• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 8
  • 7
  • 3
  • 3
  • 2
  • Tagged with
  • 59
  • 59
  • 15
  • 14
  • 14
  • 13
  • 11
  • 10
  • 9
  • 9
  • 8
  • 8
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Caracterização histoquímica e imunoistoquímica de áreas telencefálicas da coruja-da-igreja (Tyto alba) / Histochemical and immunohistochemical characterization of forebrain areas in the barn owl (Tyto alba)

Luiz Augusto Miziara Ribeiro 19 March 2010 (has links)
Corujas se destacam por suas habilidades visuais e auditivas. Pouco é conhecido sobre a neuroanatomia do seu telencéfalo. Assim, caracterizamos através de técnicas histo/imunoistoquímicas o telencéfalo da coruja-da-igreja. Os núcleos da base foram delineados através da sua intensa imunomarcação para DARPP-32 e tirosina hidroxilase. Áreas sensoriais primárias tálamorrecipientes, como o entopálio (E), L2 do Field L auditório e o núcleo basorostral palial, foram caracterizadas pela quase ausência de DARPP-32 e alta atividade da citocromo oxidase (CO). As pseudo-camadas do Wulst visual foram delineadas com uma combinação de métodos, incluindo a ativação da CO, e imunomarcação para DARPP-32. O Wulst visual e o Field L se destacaram como regiões enormes, enquanto o E se revelou menor. Os dados sugerem que a morfologia de muitas regiões telencefálicas da coruja-da-igreja é semelhante àquela em outras aves. Contudo, o Wulst e o Field L se destacaram por seu tamanho e grau de organização, refletindo a importância do sistema visual e auditivo no comportamento de corujas. / Owls possess exceptional visual and auditory capacities. There is only limited information about the neuroanatomy of their forebrain. Thus, we characterized by histo/immunohistochemical techniques the forebrain of the barn owl. The basal ganglia were delineated by their intense immunostaining for DARPP-32 and tyrosine hydroxylase. Primary thalamorecipient sensory areas, such as the entopallium (E), L2 of the auditory Field L and the basorostral palial nucleus were characterized by the almost absence of DARPP-32 and their high citocrome oxidase (CO) activity. The pseudo layers of the visual Wulst were delineated by a combination of methods, including CO activity and immunostaining for DARPP-32.The Wulst and Field L were outlined by their huge size, whereas the E was small. These data suggest that the morphology of many telencephalic regions of the barn owl is similar to that in other birds. However, the Wulst and Field L were highlighted by their size and degree of organization, reflecting the importance of the visual and auditory system for the behavior of owls.
22

Auditory associative learning and its neural correlates in the auditory midbrain

Chen, Chi 21 January 2019 (has links)
No description available.
23

Audiometrie / Audiometry

Stanický, Ondřej January 2011 (has links)
The first part of the thesis focuses on theory and deals with the basic physical terms as far as acoustics is concerned. It also deals with a description of auditory system, as well as graphical results of audiometrical methods. The second part to the thesis deals with a scheme of audiometer for hearing tests. It also deals with the description of the programme as well as the transfer of the decibel scale to electric voltage and its correction. The last chapter contains the data collected during the hearing tests.
24

The role of oligodendrocytes in higher-order circuit functions

Moore Corona, Sharlen Yared 05 June 2018 (has links)
No description available.
25

The molecular anatomy of synaptic vesicle recycling at the hair cell ribbon synapse

Richter, Katharina Natalia 15 August 2019 (has links)
No description available.
26

Evaluation des capacités de discrimination et de la robustesse des réponses des neurones du système auditif en situation de dégradation acoustique / Discrimination and Robustness Evaluation of Neuronal Responses of the Auditory System in Acoustic Degradation Situations

