM). The ability to control the morphology of a material allows control of its properties. Fourier transform infrared (FTIR) spectroscopy shows that at low concentration, fibrils require interdigitation of methyl groups on alanine (A), isoleucine (I), leucine (L), and valine (V). At higher concentration, globules do not have the same interdigitation of methyl groups but more random hydrophobic interactions. The concentration dependence of the morphology is shown as a kinetic effect where many polypeptides aggregate very quickly through hydrophobic interactions to produce globules while smaller populations of polypeptides aggregate slowly through well-defined hydrophobic interactions to form fibrils.
Functional amyloids also provide a means of creating a low energy process for composites. Poor fiber/matrix bonding and processing degradation have been observed in previous WG based composites. This study aims to improve upon these flaws by implementing a self-assembly process to fabricate self-reinforced wheat gluten composites. These composites are processed in aqueous solution at neutral pH by allowing the fibers to form in a matrix of unassembled peptides. The fiber and the matrix are formed from the same solution, thus the two components create a compatible system with ideal interfacial interaction for a composite. The fibers in the composite are about 10 microns in diameter and can be several millimeters long. It has been observed that the number of fibers present along the fracture surface influences the modulus of the composite. In this study, self-assembled wheat gluten composites are formed and then characterized with 3-point bend (3PB) mechanical testing, scanning electron microscopy (SEM), and Fourier transform infrared (FTIR) spectroscopy. / Master of Science
|
373 |
MANUFACTURING PROCESS OF NANOFLUIDICS USING AFM PROBEKaringula, Varun Kumar 05 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / A new process for fabricating a nano
fluidic device that can be used in medical
application is developed and demonstrated. Nano channels are fabricated using a
nano tip in indentation mode on AFM (Atomic Force Microscopy). The nano channels
are integrated between the micro channels and act as a filter to separate biomolecules.
Nano channels of 4 to7 m in length, 80nm in width, and at varying depths from 100nm
to 850 nm allow the resulting device to separate selected groups of lysosomes and
other viruses. Sharply developed vertical micro channels are produced from a deep
reaction ion etching followed by deposition of different materials, such as gold and
polymers, on the top surface, allowing the study of alternative ways of manufacturing
a nano fluidic device. PDMS (Polydimethylsiloxane) bonding is performed to close
the top surface of the device. An experimental setup is used to test and validate the
device by pouring fluid through the channels. A detailed cost evaluation is conducted
to compare the economical merits of the proposed process. It is shown that there is
a 47:7% manufacturing time savings and a 60:6% manufacturing cost savings.
|
374 |
Characterization of Self-Assembly Dynamics and Mechanical Properties of DNA Origami Nanostructures / DNAオリガミナノ構造の自己組織化ダイナミクスと機械的特性の評価Ma, Zhipeng 23 September 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第19992号 / 工博第4236号 / 新制||工||1655(附属図書館) / 33088 / 京都大学大学院工学研究科マイクロエンジニアリング専攻 / (主査)教授 田畑 修, 教授 北條 正樹, 教授 山田 啓文 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
|
375 |
Adaptive mechanosensory mechanism of α-catenin revealed by single-molecule biomechanics / 1分子バイオメカニクスにより解明したαカテニンの適応的力感知メカニズムMaki, Koichiro 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第20361号 / 工博第4298号 / 新制||工||1666(附属図書館) / 京都大学大学院工学研究科マイクロエンジニアリング専攻 / (主査)教授 安達 泰治, 教授 小寺 秀俊, 教授 田畑 修 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
|
376 |
Nanoscale Electronic Properties of Conjugated Polymer Films Studied by Conductive Atomic Force Microscopy / 電流計測原子間力顕微鏡による共役高分子薄膜のナノ電子物性の解明Osaka, Miki 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第20406号 / 工博第4343号 / 新制||工||1673(附属図書館) / 京都大学大学院工学研究科高分子化学専攻 / (主査)教授 大北 英生, 教授 辻井 敬亘, 教授 竹中 幹人 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
|
377 |
Closed-loop nanopatterning and characterization of polymers with scanning probesSaygin, Verda 24 May 2023 (has links)
There is a need to discover advanced materials to address the pressing challenges facing humanity, however there are far too many combinations of material composition and processing conditions to explore using conventional experimentation. One powerful approach for accelerating the rate at which materials are explored is by miniaturizing the scale at which experiments take place. Reducing the size of samples has been tremendously productive in biomedicine and drug discovery through standardized formats such as microwell plates, and while these formats may not be the most appropriate for studying polymeric materials, they do highlight the advantages of studying materials in ultra-miniaturized volumes. However, precise and controlled methods for handling diverse samples at the sub-femtoliter-scale have not been demonstrated. In this thesis, we establish that scanning probes can be used as a technique for realizing and interrogating sub-femtoliter scale polymer samples. To do this, we develop and apply methods for patterning materials with control over their size and composition and then use these methods to study material systems of interest.
