• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 61
  • 49
  • 9
  • 7
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 164
  • 28
  • 28
  • 25
  • 22
  • 20
  • 17
  • 17
  • 16
  • 16
  • 15
  • 15
  • 13
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Olfactory discrimination in the rat

Sokolic, Ljiljana January 2009 (has links)
Doctor of Philosophy (PhD) / Abstract Olfactory tasks are used very often with laboratory animals in studies of the neurobiology of learning and memory. Rats and mice are extremely sensitive in their detection and discrimination of odours, learn olfactory tasks rapidly, and can display higher order cognitive functions in olfactory tasks. This cognitive capacity may rival the ability of primates to learn analogous tasks with visual cues and most likely reflects strong anatomical connections between the olfactory bulbs and higher brain regions such as the piriform cortex, orbitofrontal cortex and hippocampus. The current thesis explored olfactory discrimination learning and performance in rats and had two principal aims. The first part of the thesis was oriented around odour masking phenomena in rats: the ability of one odour in a mixture to suppress detection of a second odour in that mixture. A specialized behavioural paradigm was developed to allow the study of odour masking in the rat. The second part of the thesis was pharmacological and determined whether the acquisition, reversal and performance of olfactory discriminations, and analogous auditory discriminations, are affected by two commonly used classes of drugs (benzodiazepines and cannabinoids). Together, these studies attempt to gain a better understanding of the nature of olfactory discrimination learning in rats, by using both psychophysical and pharmacological approaches, and to develop behavioural paradigms which may be used in future psychophysical and pharmacological studies. Following an introduction and review of olfactory and auditory studies in rat (Chapter 1), odour masking phenomena were studied in Chapter 2. The aliphatic aldehydes butanal (C4) and heptanal (C7) were used in the study. Aldehydes were of interest as this class of odorants abound in nature and may be important for rodents’ species-specific communication. Thirsty rats were initially trained to discriminate C4 and C7 in the olfactometer, using a go/no-go olfactory discrimination task. This involved rats learning to nose poke in an odour port and to lick a tube for a water reward on presentation of the rewarded component S+, while withholding licking at the tube when the other, unrewarded, aldehyde (S-) was presented. Odour mixtures (C4C7 or C7C4) were then introduced into the task as an additional non-rewarded condition (mixture S-). The concentration of the non-rewarded aldehyde in the mixture was then systematically decreased, while the concentration of the rewarded aldehyde was kept constant. When the non-rewarded aldehyde reached a critical low level in the mixture, rats started to make responses to the non-rewarded mixture (false alarms) showing that the S+ odour was suppressing the S- odour in the mixture, so the mixture was being responded to in the same manner as the S+ odour presented alone. Results also showed asymmetric suppression in the mixture condition, such that butanal suppressed detection of heptanal at a much lower concentration than vice versa. A second experiment demonstrated that when both butanal and heptanal were present in a binary mixture at the same concentration (10-6 volume %), rats responded to the mixture as if only butanal was present. Our findings are in agreement with human studies showing component interactions in binary mixtures of aldehydes. The molecular feature of carbon chain length appears to be a critical factor in determining the outcome of interactions between aldehydes at peripheral olfactory receptors, with smaller chain aldehydes better able to compete for receptor occupancy. Subsequent chapters explored the effects of two classes of commonly used drugs - benzodiazepines and cannabinoids - on olfactory and auditory discrimination in rats. Animal models such as the radial arm maze, Morris water maze and object recognition test are routinely used to test adverse and facilitatory effects of drugs on cognition in rodents. However, comparatively few pharmacological studies employ olfactory or auditory go/no-go paradigms. Thus, an important part of the present thesis was to assess the viability of using such paradigms in detecting pharmacological effects, and to identify whether such effects may be modality specific (i.e. whether a drug has a greater effect on olfactory or auditory tasks). In Chapter 3, the effects of benzodiazepines on olfactory discrimination tasks were explored. Rats were injected with the benzodiazepine drugs midazolam or diazepam and tested on discrimination tasks involving either the auditory and olfactory modality. Results showed that midazolam (0.5–2 mg/kg sc) did not affect the performance of a well-learned two-odour olfactory discrimination task, and moderately facilitated the performance of a go/no-go auditory discrimination task. On the contrary, midazolam (1 mg/kg) impaired the acquisition of a novel go/no-go olfactory discrimination task, as well as the reversal of a previously well-learned olfactory discrimination. However, midazolam did not affect the acquisition or reversal of an equivalent auditory discrimination task. The olfactory bulb and the piriform cortex are intimately involved in associative learning and behavioural aspects of olfactory performance, and have high concentrations of benzodiazepine receptors. These may therefore be possible neural substrates for the disruptive effects of benzodiazepines on olfactory learning. Findings from Chapter 4 indicated that the prototypical cannabinoid agonist delta-9-tetrahydrocanabinol (Δ9 THC) (0.3, 1 and 3 mg/kg) impairs auditory discrimination performance, but had no effect on equivalent olfactory discriminations. This is in marked contrast to the effects of benzodiazepines. Residual effects were observed, such that auditory discrimination performance was still impaired on the day following Δ9 THC administration. Delta-9-tetrahydrocanabinol effects were prevented by co-administration of the cannabinoid antagonist rimonabant (3 mg/kg). In addition, the anandamide hydrolysis inhibitor URB597 (0.1 and 0.3 mg/kg), which boosts levels of endogenous cannabinoids in the synapse, also impaired auditory discrimination performance, and this effect was also reversed by rimonabant. This study also assessed the effects of Δ9 THC (0.3, 1 and 3 mg/kg) and URB597 (0.1 and 0.3 mg/kg) on acquisition and reversal of novel olfactory discriminations. Results showed that Δ9 THC impairs olfactory reversal learning without affecting acquisition of the original discrimination. It is argued that this reversal deficit may be part of a wider capacity for cannabinoids to impair cognitive flexibility. The final Chapter (General Discussion) discusses the relevance and implications of the combined findings. The results add significantly to our current understanding of perceptual, learning and memory processes involving the olfactory modality in rats. With respect to olfactory perception, this thesis introduced a new behavioural paradigm, which can be used to assess component suppression in mixtures, and may be of use in future psychophysical studies involving rodents or other species. With respect to learning and memory, the thesis provides novel information on the disruptive effects of benzodiazepines and cannabinoids on olfactory and auditory tasks. It is concluded that go/no-go olfactory and auditory discrimination tasks in rats can provide a useful platform for assessing the disruptive and modality-specific effects of drugs on learning, performance and cognitive flexibility. Future studies might expand the range of drugs tested on these paradigms and might consider chronic as well as acute drug effects.
32