Souffi, Samira 12 November 2019 (has links)
Ces travaux de recherche ont eu pour objectif d’évaluer les capacités de discrimination des réponses des neurones et leur robustesse dans le bruit à chaque étage du système auditif. Nous avons ainsi quantifié la capacité de discrimination neuronale entre quatre vocalisations cibles conspécifiques masquées par un bruit stationnaire depuis le noyau cochléaire jusqu’au cortex auditif secondaire chez le cobaye anesthésié. La discrimination des vocalisations cibles par les populations neuronales a été fortement diminuée par le bruit dans toutes les structures, mais les populations du colliculus inférieur et du thalamus ont montré de meilleures performances que les populations corticales. La comparaison avec les réponses neuronales obtenues avec les vocalisations vocodées (38, 20 ou 10 bandes de fréquences) a révélé que la réduction des capacités de discrimination neuronale était principalement due à l'atténuation des modulations d'amplitude lente (< 20 Hz). En outre, nous avons quantifié la robustesse des réponses neuronales grâce à une méthode de classification automatique réalisée sur l’ensemble des données obtenues en présence du bruit stationnaire et d’un autre bruit appelé chorus. Cela a mis en évidence cinq catégories de comportements neuronaux (des plus robustes aux plus sensibles) et leurs proportions respectives sur l’ensemble du système auditif ainsi qu’au sein de chaque structure auditive. Cette analyse a montré également qu’il existait des neurones robustes à tous les étages du système auditif, bien qu’une proportion plus importante soit retrouvée au niveau du colliculus inférieur et du thalamus. Par ailleurs, la proportion de neurones robustes est plus faible dans le bruit chorus ce qui laisse suggérer que ce dernier est plus pénalisant que le bruit stationnaire. Il est important de souligner qu’une proportion non négligeable de neurones sous-corticaux et corticaux changent de comportement d’un bruit à l’autre de sorte que le comportement de ces neurones dans un bruit particulier est peu prédictible. Ces résultats démontrent donc que la discrimination neuronale en situation de dégradation acoustique est principalement déterminée par l’altération des modulations lentes d'amplitude à la fois au niveau sous-cortical et cortical et suggèrent que les structures sous-corticales contribuent de façon importante à la perception robuste d’un signal cible dans le bruit. / This research aimed at evaluating the discrimination abilities of neuronal responses and their robustness to noise at each stage of the auditory system, from the cochlear nucleus to the secondary auditory cortex. We quantified the neuronal discrimination performance between four conspecific vocalizations masked by a stationary noise in anesthetized guinea pig. Discrimination of target vocalizations by neuronal populations was significantly reduced by noise in all structures, but collicular and thalamic populations displayed better performance than cortical populations. The comparison with neuronal responses obtained with vocoded vocalizations (using 38, 20 or 10 frequency bands) revealed that the reduction in discrimination performance was mainly due to the attenuation of slow amplitude modulations (<20 Hz). In addition, we quantified the robustness of neuronal responses using an automatic classification method performed on the whole database obtained in presence of stationary noise and of another noise called “chorus” noise. This highlighted five categories of neural behavior (from robustness to sensitivity) and their respective proportions across the auditory system as well as within each auditory structure. This analysis demonstrated that robust neurons do exist at all stages of the auditory system, although a higher proportion was found in the inferior colliculus and thalamus. Moreover, the proportion of robust neurons is lower in the chorus noise, which suggests that the latter is more penalizing than the stationary noise. It is worth to point out that a significant proportion of subcortical and cortical neurons changed category from one background noise to another, so that the behavior of these neurons in a particular noise was unpredictable. These results provide clear evidence that neuronal discrimination in degraded acoustic conditions is mainly determined by alterations of slow amplitude modulations both at the subcortical and cortical level, and suggest that the subcortical structures significantly contribute to the robust perception of a target signal in noise.
27

Study on Human Auditory System Models and Risk Assessment of Noise Induced Hearing Loss

Song, Won Joon 13 April 2010 (has links)
No description available.
28

Development of neurotransmission in the lateral superior olive: understanding synapse maturation in the developing auditory brainstem

Case, Daniel T. 06 July 2014 (has links)
<p>The lateral superior olive (LSO) is an auditory brainstem nucleus crucial in the determination of sound source. To accomplish sound localization, principal neurons of the LSO compare the intensity of sounds reaching the two ears by integrating an excitatory input from the ipsilateral anteroventral cochlear nucleus (AVCN), which is activated by sound reaching one ear, with an inhibitory input from the ipsilateral medial nucleus of the trapezoid body (MNTB), which is activated by sound reaching the opposite ear. In order for LSO principal neurons to properly integrate these excitatory and inhibitory inputs, the inputs must be matched in a frequency-dependent matter to LSO neurons. The mechanisms that direct the organization, selection, and maturation of both the excitatory and inhibitory pathway during development are not well understood. The experiments presented in this thesis were aimed at understanding the mechanisms that may underlie these processes in the developing LSO.</p> <p>The excitatory neurotransmitter glutamate is released in both the excitatory AVCN-LSO pathway and the inhibitory MNTB-LSO pathway during their period of functional circuit refinement, and may be important in the development of both of these pathways. Using the patch-clamp technique in acute brainstem slices of rats, we evaluated glutamatergic transmission in both the excitatory AVCN-LSO pathway and the inhibitory MNTB-LSO pathway during their period of functional refinement. Additionally, using the patch-clamp technique in acute brainstem slices of mice, we examined what functions vesicular glutamate transporter 3 (VGlut3), the protein that supports glutamate release from MNTB terminals, may have in the developing MNTB-LSO pathway. When taken together, the results from the three studies presented support a model in which circuit maturation in the LSO relies on mechanisms driven through a specific glutamate receptor, the N-methyl-D-aspartate (NMDA) receptor.</p> / Doctor of Philosophy (PhD)
29

