• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 8
  • 7
  • 3
  • 3
  • 2
  • Tagged with
  • 59
  • 59
  • 15
  • 14
  • 14
  • 13
  • 11
  • 10
  • 9
  • 9
  • 8
  • 8
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Sufficient encoding of dynamical systems

Creutzig, Felix 04 July 2008 (has links)
Diese Doktorarbeit besteht aus zwei Teilen. In dem ersten Teil der Doktorarbeit behandele ich die Kodierung von Kommunikationssignalen in einem burstenden Interneuron im auditorischen System des Grashuepfers Chorthippus biguttulus. Mit der Anzahl der Aktionspotentialen im Burst wird eine zeitliche Komponente der Kommunikationssignale - die Pausendauer - wiedergegeben. Ein Modell basierend auf schneller Exzitation und langsamer Inhibition kann diese spezielle Kodierung erklaeren. Ich zeige, dass eine zeitliche Integration der Aktionspotentiale dieses burstenden Interneurons dazu genutzt werden kann, die Signale zeitskaleninvariant zu dekodieren. Dieser Mechanismus kann in ein umfassenderes Modell eingebaut werden, dass die Verhaltensantwort des Grashuepfers auf Kommunikationssignale widerspiegelt. Im zweiten Teil der Doktorarbeit benutze ich Konzepte aus der Informationstheorie und der Theorie linearer dynamisches Systeme, um den Begriff der ''vorhersagenden Information'' zu operationalisieren. Im einfachen Fall der informations-theoretisch optimalen Vorhersage des naechsten Zeitschrittes, erhalte ich Eigenvektoren, die denjenigen eines anderen etablierten Algorithmuses, der sogenannten ''Slow Feature Analysis'', entsprechen. Im allgemeinen Fall optimiere ich die vorhersagenden Information, die die Vergangenheit des Inputs eines dynamischen Systems ueber die Zukunft des Outputs enthaelt. Dabei gelange ich zu einer informations-theoretisch optimalen Charakterisierung eines reduzierten Systems, die auf den Eigenvektoren der konditionalen Kovarianzmatrix zwischen Inputvergangenheit und Outputzukunft basiert. / This thesis consists of two parts. In the first part, I investigate the coding of communication signal in a bursting interneuron in the auditory system of the grasshopper Chorthippus biguttulus. The intra-burst spike count codes one temporal feature of the communication signal - pause duration. I show that this code can be understood by a model of parallel fast excitation and slow inhibition. Furthermore, temporal integration of the spike train of this bursting interneuron results in a desirable time-scale invariant read-out of the communication signal. This mechanism can be integrated into a more comprehensive model that can explain behavioural response of grasshoppers. In the second part of this thesis, I combine concepts from information theory and linear system theory to operationalize the notion of ''predictive information''. In the simple case of predicting the next time-step of a signal in an information-theoretic optimal sense, I obtain a description by eigenvectors that are identical to another established algorith, the so-called ''Slow Feature Analysis''. In the general case I optimize a dynamical system such that the predictive information in the input past about the output future is optimalle compressed into the state space. Thereby, I obtain an information-theoretically optimal characterization of reduced system, based on the eigenvectors of the conditional covariance matrix between input past and output future.
42

Achados audiológicos de indivíduos com a síndrome G/BBB / Hearing findings in subjects with G / BBB syndrome

