• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 43
  • 17
  • 9
  • 7
  • 6
  • 3
  • 1
  • Tagged with
  • 111
  • 111
  • 111
  • 26
  • 15
  • 15
  • 14
  • 11
  • 11
  • 11
  • 11
  • 10
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Structure-function analysis of vascular tethering molecules using atomic force microscope

Wu, Tao 17 November 2008 (has links)
During hemostatic and inflammatory responses, cell adhesion molecules play a major role in regulating the leukocytes and platelets adhesion to vascular surfaces under the hydrodynamic environment of the circulation. Selectin-ligand interactions (bonds) mediate leukocyte rolling on vascular surfaces. The molecular basis for differential ligand recognition by selectins is poorly understood. Using atomic force microscopy (AFM), the kinetics of three mutants L-selectin interacting with surrogates of PSGL-1 and PNAd, is compared with those of wild-type L-selectin. The interaction between glycoprotein Ib (GPIb) and von Willebrand Factor (VWF) mediates platelet translocation at the vascular vessel damage sites, which plays a critical role in initiating the platelets adhesion and thrombus formation. Translocation of platelets on VWF requires a shear threshold, suggesting a possible catch bond at work there. We characterized the kinetics of GPIbα interacting with VWF A1 domain, confirming the catch bond existed. Two type 2B VWD A1 mutants eliminated the catch bond and gave longer low force lifetimes. The prolonged lifetimes at low force resulted in more agglutination of platelets with A1 coated microspheres in flow. During the process of hemostasis, the size of prothrombotic ULVWF affects the affinity of VWF to platelets bearing GPIbα on the membrane. ADAMTS13 has been identified and characterized as a multi-domain metalloprotease that regulate the size of ULVWF. We studied how force regulated the binding and cleavage of ADAMTS13 on VWF. We found the cleavage effects could only be observed after the catastrophic structural change of A1A2A3. The unfolding exposed the ADAMTS13 cleavage site and favored the cleavage. Two protocols using different stretching molecules (GPIbα and CR1) and A1A2A3 immobilization methods revealed the cleavage effects diminished with increasing stretching force. This study elucidated mechanisms of the binding kinetics of L-selectin with different structure components from PSGL-1 and PNAd by structural variants. It also provided new insights into our current knowledge of the dynamic adhesion and regulation of GPIbα-VWF interaction in vivo. Using single molecule method, the chemical catalytic reaction between enzyme and substrate has been targeted. These results help us understand this important enzyme-substrate interaction involved in the hemostasis.
42

Atomic Force Microscope Based Near-field Imaging for Probing Cell Surface Interactions

Amini, Sina 03 October 2013 (has links)
Near-membrane and trans-membrane proteins and their interactions with the extracellular matrix (ECM) can yield valuable information about cell dynamics. However, advances in the field of nanoscale cellular processes have been hindered, in part, due to limits imposed by current technology. In this work, a novel evanescent field (EF) imaging technique is designed, modeled, created and tested for near-field imaging in the apical surface of cells. This technique and Förster resonance energy transfer (FRET) were used to investigate interactions between integrins on the cell surface and the ECM protein, fibronectin. The goal was to monitor changes in the integrin density at the cell surface as a function of clustering after binding to fibronectin on the microsphere surface. For the EF technique, quantum dot (QD)-embedded polystyrene microspheres were used to couple light into whispering gallery modes (WGMs) inside the microspheres; the resulting EF at the surface of the microsphere was used as a near-field excitation source with ~50 nm axial resolution for exciting fluorescently-labeled integrins. For FRET measurements (~10 nm axial resolution), QDs (donors) were coated on the surface of microspheres and energy transfer to red fluorescent protein (RFP)-integrin constructs (acceptors) studied. In both techniques, the QD-modified microspheres were mounted on atomic force microscope (AFM) cantilevers, functionalized with fibronectin, and brought into contact with fluorescently-labeled HeLa or vascular smooth muscle (VSM) cells. The results obtained from both methods show the clustering and activity of the integrins and are in good agreement with each other. Amsterdam discrete dipole approximation (ADDA) was used to study the effects of inhomogeneous surrounding refractive index on the quality factor and position of the WGMs due to the attachment of a microsphere to an AFM cantilever. WGMs of various QD-embedded microspheres mounted on AFM cantilevers were experimentally measured and shown to be consistent with the model.
43

Materials and methods for nanolithography using scanning thermal cantilever probes