Myeloarchitecture and Intrinsic Functional Connectivity of Auditory Cortex in Musicians with Absolute Pitch

Kim, Seung-Goo 10 February 2017 (has links) (PDF)
Introduction This dissertation studied structures and functions of auditory cortex in musicians with a rare auditory perception called absolute pitch (AP) using an in-vivo neuroimaging technique magnetic resonance imaging (MRI). The absolute pitch is defined as an ability to recognize pitch chroma, which is musical naming in the twelve-tone equal-temperament (12-TET) system (e.g., “C#”), of any given tonal sound without external references. It has been of interest of many psychologists since the experimental methods have been introduced in psychology over a century. Early behavioral experiments reported many findings that were validated in later studies with computerized measurement of behaviors. Over the recent two decades, in-vivo neuroimaging studies have found alteration in structures and functions of the brains of musicians with AP compared to control musicians without AP. However, quantitative models on the behaviors of neural systems behind the AP have not been suggested yet. Of course, neuronal modeling is a challenging problem in cognitive neuroscience studies in general. In order to generate such models to explain auditory perceptions such as AP, detailed information on structures and functions of neural systems must be obtained. In this context, we examined microarchitecture of the auditory cortex in musicians with AP using ultra- high field MRI that currently enables the highest spatial resolution of in-vivo imaging at the moment. In addition, we examined the functional connectivity between the auditory cortex and the other regions of the whole cortex. In the dissertation, detailed introduction of the pitch chroma perception is given throughout the human auditory systems from peripheral apparatus to non-primary auditory cortex in the Chapter I. In-depth discussion on the in-vivo imaging techniques, image processing, and statistical inferences focusing on the strength and potential pitfalls of the methods and their common practice in the Chapter II. In the Chapter III and IV, I explained MRI studies of the PhD project in details with discussions on the findings. Finally in the Chapter V, I summarized the major findings and discuss possible interpretation based on the framework of ‘dual auditory pathway hypothesis’. Study of Myeloarchitecture In the first study (Chapter III), a novel MRI sequence named magnetization-prepared two rapid gradient echo (MP2RAGE) was used to investigate cortical myelination. Myeloarchitecture of cerebral cortex is the one of the important histological concepts to understand organization of cortical column as well as cytoarchitecture. Neurons in the cortex are not only linked to the other distant neurons through the white matter but also connected vertically and horizontally to adjacent neurons. These short/long-distance axonal connections form myeloarchitecture of the cortex. The MP2RAGE sequence estimates a physical quantity called longitudinal relaxation rates (R1), which is sensitive to myelin concentration of the tissue. When compared to control musicians without AP, we found greater R1 in the anterior part of the right supratemporal plane in the musicians with AP. Given the finding was specific to the middle depth of cortex, the finding is unlikely related to long-distance axonal connections but likely to local connections. The precise location of the group difference was determined as the right planum polare in the template brain as well as in all individual brains. Based on the finding, I speculated that the working principles of the AP processes might be related to the dual auditory pathway hypothesis. In the theory, spatial auditory information is processed along the dorsal pathway (from the primary auditory cortex, to planum temporale, supramarginal gyrus, parietal lobules, and dorsolateral prefrontal cortex) whereas non-spatial auditory information is processed along the ventral pathway (from the primary auditory cortex to planum polare, temporal pole, anterior insular, and ventrolateral prefrontal cortex) in analogous to visual system. Because pitch chroma is spatially invariant property of an auditory object, and also it is less useful for auditory scene segregation compared to separation based on general pitch range (i.e., pitch height), I suggested the observation of cortical myelin in the anterior non-primary auditory cortex might be related to the absolute recognition of pitch chroma in AP listeners. Another potential implication of the heavy myelination is the function of myelination in neural development. In a rat model, it was demonstrated that the myelination of cortex triggers protein interactions that greatly restrict neuroplasticity after the ‘critical period’ of normal development. From genetic studies, it has been found that the onset of musical training is crucial in the acquisition of AP. Since the planum polare is related to pitch chroma processing, the increase of myelination in this region might indicate the preservation of the pitch chroma representation. Study of Intrinsic Functional Connectivity In the second study (Chapter IV), to further test the hypothesis that this highly myelinated planum polare works differently in the auditory networks, analysis of intrinsic functional connectivity using functional MRI (fMRI) measurement