Cassab, Tatiana Vialogo 12 November 2010 (has links)
Objetivo: Investigar a função auditiva, periférica e central, em pacientes com o diagnóstico da síndrome G/BBB, quanto à ocorrência ou não de perda auditiva e, a condução nervosa auditiva periférica e central, em nível do tronco encefálico. Modelo: Análise prospectiva descrevendo os achados audiológicos em indivíduos com a síndrome G/BBB. Local de Execução: Setor de Genética, HRAC-USP. Participantes: 14 pacientes na faixa etária de 7 a 34 anos, do gênero masculino. Variáveis: Limiares audiométricos em decibels nas frequências de 0,25 a 8 kHz nas duas orelhas, tipo de curva timpanométrica nas duas orelhas, latências absolutas das ondas I, III e V; latências interpicos I-V, III-V e I-III e diferença interaural da onda V do PEATE, em milissegundos, para cada orelha. Resultados: Limiares audiométricos normais em 12 (66,7%) pacientes da amostra, e 2 (33,3%) com perda auditiva, sendo 1 do tipo condutiva e 1 neurossensorial. Quanto aos resultados do PEATE, foram encontrados: latências absolutas da onda I dentro dos padrões de normalidade em todos os pacientes, aumento das latências absolutas da onda III e V em 2 e 6 pacientes respectivamente; e as latências interpicos I-III, III-V e I-V se apresentaram aumentadas em 4, 3 e 8 pacientes respectivamente. Conclusões: Frente aos resultados obtidos podemos concluir que pacientes com a síndrome G/BBB podem apresentar perdas auditivas periféricas, condutivas e neurossensoriais, entretanto, não há subsídios para afirmar que as mesmas são em decorrência da síndrome ou da associação com a fissura de palato. Há evidências de comprometimento das vias auditivas centrais em nível do tronco encefálico, embora as alterações estruturais do SNC relatadas nesta síndrome não estejam relacionadas diretamente com as vias auditivas. Estudos com enfoque no perfil audiológico desta população com exames de imagem são necessários para maior clareza dos achados clínicos. / Objective: To investigate the peripheral and central auditory function in patients with G/BBB syndrome and the occurrence of hearing loss in these patients. Model: Prospective study describing the audiological findings in subjects with G/BBB syndrome. Setting: Genetics Department, HRAC-USP. Participants: 14 male patients aged from 7 to 34 years. Variables: Audiometric thresholds in decibels at frequencies of 0.25 to 8 KHz in both ears, tympanometric curve in both ears, absolute latencies of waves I, III and V, interpeak latencies I-V, III-V and I-III and wave V interaural difference of ABR, in milliseconds, for each ear. Results: Normal audiometric thresholds were found in 12 (66.7%) patients, 2 (33.3%) had hearing loss, one type conductive and one sensorioneural. ABR results were: absolute latencies of wave I within normal limits in all patients, an increase of absolute latencies of wave III and V in 2 and 6 patients respectively, and interpeak latencies I-III, IV and V were increased in 4, 3 and 8 patients respectively. Conclusions: Patients with G/BBB syndrome may have peripheral conductive or sensorineural hearing loss; however, there are no subsidies to attribute the etiology to the syndrome itself or to the presence of cleft palate, which was found in all patients. There is evidence of central auditory pathways involvement in the brainstem level, although the structural CNS abnormalities reported in this syndrome are not directly related to the auditory pathways evaluated. Studies focusing on the audiological profile of this population with imaging studies are recommended.
43