The Duality of Settings: How the Acoustics of Different Audition Environments Necessitate a Two-Fold Preparation of Audition Excerpts

van Duuren, Alexander January 2014 (has links)
It is widely known that intonation in live professional trombone auditions is one of the most critical factors for which execution is paramount. However, the musician who practices dutifully and precisely with a chromatic tuner, even to the point of technical mastery, will not be prepared sufficiently. He or she will find that in certain environments where heavy reverberation is present, the harmonies inadvertently created are not in tune, even when equal-tempered tuning is executed perfectly, due to the harmonic interactions that those reverberations create. Therefore, it is important that trombonists know how to play auditions excerpts with just intonation, a system that accounts for harmony to deliver results that are truly in tune, for use in the solo round of an audition in such an acoustically "wet" space. This document demonstrates the need for a solution in this regard, the factors involved in a practical application of these concepts in varying scenarios, and presents analyses in just intonation of ten of the most commonly requested excerpts. In addition, guidance and resources are provided for application beyond the excerpts that have been included. It is intended that the trombonist who reads this document will have a better understanding of the basics of just intonation as they apply to solo auditions, so that the quality of his or her audition is improved by leaving at least one less element, intonation, up to chance.
33

Cognitive and Auditory Factors Underlying Auditory Spatial Attention in Younger and Older Adults