acquired during resting was performed. Although spontaneous neural activities during resting was once regarded as Gaussian noise without particular information, extensive researches revealed that the resting-state data (fMRI and also M/EEG) bears substantial information on the subnetworks of brain that subserve various perceptual and cognitive functions. Particularly for the perception of AP, it has been known that spontaneous and unintended recognition of pitch chroma from ambient sounds such as the siren of an ambulance. Thus it is reasonable to assume that the AP-specific network would be constantly active even at rest. From the resting-state fMRI data, greater cross-correlations between the right planum polare, which was found to be highly myelinated, and several cortical areas including the right lateral superior temporal gyrus, the anterior insula, and the left inferior frontal cortex were found in musicians with better AP performance. Moreover, greater cross-coherences between the right planum polare and the medial part of superior frontal gyrus, the anterior cingulate cortex, and the left planum polare were found in musicians with greater AP performance. As speculated, the involvement of the ventral auditory pathway in the AP-specific resting state network was strongly suggested from the tightened functional coupling between anterior supratemporal planes and the left inferior frontal cortex. Interestingly, the right planum polare exhibited greater cross-coherence with the important hub regions of the default mode network, i.e., anterior cingulate cortex and medial parts of the superior frontal cortex and the orbitofrontal cortex, implicating a link between the auditory network and default-mode network in AP listeners. This might be related to constant AP processes in AP listeners, which results in spontaneous and unintentional recognition of AP. Conclusion In the dissertation, novel MRI data from musicians with AP were provided adding knowledge of the myeloarchitectonic characteristics and related intrinsic functional connectivity of the auditory cortex to the current understanding on the neural correlates of AP. The findings were in favor of the proposed involvement of the ventral auditory pathway, which is known for processing spatially invariant properties of auditory objects. Further studies on neural behaviors of the auditory cortex in relation to the myeloarchitecture are needed in developing computational models of AP in the future. / Einleitung Diese Dissertation untersucht Strukturen und Funktionen des auditorischen Kortex in Musikern mit einer seltenen auditorischen Wahrnehmen, dem absoluten Gehör (aG), mit Hilfe des in-vivo Bildgebungsfahrens der Magnetresonanztomographie (MRT). Das absolute Gehör bezeichnet die Fähigkeit die Tonklasse (z.B. „C#“) innerhalb des 12-tönigen Systems gleichmäßiger Stimmung (12-TET) ohne externe Referenz benennen zu können. Das Phänomen des absoluten Gehöres ist Gegenstand psychologischer Untersuchungen seitdem die experimentellen Methoden vor über einem Jahrhundert vorgestellt wurden. Erste behaviorale Experimente berichteten zahlreiche Ergebnisse, die später in computer-gestützten Messverfahren validiert werden konnten. In den letzten 20 Jahren konnten Studien, unter Nutzung bildgebender Verfahren, Veränderungen in der Struktur und Funktion in den Gehirnen von Musikern mit absolutem Gehör feststellen. Bisher wurden jedoch noch keine quantitativen Modelle vorgestellt, die das Verhalten neuronaler Systeme beschreiben, die dem absoluten Gehört zugrunde liegen. Die Modellierung neuronaler Systeme stellt ein anspruchsvolles Problem der gesamten kognitiven Neurowissenschaften dar. Detaillierte Informationen bezüglich der Struktur und Funktion des neuronalen Systems müssen gesammelt, um mit Hilfe von Modelle auditorische Empfindungen wie das absolute Gehör erklären zu können. In diesem Zusammenhang haben wir die Mikroarchitektur des auditorischen Kortex von Musiker mit absolutem Gehör mit Hilfe eines ultrahohem Feld-MRTs untersucht; eine Methode mit der derzeit höchsten räumlichen Auflösung aller in-vivo Bildgebungsverfahren. Außerdem wurde die funktionelle Konnektivität zwischen dem auditorischen Kortex und anderen Regionen des gesamten Kortex untersucht. In Kapitel I der Dissertation wird detailliertes Grundwissen zur Empfindung von Tonklassen, vom menschlichen auditorischen System bis zum nicht-primären auditorischen Kortex, vermittelt. Eine vertiefte Diskussion der in-vivo Bildgebungsverfahren, der Bildverarbeitung und den statistischen Rückschlüssen ist Thema von Kapitel II, mit einem Fokus auf der üblichen Verwendung, den Stärken und potentiellen Fehlern der verwendeten Methoden. In den Kapiteln III und IV habe ich die MRT-Studien der Doktorarbeit erklärt und die Ergebnisse diskutiert. Kapitel V fasst die wesentlichen Forschungsergebnisse zusammen und diskutiert eine mögliche Interpretation der Ergebnisse auf Grundlage der Dual Auditory Pathway Hypothese. Untersuchung der Myelinarchitektur In der ersten Studie (Kapitel III) wurde eine neuartige MRT Sequenz, die magnetization-prepared two rapid gradient echo (MP2RAGE) Sequenz, genutzt um die kortikale Myelinisierung zu untersuchen. Die Myelinarchitektur des zerebralen Kortex ist eine der wichtigsten histologischen Konzepte, um sowohl die Organisation einer kortikalen Kolumne als auch die Zytoarchitektur zu verstehen. Die Neuronen des Kortex sind