Mild Traumatic Brain Injury and Associated Effects on the Auditory System

Schairer, Kim S. 01 January 2012 (has links)
No description available.
44

Neural computation in small sensory systems

Clemens, Jan 01 August 2012 (has links)
Das Ziel von computational neuroscience ist, neuronale Transformationen zu beschreiben und deren Mechanismen und Funktionen zu beleuchten. Diese Doktorarbeit kombiniert Experiment, Datenanalyse und Modelle um neuronale Kodierung anhand des auditorischen Systems von Feldheuschrecke und Grille zu erforschen. Der erste Teil befasst sich mit der neuronalen Repräsentation von Balzsignalen in Feldheuschrecken. In Rezeptoren ist die Kodierung dieser Signale homogen - alle Neuronen bilden den Reiz gleich ab. In nachgeschalteten Zellen wird die Kodierung spärlicher, sowohl auf Ebene der Zeit als auch der Zellpopulation. Es entsteht ein labeled line code, bei dem unterschiedliche Nervenzellen unterschiedliche Merkmale des Stimulus abbilden. Dieser Transformation liegt eine nichtlineare Kombination von mehreren Stimulusmerkmalen zu Grunde. Die erhöhte Spezifizität von Neuronen dritter Ordnung ermöglicht eine einfache Art der Musterklassifikation, bei der die Zeitpunkte bestimmter Reizelemente innerhalb des Signals ignoriert werden können. Die beschriebene Reiztransformation repräsentiert einen Mechanismus für die Erkennung zeitlich redundanter Kommunikationssignale, wie sie von vielen Insekten produziert werden. Im zweiten Teil wird gezeigt, dass die spektrale und zeitliche Abstimmung von Neuronen zweiter Ordnung bei Grillen von der Komplexität des Reizes abhängt. Während die Abstimmung für Reize mit nur einer Trägerfrequenz breit ist, führen Reize mit mehreren Trägerfrequenzen zu einer Schärfung. Hierdurch kann Information über einzelne Komponenten eines komplexen Signals in der Kodierung erhalten werden. Ein statisches Netzwerkmodell zeigt, dass diese adaptive Abstimmung mit Mechanismen erzeugt werden kann, die in Nervensystemen vieler Organismen vorkommen. Wie diese Doktorabeit zeigt, vereinen Insekten einfach aufgebaute und gut zugängliche Nervensysteme mit komplexen Reiztransformationen. Dies macht sie zu produktiven Modellorganismen für die Neurowissenschaften. / The goal of computational neuroscience is to describe the stimulus transformations performed by neural systems and to elucidate their mechanisms and functions. This thesis combines experiment, data analysis and theoretical modeling to explore neural coding in the small auditory systems of grasshoppers and crickets. The first part deals with the transformation of the neural representation of courtship signals in grasshoppers. The code in auditory receptors is relatively homogeneous. That is, all neurons represent a very similar stimulus feature. Representation in higher-order neurons leads to an increase of temporal and population sparseness. This creates a labeled-line population code where different neurons represent different and specific stimulus features. Sparseness in the system increases through a nonlinear combination of two stimulus features. This transformation enables a simple mode of pattern classification, which ignores the timing of individual features and relies only on their average values during a signal. The transformation can therefore facilitate the recognition of the long, temporally redundant communication signals produced by grasshoppers and other insects. The second part shows that spectral and temporal tuning of second-order neurons in crickets strongly depends on the complexity of the stimulus. While tuning is relatively broad for single-carrier stimuli, signals containing multiple carrier frequencies lead to a sharpening of the tuning. This sharpening preserves information about individual components of a complex stimulus. A network model revealed that such adaptive tuning can be implemented in a static network with mechanisms that are ubiquitous in many neural systems. In summary, this study shows that the nervous systems of insects combine a relatively simple structure with complex stimulus transformations. This renders them empirically accessible and suitable model systems for computational neuroscience.
45

Développement de la sensibilité à la localisation sonore dans le collicule supérieur du rat Long-Evans

Robert, Nadine January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
46

Achados audiológicos de indivíduos com a síndrome G/BBB / Hearing findings in subjects with G / BBB syndrome