Singh, Gurjit 09 June 2011 (has links)
Listening to speech with competing speech in the background is challenging and becomes harder with age. Three experiments examined the auditory and cognitive aspects of auditory spatial attention in conditions in which the location of the target was uncertain. In all experiments, word identification was measured for target sentences presented with two competitor sentences. On each trial, the three sentences were presented with one from each of three spatially separated loudspeakers. A priori cues specified the location and identity callsign of the target. In Experiments I and II, sentences were also presented in conditions of simulated spatial separation achieved with the precedence effect. Participants were younger and older adults with normal hearing sensitivity below 4 kHz. For both age groups, the contributions of richer acoustic cues (those present when there was real spatial separation, but absent when there was simulated spatial separation) were most pronounced when the target occurred at “unlikely” spatial listening locations, suggesting that both age groups benefit similarly from richer acoustical cues. In Experiment II, the effect of time between the callsign cue and target word on word identification was investigated. Four timing conditions were tested: the original sentences (which contained about 300 ms of filler speech between the callsign cue and the onset of the target words), or modified sentences with silent pauses of 0, 150, or 300 ms replacing the filler speech. For targets presented from unlikely locations, word identification was better for all listeners when there was more time between the callsign cue and key words, suggesting that time is needed to switch spatial attention. In Experiment III, the effects of single and multiple switches of attention were investigated. The key finding was that, whereas both age groups performed similarly in conditions requiring a single switch of attention, the performance of older, but not younger listeners, was reduced when multiple switches of spatial attention were required. This finding suggests that difficulties disengaging attention may contribute to the listening difficulties of older adults. In conclusion, cognitive and auditory factors contributing to auditory spatial attention appear to operate similarly for all listeners in relatively simple situations, and age-related differences are observed in more complex situations.
34

Pitch perception in vocal learners: Fundamental shared components of pitch processing and biological relevance

Hoeschele, Marisa A Unknown Date
No description available.
35

Le développement de la représentation de l'espace auditif dans le collicule supérieur du rat

Vachon-Presseau, Étienne January 2007 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
36

Cognitive and Auditory Factors Underlying Auditory Spatial Attention in Younger and Older Adults

Singh, Gurjit 09 June 2011 (has links)
Listening to speech with competing speech in the background is challenging and becomes harder with age. Three experiments examined the auditory and cognitive aspects of auditory spatial attention in conditions in which the location of the target was uncertain. In all experiments, word identification was measured for target sentences presented with two competitor sentences. On each trial, the three sentences were presented with one from each of three spatially separated loudspeakers. A priori cues specified the location and identity callsign of the target. In Experiments I and II, sentences were also presented in conditions of simulated spatial separation achieved with the precedence effect. Participants were younger and older adults with normal hearing sensitivity below 4 kHz. For both age groups, the contributions of richer acoustic cues (those present when there was real spatial separation, but absent when there was simulated spatial separation) were most pronounced when the target occurred at “unlikely” spatial listening locations, suggesting that both age groups benefit similarly from richer acoustical cues. In Experiment II, the effect of time between the callsign cue and target word on word identification was investigated. Four timing conditions were tested: the original sentences (which contained about 300 ms of filler speech between the callsign cue and the onset of the target words), or modified sentences with silent pauses of 0, 150, or 300 ms replacing the filler speech. For targets presented from unlikely locations, word identification was better for all listeners when there was more time between the callsign cue and key words, suggesting that time is needed to switch spatial attention. In Experiment III, the effects of single and multiple switches of attention were investigated. The key finding was that, whereas both age groups performed similarly in conditions requiring a single switch of attention, the performance of older, but not younger listeners, was reduced when multiple switches of spatial attention were required. This finding suggests that difficulties disengaging attention may contribute to the listening difficulties of older adults. In conclusion, cognitive and auditory factors contributing to auditory spatial attention appear to operate similarly for all listeners in relatively simple situations, and age-related differences are observed in more complex situations.
37