nicht nur an entfernte Neuronen über die weiße Substanz gekoppelt, sondern auch durch vertikale und horizontale Verbindungen an unmittelbar benachbarte Neuronen. Diese kurzen und langen axonalen Verbindungen formen die Myelinarchitektur des Kortex. Die MP2RAGE Sequenz bewertet die longitudinalen Relaxations Raten (R1), welche sensitiv für die Myelinkonzentration des untersuchten Gewebes ist. Verglichen mit einer Kontrollgruppe von Musikern ohne aG konnten wir einen höheren R1- Wert im anterioren Teil der rechten supra-temporalen Ebene in Musikern mit aG feststellen. Da das Ergebnis spezifisch für eine mittlere Tiefe des Kortex war ist es wahrscheinlicher, dies auf lokale Verbindungen als auf lange axonale Verbindungen zurückzuführen. Als genauer Ort der Gruppendifferenz wurde das rechte planum polare sowohl in einem idealisierten Gehirn als auch in den individuellen Gehirnen der Probanden festgestellt. Aufgrund dieses Ergebnisses habe ich die Hypothese aufgestellt, dass die Wirkungsweise des absoluten Gehörs mit der Dual Auditory Pathway-Theorie zusammenhängt. Diese Theorie besagt, dass räumliche auditorische Information entlang einer dorsalen Bahn (vom primären auditorischen Kortex zum planum temporale, supramarginalen Gyrus, Parietallappen und dorsolateralen präfrontalen Kortex) und nicht-räumliche Informationen entlang einer ventralen Bahn (vom primären auditorischen Kortex zum planum polare, Temporalpol, anterior insular und ventrolateralen präfrontalen Kortex), ähnlich dem visuellen System, verarbeitet werden. Da die Tonklasse eine räumlich invariante Eigenschaft eines auditorischen Objektes ist und es zudem für die auditorische Szenenunterscheidung weniger bedeutsam ist als die generelle Tonhöhe, habe ich die Vermutung angestellt, dass das kortikale Myelin im anterioren nicht-primären auditorischen Kortex mit dem absoluten Gehört für die Tonklasse im Zusammenhang steht. Eine weitere Implikation der starken Myelinisierung betrifft die Funktion von Myelin in der neuronalen Entwicklung. Im Tiermodell einer Ratte konnte gezeigt werden, dass die Myelinisierung des Kortex Proteininteraktionen auslöst, die die Neuroplastizität nach einer ‚kritischen Periode‘ der normalen Entwicklung erheblich einschränkt. Genetische Studien haben gezeigt, dass der Beginn der musikalischen Ausbildung für die Entwicklung des absoluten Gehöres entscheidend ist. Da das planum polare mit der Verarbeitung von Tonklassen in Verbindung gebracht wird, könnte ein Anstieg der Myelinisierung in diesem Bereich einen Erhalt der Tonklassenrepräsentation bedeuten. Untersuchung der intrinsischen funktionellen Konnektivität In der zweiten Studie (Kapitel IV) wurde die Hypothese, dass das stark myelinisierte planum polare in den auditorischen Netzwerken verschieden wirkt, mittels funktioneller MRT (fMRT) im entspannten Wachzustand weiter untersucht. Spontane Hirnaktivität wurde lange Zeit als Gaußsches Rauschen ohne spezielle Informationen angesehen. Umfangreiche Studien konnten jedoch zeigen, dass Messungen des Ruhezustandes, sowohl fMRT als auch M/EEG, Information bezüglich der Sub-Netzwerke tragen, die Hirnfunktionen der Wahrnehmung und Kognition unterstützen. Besonders in Bezug auf die Wahrnehmung mit absolutem Gehör konnte festgestellt werden, dass Umgebungstöne wie die Sirene eines Krankenwagens unbewusst hinsichtlich der Tonklasse erkannt werden. Diese Erkenntnis stützt die Annahme, dass das aG-Netzwerk auch im Ruhezustand aktiv ist. Mit Hilfe der fMRT-Daten wurde festgestellt, dass die Kreuzkorrelation zwischen dem stark myelinisierten rechten planum polare und weiteren kortikalen Arealen wie dem rechten lateral- superioren temporalen Gyrus, der anterioren insula und dem linken inferior-frontalen Kortex in Musikern mit besserer aG-Performanz erhöht ist. Weiterhin wurde eine erhöhte Kreuzkorrelation zwischen dem rechten planum polare und dem medialen Teil des superior-frontalen Gyrus, dem anterioren cingulate Kortex und dem linken planum polare in Musikern mit noch besser aG- Performanz festgestellt. Die erhöhte funktionelle Kopplung der anterioren supra-temporalen Ebene mit dem linken inferior-frontalen Kortex bekräftigt die Hypothese, dass der ventrale auditorische Pfad in dem aG- spezifischen Netzwerk des Ruhezustands beteiligt ist. Bemerkenswerterweise zeigte das rechte planum polare eine erhöhte Kreuzkorrelation mit wichtigen Hub-regionen des Default-Mode Netzwerkes, also dem anterioren cingulate Kortex und medialen Teilen des superior-frontalen Kortex, sowie dem orbito-frontalen Kortex. Dies bedeutet eine Verknüpfung des auditorischen Netzwerkes und des Default-Mode Netzwerkes in Menschen mit absolutem Gehör und könnte mit aG-Prozessen zusammenhängen, die die spontane und unbewusste Erkennung des absoluten Gehörs erlauben. Schlussfolgerung In dieser Dissertation wurden MRT-Daten von Musikern mit absolutem Gehör untersucht und damit zur Erweiterung des Wissensstandes bezüglich der Myelinarchitektur und der damit zusammenhängenden funktionellen Konnektivität des auditorischen Kortex beigetragen. Die Ergebnisse sprechen zugunsten der Einbindung des ventralen auditorischen Pfades, bekannt für die Verarbeitung räumlich-invarianter Eigenschaften auditorischer Objekte. Weitere Untersuchungen bezüglich des neuronalen Verhaltens des auditorischen Kortex in Verbindung mit der Myelinarchitektur sind notwendig, um quantitative Modelle des absoluten Gehörs entwickeln zu können.
30