Tatiana Vialogo Cassab 12 November 2010 (has links)
Objetivo: Investigar a função auditiva, periférica e central, em pacientes com o diagnóstico da síndrome G/BBB, quanto à ocorrência ou não de perda auditiva e, a condução nervosa auditiva periférica e central, em nível do tronco encefálico. Modelo: Análise prospectiva descrevendo os achados audiológicos em indivíduos com a síndrome G/BBB. Local de Execução: Setor de Genética, HRAC-USP. Participantes: 14 pacientes na faixa etária de 7 a 34 anos, do gênero masculino. Variáveis: Limiares audiométricos em decibels nas frequências de 0,25 a 8 kHz nas duas orelhas, tipo de curva timpanométrica nas duas orelhas, latências absolutas das ondas I, III e V; latências interpicos I-V, III-V e I-III e diferença interaural da onda V do PEATE, em milissegundos, para cada orelha. Resultados: Limiares audiométricos normais em 12 (66,7%) pacientes da amostra, e 2 (33,3%) com perda auditiva, sendo 1 do tipo condutiva e 1 neurossensorial. Quanto aos resultados do PEATE, foram encontrados: latências absolutas da onda I dentro dos padrões de normalidade em todos os pacientes, aumento das latências absolutas da onda III e V em 2 e 6 pacientes respectivamente; e as latências interpicos I-III, III-V e I-V se apresentaram aumentadas em 4, 3 e 8 pacientes respectivamente. Conclusões: Frente aos resultados obtidos podemos concluir que pacientes com a síndrome G/BBB podem apresentar perdas auditivas periféricas, condutivas e neurossensoriais, entretanto, não há subsídios para afirmar que as mesmas são em decorrência da síndrome ou da associação com a fissura de palato. Há evidências de comprometimento das vias auditivas centrais em nível do tronco encefálico, embora as alterações estruturais do SNC relatadas nesta síndrome não estejam relacionadas diretamente com as vias auditivas. Estudos com enfoque no perfil audiológico desta população com exames de imagem são necessários para maior clareza dos achados clínicos. / Objective: To investigate the peripheral and central auditory function in patients with G/BBB syndrome and the occurrence of hearing loss in these patients. Model: Prospective study describing the audiological findings in subjects with G/BBB syndrome. Setting: Genetics Department, HRAC-USP. Participants: 14 male patients aged from 7 to 34 years. Variables: Audiometric thresholds in decibels at frequencies of 0.25 to 8 KHz in both ears, tympanometric curve in both ears, absolute latencies of waves I, III and V, interpeak latencies I-V, III-V and I-III and wave V interaural difference of ABR, in milliseconds, for each ear. Results: Normal audiometric thresholds were found in 12 (66.7%) patients, 2 (33.3%) had hearing loss, one type conductive and one sensorioneural. ABR results were: absolute latencies of wave I within normal limits in all patients, an increase of absolute latencies of wave III and V in 2 and 6 patients respectively, and interpeak latencies I-III, IV and V were increased in 4, 3 and 8 patients respectively. Conclusions: Patients with G/BBB syndrome may have peripheral conductive or sensorineural hearing loss; however, there are no subsidies to attribute the etiology to the syndrome itself or to the presence of cleft palate, which was found in all patients. There is evidence of central auditory pathways involvement in the brainstem level, although the structural CNS abnormalities reported in this syndrome are not directly related to the auditory pathways evaluated. Studies focusing on the audiological profile of this population with imaging studies are recommended.
47

Le son de la rose : comment le cerveau traite-t-il l'interaction multisensorielle audio-olfactive ? / Smell's Melody : Brain Network Involved in Multisensory Interactions Between Sounds and Odors

Gnaedinger, Amandine 25 November 2016 (has links)
Comment le cerveau intègre-t-il toutes les informations sensorielles qu'il reçoit en une perception cohérente de l'environnement ? Cette intrigante et importante question en neuroscience n’est pas élucidée et a inspiré ce travail de thèse. Plus précisément, mon objectif a été d’étudier les modifications cérébrales induites par l’apprentissage d’une association entre un son et une odeur. Inhabituelle chez l’homme, hormis dans l’alimentation, cette association est pourtant fréquente chez l’animal, pour la détection de prédateurs par exemple. Mais sons et odeurs permettent surtout d'étudier les mécanismes cérébraux nécessaires à l'association entre deux sens très différents : le système auditif traite l’information en temps réel tandis que le système olfactif est lent et rythmé par la respiration. Ce travail de thèse était centré autour de la question suivante : comment le cerveau traite-t-il les interactions multisensorielles audio-olfactives ? En enregistrant l’activité de potentiel de champs local de plusieurs structures cérébrales chez des rats en train d’apprendre cette association, nous avons pu mettre en évidence un potentiel rôle des oscillations neuronales béta (15-35 Hz), dans le traitement et la mise en mémoire des différentes informations sensorielles. Ces oscillations représenteraient un lien fonctionnel entre aires cérébrales distantes, permettant l’intégration et l’association d'informations de natures très différentes. / Multisensory interactions are constantly present in our everyday life and allow a unified representation of environment. Cross modal integration is often studied in multisensory associative brain regions, but recent findings suggest that most of the brain could be multisensory. But at this time, we still don’t know how the brain deals with information from different sensory systems. In this project, we want to understand whether the establishment of neuronal oscillations can functionally connect sensory regions and take part of the multisensory integration, and how this connection is built up by learning. For this, we examine changes in the cortical network involved in the acquisition of a multisensory association between a sound and an odor in rats through the analysis of the local field potentials’ oscillations The originality of the project is to sample a large network of brain structures including primary sensory cortex (primary auditory cortex, olfactory bulb) and multimodal areas towards which converge these two senses: the piriform and perirhinal cortices. We have developed a behavioral GO/NO GO test in which the rat must combine simultaneous auditory and olfactory informations to succeed. Data and brain signals obtained in this task suggest that the power of oscillations in beta frequency band within the olfactory areas and the coherences of oscillations between these areas are modified by the multisensory learning.
48