Hua, Yueming 17 March 2008 (has links)
This work presents the novel applications of heated AFM tip in nanolithography. Different strategies were investigated for patterning materials using heated AFM tip. New materials were developed for these new nanolithography methods. Simulation and modeling work was done to further understand the heat transfer and chemical reactions involved in the thermal writing process. The selective thermal decomposition of polymer was the first thermal patterning method we¡¯ve investigated. A couple of different sacrificial polymers were used as the writing materials. Among these materials, the cross-linked amorphous polycarbonate (CPC-IV) was the best material for this application. The effect of cross-linking density on the performance of the material was investigated. A novel 3D thermal writing technology was developed by using cross-linked polymer as the writing material. A combined method utilizing the heated cantilever probe to pattern a polymer masking layer that can serve as a template for area selective atomic layer deposition techniques was developed. Another thermal probe nanolithography method, thermal probe top surface imaging, was also developed. In this method, the heated AFM tip was used to generate functional groups on the polymer surface, and ALD was used to selectively deposit TiO2 on the surface where contains those functional groups. A new poly (hydroxyl styrene) based copolymer was developed for this method. We also investigated self assembly monolayers (SAMs) as the thermal writing material. Two different SAMs were investigated. One the APTES and the other one is THP-MPTES. We demonstrated that the APTES can be patterned using thermal AFM probe, and other materials can be selectively deposited on the patterned APTES SAMs. Thermal AFM probe was used to selectively generate thiol groups from THP-MPTES SAMs, and then use these thiol groups to guide the deposition AuNPs. Some simulation and modeling works were also done to further understand these processes. FemLab was used to analyze the heat transfer in the thermal cantilever and between the heated tip and substrate. Based on kinetics of polymer thermal decomposition, we built a simple model for the selective thermal decomposition nanolithography. The experimental results can be very well fitted by this model.
44

Estudo das propriedades mecânicas de misturas asfálticas por microscopia de força atômica / Mechanical properties of asphalt mixtures sudied by Atomic Force Microscopy

Costa, Erivelton Façanha da January 2011 (has links)
COSTA, Erivelton Façanha da. Estudo das propriedades mecânicas de misturas asfálticas por microscopia de força atômica. 2011. 131 f. Tese (Doutorado em Física) - Programa de Pós-Graduação em Física, Departamento de Física, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2011. / Submitted by Edvander Pires (edvanderpires@gmail.com) on 2015-05-05T21:11:07Z No. of bitstreams: 1 2011_tese_efcosta.pdf: 9690898 bytes, checksum: 515b97b02ebfcf8c3652b217cd15491b (MD5) / Approved for entry into archive by Edvander Pires(edvanderpires@gmail.com) on 2015-05-07T16:57:29Z (GMT) No. of bitstreams: 1 2011_tese_efcosta.pdf: 9690898 bytes, checksum: 515b97b02ebfcf8c3652b217cd15491b (MD5) / Made available in DSpace on 2015-05-07T16:57:29Z (GMT). No. of bitstreams: 1 2011_tese_efcosta.pdf: 9690898 bytes, checksum: 515b97b02ebfcf8c3652b217cd15491b (MD5) Previous issue date: 2011 / The rheological study of asphalt binders is of great importance for determining its performance in paving construction. Usually, rheological parameters are obtained by a Dynamic Shear Rheometer (DSR). The aim of this work is to study the rheological properties of bitumen using an Atomic Force Microscope (AFM). So, a computational tool caled FVLOAD was used for imaging processing. Five kinds of mathematical models were used in order to analise the force curves colected through AFM: the slope analysis, the Young´s model, the adesion model, the FIEL model (Force Integration to Equal Limits) and the work difference model. Three samples were studied: pure bitumen 50/70, bitumem 50/70 doped with 4% of EVA and bitumem 50/70 doped with 4,5% of SBS. Very thin lms of these materials were prepared on glass slides and lead to an AFM for imaging. The area studied on the sample surface was of 50 m x 50 m. There were colected 1024 force curves for each image. The indentations were carried out in four frequencies: 0,5 Hz, 5 Hz, 14 Hz e 28 Hz. The curves colected were analyzed with the FVLOAD program and once the elastic properties were calculated, they were compared to those obtained in the Dynamic Shear Rheometer. / O estudo reológico do Cimento Asfáltico de Petróleo (CAP) é de fundamental importância para a determinação de sua performance na fabricação de estradas. Usualmente os parâmetros reológicos deste tipo de material são obtidos em ensaios dinâmicos através de um reômetro de cisalhamento. O presente trabalho tem por objetivo estudar as propriedades reológicas do CAP através da técnica de espectroscopia de força utilizando um microscópio de força atômica. Para isso, foi utilizada uma ferramenta computacional desenvolvida para o processamento das imagens de microscopia de força chamada de FVLOAD. Cinco análises foram realizadas com os dados das curvas de força: análise de slope, análise do módulo elástico ou módulo de Young, análise de adesão do filme de CAP, análise FIEL (Force Integration to Equal Limits), Work Difference e Adesão. Três amostras foram utilizadas neste estudo: CAP puro 50/70, CAP com 4% de EVA e CAP com 4,5% de SBS. Filmes dos três tipo de CAP foram confeccionados em lamínulas de vidro e levados ao microscópio de força atômica para obtenção dos dados das curvas de força sobre uma área de 50 μm x 50 μm. Para cada imagem foram coletadas 1024 curvas de força. As indentações com a sonda AFM foram executadas em quatro frequências: 0,5 Hz, 5 Hz, 14 Hz e 28 Hz. Finalizadas as aquisições de dados, estes foram processados no programa FVLOAD. Extraído o módulo elástico das amostras em cada frequência, os dados foram comparados com aqueles obtidos em ensaios dinâmicos através do reômetro de cisalhamento dinâmico.
45