First, we develop a closed-loop method for patterning liquid samples using scanning probes by utilizing tipless cantilevers capable of holding a discrete liquid drop together with an inertial mass sensing scheme to measure the amount of liquid loaded on the probe. Using these innovations, we perform patterning with better than 1% mass accuracy on the pL-scale. While dispensing fluid with tipless cantilevers is successful for patterning pL-scale features and can be considered a candidate for robust nanoscale manipulation of liquids for high-throughput sample preparation, the minimum amount of liquid that can be transferred using this method is limited by number of factors. Thus, in the second section of this thesis, we explore ultrafast cantilevers that feature spherical tips and find them capable of patterning aL-scale features with in situ feedback.
The development of methods of interrogating polymers at the pL-scale led us to explore how the mechanical properties of photocurable polymers depend on processing conditions. Specifically, we investigate the degree to which oxygen inhibits photocrosslinking during vat polymerization and how this effect influences the mechanical properties of the final material. We explore this through a series of macroscopic compression studies and AFM-based indentation studies of the cured polymers. Ultimately, the mechanical properties of these systems are compared to pL-scale features patterned using scanning probe lithography and we find that not only does oxygen prevent full crosslinking when it is present during the post-print curing, but the presence of oxygen during printing itself irreversibly softens the material.
In addition to developing new methods for realizing ultra-miniaturized samples for study, the novel scanning probe methods in this work have led to new paradigms for rapidly evaluating complex interactions between material systems. In particular, we present a novel method to quantitatively investigate the interaction between the metal-organic frameworks (MOFs) and polymers by attaching a single MOF particle to a cantilever and studying the interaction force between this MOF and model polymer surfaces. Using this approach, we find direct evidence supporting the intercalation of polymer chains into the pores of MOFs. This work lays the foundation for directly characterizing the facet-specific interactions between MOFs and polymers in a high-throughput manner sufficient to fuel a data-driven accelerated material discovery pipeline.
Collectively, the focus of this thesis is the development and utilization of novel scanning probe methods to collect data on extremely small systems and advance our understanding of important classes of materials. We expect this thesis to provide the foundation needed to transform scanning probe systems into instruments for performing reliable nanochemistry by combining controlled and quantitative sample preparation at the nanoscale and high-throughput characterization of materials. To conclude, we present an outlook about the necessary technological advancements and promising directions for materials innovations that stem from this work.
|
378 |
Preparation of Gold Nanoparticles with Scanning Electrochemical MicroscopyHan, Changhong 12 May 2012 (has links)
Scanning electrochemical microscopy (SECM) is used to deposit gold nanoparticles on a glassy carbon electrode (GCE). Deposition conditions, including the tip-substrate distance, current density, substrate potential, and addition of Ag ions in the electrolyte are changed to study the effects on gold spot size and particle morphology. Atomic force microscopy (AFM) is used to analyze the gold nanoparticles. The size and shape of the nanoparticle can be controlled by different SECM experimental conditions. OMSOL Multiphysics software is used to simulate the results of SECM deposition. By comparing the simulation results and experimental results, the deposition process can be understood better. Heterogeneous irreversible reaction rate constant of the reaction happened on GCE can be estimated.