Thalamic Afferents to Reorganized Auditory Cortices in Postnatally Deafened Cats

Corley, Sarah Beth 01 January 2007 (has links)
Deafness affects approximately 40 million people in the United States. However, little is known about how the brain reorganizes itself in response to this major loss of inputs. Preliminary studies of neonatally deafened cats reveals that the auditory cortical area, the auditory field of the anterior ectosylvian sulcus (FAES), is reorganized as a visual area and is involved in the control of visual orientation behaviors. The plastic changes in neuronal connectivity that underlie this cortical reorganization are not known, but it is our hypothesis that sensory driving via thalamocortical inputs must change from auditory to visual thalamic origins. The present study used neuroanatomical tracing techniques in two hearing adult cats and two adult cats deafened at birth to determine the thalamic origin of projections to the FAES. When tracer was injected into the FAES of hearing animals, MGm, MGv, Pom, and dorsal thalamic nuclei showed retrogradely labeled cell bodies indicative of their projection to the FAES. When tracer was injected into the FAES of the neonatally deafened animals, MGm, MGv, Sgl, Pom, and dorsal thalamic nuclei also showed retrogradely labeled cells. In the deafened animals, no retrogradely labeled neurons were identified in the primary visual thalamic areas. Because essentially the same thalamic regions project to the FAES but relay different sensory messages in hearing and deafened animals, it must be concluded that neuronal plasticity occurred prior to the thalamocorticals projection. Therefore, therapeutic efforts to ameliorate the effects of deafness might best address thalamic rather than cortical mechanisms of plasticity and neuronal reorganization.

Page generated in 0.0665 seconds