Contribution à la mise en place d’un microscope à force Atomique métrologique (mAFM) : Conception d’une tête AFM métrologique et caractérisation métrologique de l’instrument. / Contribution to the development of metrological atomic force microscope (mAFM) : design of a metrological AFM head and metrological caracterization of the instrument

Boukellal, Younes 02 April 2015 (has links)
Les microscopes en champ proche sont très largement utilisés pour caractériser des propriétés physiques à l’échelle du nanomètre. Afin d’assurer la cohérence et l’exactitude des mesures dimensionnelles qu’ils retournent, ces microscopes ont besoin d’être étalonnés périodiquement. Le raccordement à la définition du mètre SI est assuré par le biais d’étalons de transfert dont les caractéristiques dimensionnelles sont étalonnées à l’aide d’un Microscope à Force Atomique métrologique (mAFM).Les travaux de thèse portent sur la contribution à la mise en place du Microscope à Force Atomique métrologique du LNE dans le but de caractériser et réduire l’incertitude de mesure. Une tête AFM passive thermiquement et spécifiquement conçue pour des applications de nanométrologie dimensionnelle a été développée et intégrée au mAFM. Elle comporte un système original pour mesurer les déflexions du levier nécessaire à la détection des forces s’exerçant à l’extrémité de la pointe. Il utilise une évolution de la méthode du levier optique qui permet de déporter les sources de chaleurs à l’extérieur de l’instrument. Pour cela, un nouveau capteur a été développé. Il est basé sur l’utilisation d’un bundle composé de 40 000 microfibres optiques structurées en quatre quadrants. Il remplace avantageusement une photodiode quatre quadrants et permet de transporter le signal lumineux jusqu’à des photodiodes placées à l’extérieur de l’instrument. Ce système a été modélisé, caractérisé et validé expérimentalement. La tête AFM ainsi développée est passive thermiquement. Sa conception repose sur la dissociation complète de la chaine métrologique, constituée en Zerodur, afin de lui conférer une excellente stabilité thermique et mécanique. Pour les mêmes raisons, le châssis de la tête qui supporte l’ensemble des composants et notamment le système de mesure des déflexions du levier est entièrement conçu en Invar. Cette tête repose sur une structure motorisée constituée de trois moteurs à reptation permettant l’approche de pointe mais également le réglage des interféromètres. Après intégration de la tête dans le mAFM, l’ensemble de l’instrument a été caractérisé afin d’établir son bilan d’incertitude. Plusieurs composantes ont ainsi été évaluées expérimentalement comme la non-linéarité et la stabilité de la mesure de position par interférométrie, les rotations parasites du scanner, les erreurs d’Abbe, les défauts de rugosité et de planéité des miroirs ainsi que les erreurs de bras mort. L’impact de chaque composante a été quantifié et listé dans le bilan d’incertitude. Ces travaux ont permis d’avoir une première estimation de l’incertitude de mesure du mAFM. / Scanning probe microscopes are very well used for characterization at the manometer scale. To ensure the measurement coherency and the accuracy of the results, those microscopes need to be periodically calibrated. It’s done thanks to reference standards whose dimensional characteristics are measured by a metrological atomic force microscope (mAFM) for example.The aim of this thesis work is the improvement of the metrological AFM of the LNE in order to reduce the measurement uncertainty. To reach this goal, a thermally passive AFM head has been developed and integrated on the instrument. It contains an original system to measure the cantilever deflexion and thus detect the force acting between the sample and the tip. This system is based on the optical beam deflection method but allow deporting the heat sources outside the instrument. To reach this goal, a new specific sensor has been developed. It is based on a four quadrant optic fibre bundle that contains 40 000 micro-fibre and which is ideal to replace the existing four quadrant photodiode and its conditioning electronic circuit with the bundle and its conditioning electronic circuit placed outside the instrument. This sensor has been modelled, and experimentally validated.The Developed AFM head which integrates the deflection measurement system is then thermally passive. Its design is based on the complete dissociation of the metrological loop and the structural loop. The metrological loop is made of Zerodur® in other to acquire an excellent mechanical and thermal stability and thus reduce the thermal dilatation. For the same reason, the AFM head support frame is fully made of Invar. The AFM head is placed on a motorized frame based on three piezo-leg motors (tripod) to make the tip/sample approach but also to set the interferometer signal quality. The interferometer signal is improved by combining the linear displacements of the three motors to generate small rotations. This allows setting the parallelism of the mirrors linked to the head with those linked to the translation stage.Once the AFM head integrated on the instrument, the assembly is characterized in order to establish the uncertainty budget. Different uncertainty components have been experimentally evaluated as for example: the interferometer non linearity, the drift of the XYZ position, the parasitic rotations of the translation stage, the Abbe error, the roughness and the flatness of the mirrors and the dead path errors. The impact of the each component has been quantified and listed in the uncertainty budget. This allowed getting a first estimation of the combined uncertainty of the instrument.
46