Olfactory discrimination in the rat

Sokolic, Ljiljana January 2009 (has links)
Doctor of Philosophy (PhD) / Abstract Olfactory tasks are used very often with laboratory animals in studies of the neurobiology of learning and memory. Rats and mice are extremely sensitive in their detection and discrimination of odours, learn olfactory tasks rapidly, and can display higher order cognitive functions in olfactory tasks. This cognitive capacity may rival the ability of primates to learn analogous tasks with visual cues and most likely reflects strong anatomical connections between the olfactory bulbs and higher brain regions such as the piriform cortex, orbitofrontal cortex and hippocampus. The current thesis explored olfactory discrimination learning and performance in rats and had two principal aims. The first part of the thesis was oriented around odour masking phenomena in rats: the ability of one odour in a mixture to suppress detection of a second odour in that mixture. A specialized behavioural paradigm was developed to allow the study of odour masking in the rat. The second part of the thesis was pharmacological and determined whether the acquisition, reversal and performance of olfactory discriminations, and analogous auditory discriminations, are affected by two commonly used classes of drugs (benzodiazepines and cannabinoids). Together, these studies attempt to gain a better understanding of the nature of olfactory discrimination learning in rats, by using both psychophysical and pharmacological approaches, and to develop behavioural paradigms which may be used in future psychophysical and pharmacological studies. Following an introduction and review of olfactory and auditory studies in rat (Chapter 1), odour masking phenomena were studied in Chapter 2. The aliphatic aldehydes butanal (C4) and heptanal (C7) were used in the study. Aldehydes were of interest as this class of odorants abound in nature and may be important for rodents’ species-specific communication. Thirsty rats were initially trained to discriminate C4 and C7 in the olfactometer, using a go/no-go olfactory discrimination task. This involved rats learning to nose poke in an odour port and to lick a tube for a water reward on presentation of the rewarded component S+, while withholding licking at the tube when the other, unrewarded, aldehyde (S-) was presented. Odour mixtures (C4C7 or C7C4) were then introduced into the task as an additional non-rewarded condition (mixture S-). The concentration of the non-rewarded aldehyde in the mixture was then systematically decreased, while the concentration of the rewarded aldehyde was kept constant. When the non-rewarded aldehyde reached a critical low level in the mixture, rats started to make responses to the non-rewarded mixture (false alarms) showing that the S+ odour was suppressing the S- odour in the mixture, so the mixture was being responded to in the same manner as the S+ odour presented alone. Results also showed asymmetric suppression in the mixture condition, such that butanal suppressed detection of heptanal at a much lower concentration than vice versa. A second experiment demonstrated that when both butanal and heptanal were present in a binary mixture at the same concentration (10-6 volume %), rats responded to the mixture as if only butanal was present. Our findings are in agreement with human studies showing component interactions in binary mixtures of aldehydes. The molecular feature of carbon chain length appears to be a critical factor in determining the outcome of interactions between aldehydes at peripheral olfactory receptors, with smaller chain aldehydes better able to compete for receptor occupancy. Subsequent chapters explored the effects of two classes of commonly used drugs - benzodiazepines and cannabinoids - on olfactory and auditory discrimination in rats. Animal models such as the radial arm maze, Morris water maze and object recognition test are routinely used to test adverse and facilitatory effects of drugs on cognition in rodents. However, comparatively few pharmacological studies employ olfactory or auditory go/no-go paradigms. Thus, an important part of the present thesis was to assess the viability of using such paradigms in detecting pharmacological effects, and to identify whether such effects may be modality specific (i.e. whether a drug has a greater effect on olfactory or auditory tasks). In Chapter 3, the effects of benzodiazepines on olfactory discrimination tasks were explored. Rats were injected with the benzodiazepine drugs midazolam or diazepam and tested on discrimination tasks involving either the auditory and olfactory modality. Results showed that midazolam (0.5–2 mg/kg sc) did not affect the performance of a well-learned two-odour olfactory discrimination task, and moderately facilitated the performance of a go/no-go auditory discrimination task. On the contrary, midazolam (1 mg/kg) impaired the acquisition of a novel go/no-go olfactory discrimination task, as well as the reversal of a previously well-learned olfactory discrimination. However, midazolam did not affect the acquisition or reversal of an equivalent auditory discrimination task. The olfactory bulb and the piriform cortex are intimately involved in associative learning and behavioural aspects of olfactory performance, and have high concentrations of benzodiazepine receptors. These may therefore be possible neural substrates for the disruptive effects of benzodiazepines on olfactory learning. Findings from Chapter 4 indicated that the prototypical cannabinoid agonist delta-9-tetrahydrocanabinol (Δ9 THC) (0.3, 1 and 3 mg/kg) impairs auditory discrimination performance, but had no effect on equivalent olfactory discriminations. This is in marked contrast to the effects of benzodiazepines. Residual effects were observed, such that auditory discrimination performance was still impaired on the day following Δ9 THC administration. Delta-9-tetrahydrocanabinol effects were prevented by co-administration of the cannabinoid antagonist rimonabant (3 mg/kg). In addition, the anandamide hydrolysis inhibitor URB597 (0.1 and 0.3 mg/kg), which boosts levels of endogenous cannabinoids in the synapse, also impaired auditory discrimination performance, and this effect was also reversed by rimonabant. This study also assessed the effects of Δ9 THC (0.3, 1 and 3 mg/kg) and URB597 (0.1 and 0.3 mg/kg) on acquisition and reversal of novel olfactory discriminations. Results showed that Δ9 THC impairs olfactory reversal learning without affecting acquisition of the original discrimination. It is argued that this reversal deficit may be part of a wider capacity for cannabinoids to impair cognitive flexibility. The final Chapter (General Discussion) discusses the relevance and implications of the combined findings. The results add significantly to our current understanding of perceptual, learning and memory processes involving the olfactory modality in rats. With respect to olfactory perception, this thesis introduced a new behavioural paradigm, which can be used to assess component suppression in mixtures, and may be of use in future psychophysical studies involving rodents or other species. With respect to learning and memory, the thesis provides novel information on the disruptive effects of benzodiazepines and cannabinoids on olfactory and auditory tasks. It is concluded that go/no-go olfactory and auditory discrimination tasks in rats can provide a useful platform for assessing the disruptive and modality-specific effects of drugs on learning, performance and cognitive flexibility. Future studies might expand the range of drugs tested on these paradigms and might consider chronic as well as acute drug effects.
38