|
379 |
Development of Degradable Renewable Polymers and Stimuli-Responsive NanocompositesEyiler, Ersan 17 August 2013 (has links)
The overall goal of this research was to explore new living radical polymerization methods and the blending of renewable polymers. Towards this latter goal, polylactic acid (PLA) was blended with a new renewable polymer, poly(trimethylene-malonate) (PTM), with the aim of improving mechanical properties, imparting faster degradation, and examining the relationship between degradation and mechanical properties. Blend films of PLA and PTM with various ratios (5, 10, and 20 wt %) were cast from chloroform. Partially miscible blends exhibited Young’s modulus and elongation-to-break values that significantly extend PLA’s usefulness. Atomic force microscopy (AFM) data showed that incorporation of 10 wt% PTM into PLA matrix exhibited a Young’s modulus of 4.61 GPa, which is significantly higher than that of neat PLA (1.69 GPa). The second part of the bioplastics study involved a one-week hydrolytic degradation study of PTM and another new bioplastic, poly(trimethylene itaconate) (PTI) using DI water (pH 5.4) at room temperature, and the effects of degradation on crystallinity and mechanical properties of these films were examined by differential scanning calorimetry (DSC) and AFM. PTI showed an increase in crystallinity with degradation, which was attributed to predominately degradation of free amorphous regions. Depending on the crystallinity, the elastic modulus increased at first, and decreased slightly. Both bulk and surface-tethered stimuli-responsive polymers were studied on amine functionalized magnetite (Fe3O4) nanoparticles. Stimuli-responsive polymers studied, including poly(N-isopropylacrylamide) (PNIPAM), poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA), and poly(itaconic acid) (PIA), were grafted via surface-initiated aqueous atom transfer radical polymerization (SI-ATRP). Both Fourier transform infrared spectroscopy (FTIR) and x-ray photoelectron spectroscopy (XPS) spectroscopies showed the progression of the grafting. The change in particle size as a function of temperature was measured using dynamic light scattering (DLS). Once the PIA was grafted from the Fe3O4 nanoparticles for 13 h, the PIA thickness was around 13 nm. After the PNIPAM was grafted for 6 h, the stimuli-responsive nanocomposites with a lower critical solution temperature (LCST) of 32 °C exhibited a particle size of 236 nm. Moreover, a variety of stimuli-responsive bulk block copolymers were synthesized. The stimuli-responsive nanocomposites could be good candidates as drug carriers for the targeted and controllable drug delivery.
|
380 |
Nanomechanical properties of nanocomposite polymer layer / Nanomekaniska egenskaper hos polymera nanokompositfilmerTokarski, Tomasz January 2019 (has links)
Interphase phenomenon gains more and more interest throughout the research community. An interphase is formed between a filler particle and a polymeric matrix, and it may constitute almost the entire volume of a nanocomposite. If the interphase have favorable mechanical properties it will thus result in a nanocomposite with such properties. Therefore, understanding the principles of its formation and properties are crucial in order to design advanced nanocomposites. This thesis focuses on PDMS-carboxylic acid modified latex nanoparticles (PDMS-CML) surface composites investigated by means of Atomic Force Microscopy (AFM). A new sample preparation method was designed and utilized together with the Gel Trapping Technique (GTT). Quantitative Imaging Mode and Contact Mode were utilized in the AFM studies. Topography and nanomechanical properties were investigated and compared for pure PDMS and PDMS containing the nanoparticles. Further, Contact Mode was used to investigate nanoscale wear of the samples in order to elucidate the interactions strength between the nanoparticles and the matrix. / Egenskaper hos interfaser är ett område som röner allt större intresse hos forskarna inom materialområdet. En interfas bildas mellan en fillerpartikel och en polymermatris, och den kan utgöra den största volymen i en nanokomposit. Ifall interfasen har fördelaktiga mekaniska egenskaper så resulterar det alltså i att nanokompositen också får det. Det är därför viktigt att först principerna för hur interfasen bildas och får sina egenskaper om man vill framställa avancerade nanokompositer. I det här avhandlingsarbetet lades fokus på PDMS och karboxylsyrefunktionaliserade latex nanopartiklar som bildade en nanokomposit yta, vilken studerades med atomkraftsmikroskopi (AFM). En ny framställningsmetod togs fram och utnyttjades tillsammans med den så kallade ”Gel Trapping” tekniken (GTT). Quantitative Imaging och kontakt mode utnyttjades vid AFM studierna. Topografin och de nanomekaniska egenskaperna studerades för ren PDMS och PDMS blandat med nanopartiklarna. Nötning på nanometernivå studerades också, och dä med AFM i kontakt mode.
|
Page generated in 0.0544 seconds