Electric Charging and Nanostructure Formation in Polymeric Films using Combined Amplitude-Modulated Atomic Force Microscopy Assisted Electrostaitc Nanolithography and Electric Force Microscopy

Reagan, Michael A. 23 December 2009 (has links)
No description available.
47

Self-assembled Supramolecular Structures Of Chiral Phospholipids: Structure, Mechanical Properties And Patterning

Mahajan, Nidhi 01 January 2005 (has links)
Lipid molecule is well known natural building block to form different supramolecular structures with specific shape, size and functionality. In my thesis work, I have used DC8,9PC 1,2-bis(tricosa-10,12-dinoyl)-sn-glycero-3-phosphocholine), a type of chiral lipid to form the vesicles, tubules and ribbons . By using Atomic Force Microscope, I have studied the morphological features of these particular structures. Also, the mechanical properties of lipid tubules have been studied using AFM. Softlithography has been used to pattern the lipid vesicles and tubules into 2-dimensional and 3-dimensional ordered arrays. The structure of self-assembled hollow spherical vesicles was studied using AFM. The applications of soft lithography in patterning polymerized lipid vesicles of DC8,9PC on glass substrates are reported. It has been demonstrated that the lipid vesicles can be used as a high-molecular weight ink to be transferred from a PDMS stamp onto a glass substrate to form two-dimensional stripes with a controlled separation over a large area. By combining channel flow with dewetting within microfluidic networks, vesicles were assembled into one-dimension lines on a glass substrate. The vesicle lines can also be selectively removed from the substrate with lift-up process. The direct and precise assembly of lipid vesicles on solid substrates will open up the possibility of integrating them in biosensors and microelectronic devices. Lipid tubules and helices are other extremely interesting superstructures that have captured the imagination of scientists in disciplines from biology through material science to chemistry and physics. Lipid tubules are self-assembled hollow cylindrical structures with opened ends, composed of rolled-up bilayers. They have been used as a template for the synthesis of inorganic materials, a substrate for the crystallization of proteins, a controlled release system for drug deliver, and a colorimetric material for chemical sensors. However, due to the high aspect ratio, the formation of ordered arrays of lipid tubules on substrates still remains to be challenging. In this thesis work, the application of well-known soft lithography techniques in assembling and manipulating lipid tubules on substrates has been reported. I show that lipid nano- and microtubules can be assembled into two-dimensional (2-D) parallel arrays with controlled separations by combining fluidic alignment with dewetting, which occur within microchannels. It has also been shown that lipid tubules can be assembled into 3-D crossbar arrays with fluidic alignment, which occurs within microfluidic networks. The deposition experiments with silica colloidal particles show that the 2-D parallel-aligned tubules can be used as a template to synthesize silica films with controlled morphologies and patterns on substrates in a single-step process. Atomic force microscopy studies show that the resulting silica films replicate the shape, orientation, and pattern of aligned tubule templates. Though, the structures of the lipid tubules have been extensively studied, but very little is known about their mechanical properties. In my work, the mechanical properties of the lipid tubules of DC8,9PC were studied with atomic force microscope. The deformation of the lipid tubules with different outer diameters is directly observed in both tapping and contact modes with increasing loading forces.
48