Professional Orchestral Auditions for Trumpet: Criteria for Evaluation of Candidates, Common Mistakes and Concerns, and a Discussion of the Top Fifteen Excerpts Asked at Auditions

January 2012 (has links)
abstract: Every year hundreds of aspiring musicians audition for positions with professional orchestras throughout the United States. This study is designed to provide a comprehensive look at professional orchestral auditions for trumpet. While other resources rely on the single opinion of their author, this study gathers information from a broad range of sources to develop its conclusions. This project was completed in three phases. In the first phase, lists of excerpts from trumpet auditions were compiled. In the second phase, an online survey of musicians who have served on a trumpet audition committee was conducted. In the final phase, four principal trumpet players of major orchestras and one conductor were interviewed to look further into the criteria and procedures used in orchestral trumpet auditions. The results of this study can be grouped into four categories: the desired qualities sought in a trumpet audition, common mistakes and concerns for those taking auditions, common mistakes and concerns for audition committees, and a discussion of the top fifteen excerpts asked in auditions. The data from this study can be used to consider two different perspectives: what does an aspiring trumpet player need to do to win an audition? And also, what should a committee want to hear? Although there is a broad range of opinion when considering trumpet auditions, certain standards remain. Also, while most of those involved in this study agree that the audition process is among the fairest ways to determine the winner of a job with an orchestra, they also agree that significant changes to the process still need to be made. This is especially true with reference to the types of excerpts asked and the audition procedures used. / Dissertation/Thesis / D.M.A. Music 2012
39

Právní aspekty insolvence z pohledu věřitele / Legal aspect of the position of creditor in insolvency proceeding

PETŘÍKOVÁ, Kateřina January 2017 (has links)
This thesis decribes insolvency proceeding, primarily obligation and rights of creditor while information is baded on the Law no 182/2006 Coll., Insolvency Law. There is created instruction that should be used by creditor during insolvency proceeding. Thereafter there is in the part "practise" presented and analysed specific real case, this case was figured out by audition.
40

Appropriate Performance Tempi of Standard Trombone Excerpts as Determined from Recorded Performances of Professional Orchestras and the Potential Application to Trombone Pedagogy

January 2020 (has links)
abstract: In preparation for an orchestral audition, one of the first considerations a trombonist will have in the study of an excerpt is the question of tempo. The selection of an appropriate tempo for a musical work is key to a successful performance of that work and can make the difference between winning an audition and losing it. This project identifies the tempo of the top sixteen tenor trombone excerpts one is likely to perform in an audition by analyzing the tempo in recordings of professional orchestras. The data generated in the measurements of those recordings is analyzed in an effort to determine an appropriate tempo around which a trombonist preparing these excerpts might center their work. The goal of this project is to provide a resource for trombonists and trombone teachers as an aid in their determination of the ideal tempo of these excerpts. / Dissertation/Thesis / Doctoral Dissertation Music 2020

Page generated in 0.0738 seconds