Fabrication and imaging of highly ordered plasmonic Au nano-prism and self-assembled supramolecular nanostructure

Ayinla, Ridwan Tobi 08 August 2023 (has links) (PDF)
The precise control of the resonance frequency of plasmonic nanostructures is critical and depends on the size, composition, shape, and dielectric nature of the environment. The ability to control the shape and size of nanomaterials acutely depends on the fabrication technique and material design. We used a cheap and scalable method known as nanosphere lithography (NSL) to fabricate plasmonic nano-prism (NP) on glass and indium tin oxide substrate (ITO). The methods involve substrate hydrophilicity treatment, polystyrene nanosphere masking, metal deposition, and mask removal. The array and specific morphology of the fabricated NP was established using scanning electron microscope (SEM) and atomic force microscope (AFM). Finally, we used UVVis spectroscopy to determine the plasmonic resonance frequencies of fabricated NP on different substrates. The results reported herein have potential applications in surface-enhanced Raman spectroscopy (SERS), and biosensing. We also used scanning tunneling microscope to obtain high spatial resolution images of supramolecular trigrams.
49

EXTRACTING MECHANICAL PROPERTIES OF CELLS/BIOMATERIALS USING THE ATOMIC FORCE MICROSCOPE

KOLAMBKAR, YASH M. 07 October 2004 (has links)
No description available.
50

THE EFFECTS OF PHOSPHOLIPID COATING ON THE INHIBITION OF PYRITE OXIDATION UNDER BIOTIC AND ABIOTIC CONDITIONS

Hao, Jun January 2009 (has links)
The abiotic oxidation of pyrite requires the supply of oxygen and water only. In abiotic systems, pyrite oxidation may proceed via several paths, with multiple steps in each of the paths. Defect sites (S-deficient, Fe3+ bearing sites) on the pyrite surface have been shown reported to be the initial reaction sites on pristine pyrite surfaces. In neutral to slightly acidic solutions (3.5<pH<7), ferric iron hydroxide patches will form on the surface. These patches have been shown to be the predominant sites for electron exchange. Efforts were undertaken to suppress the electron transfer at these sites to inhibit pyrite oxidation. It has been shown that pyrite oxidation can be controlled by exposing the pyrite to phosphate under relatively high pH values (pH above 5.0). However, phosphate ceases to function as an inhibitor under lower pHs. The use of two-tail phospholipids instead of phosphate to inhibit the pyrite oxidation proved to be very effective under abiotic conditions. The purpose of the present study is to determine if the use of two-tail phospholipids can be extended to systems that have bacteria present. Batch experiments were conducted in which pyrite slurries were treated with two-tailed lipid either before or after exposure to bacteria. Iron release into the solution was used as a reaction progress variable and Atomic Force Microscopy was used to study the distribution of lipids and bacteria on the pyrite surface. AFM images showed that the formation of 7nm lipid bilayers contributes to the majority of lipid structures on pyrite surface. The bilayers render the pyrite surface hydrophobic and inhibit the reaction of water with the surface, which is known to be a critical reactant. AFM images also showed that phospholipids are capable of displacing a large fraction of bacteria attached to pyrite, reducing the oxidation rate of the mineral. However, addition of heterotrophic bacterial (Acidiphilum acidophilum) to the system resulted in the increase in pyrite oxidation rate again. Cross-linking of the 23:2 dyne phospholipids by exposing the lipid to UV light greatly enhanced the stability of the lipid in the presence of the heterotrophic bacteria. UV pretreated lipid layers reduced pyrite oxidation in the presence of heterotrophic bacteria for up to 30 days. / Chemistry

Page generated in 0.0619 seconds