Myeloarchitecture and Intrinsic Functional Connectivity of Auditory Cortex in Musicians with Absolute Pitch

Kim, Seung-Goo 01 May 2017 (has links)
Introduction This dissertation studied structures and functions of auditory cortex in musicians with a rare auditory perception called absolute pitch (AP) using an in-vivo neuroimaging technique magnetic resonance imaging (MRI). The absolute pitch is defined as an ability to recognize pitch chroma, which is musical naming in the twelve-tone equal-temperament (12-TET) system (e.g., “C#”), of any given tonal sound without external references. It has been of interest of many psychologists since the experimental methods have been introduced in psychology over a century. Early behavioral experiments reported many findings that were validated in later studies with computerized measurement of behaviors. Over the recent two decades, in-vivo neuroimaging studies have found alteration in structures and functions of the brains of musicians with AP compared to control musicians without AP. However, quantitative models on the behaviors of neural systems behind the AP have not been suggested yet. Of course, neuronal modeling is a challenging problem in cognitive neuroscience studies in general. In order to generate such models to explain auditory perceptions such as AP, detailed information on structures and functions of neural systems must be obtained. In this context, we examined microarchitecture of the auditory cortex in musicians with AP using ultra- high field MRI that currently enables the highest spatial resolution of in-vivo imaging at the moment. In addition, we examined the functional connectivity between the auditory cortex and the other regions of the whole cortex. In the dissertation, detailed introduction of the pitch chroma perception is given throughout the human auditory systems from peripheral apparatus to non-primary auditory cortex in the Chapter I. In-depth discussion on the in-vivo imaging techniques, image processing, and statistical inferences focusing on the strength and potential pitfalls of the methods and their common practice in the Chapter II. In the Chapter III and IV, I explained MRI studies of the PhD project in details with discussions on the findings. Finally in the Chapter V, I summarized the major findings and discuss possible interpretation based on the framework of ‘dual auditory pathway hypothesis’. Study of Myeloarchitecture In the first study (Chapter III), a novel MRI sequence named magnetization-prepared two rapid gradient echo (MP2RAGE) was used to investigate cortical myelination. Myeloarchitecture of cerebral cortex is the one of the important histological concepts to understand organization of cortical column as well as cytoarchitecture. Neurons in the cortex are not only linked to the other distant neurons through the white matter but also connected vertically and horizontally to adjacent neurons. These short/long-distance axonal connections form myeloarchitecture of the cortex. The MP2RAGE sequence estimates a physical quantity called longitudinal relaxation rates (R1), which is sensitive to myelin concentration of the tissue. When compared to control musicians without AP, we found greater R1 in the anterior part of the right supratemporal plane in the musicians with AP. Given the finding was specific to the middle depth of cortex, the finding is unlikely related to long-distance axonal connections but likely to local connections. The precise location of the group difference was determined as the right planum polare in the template brain as well as in all individual brains. Based on the finding, I speculated that the working principles of the AP processes might be related to the dual auditory pathway hypothesis. In the theory, spatial auditory information is processed along the dorsal pathway (from the primary auditory cortex, to planum temporale, supramarginal gyrus, parietal lobules, and dorsolateral prefrontal cortex) whereas non-spatial auditory information is processed along the ventral pathway (from the primary auditory cortex to planum polare, temporal pole, anterior insular, and ventrolateral prefrontal cortex) in analogous to visual system. Because pitch chroma is spatially invariant property of an auditory object, and also it is less useful for auditory scene segregation compared to separation based on general pitch range (i.e., pitch height), I suggested the observation of cortical myelin in the anterior non-primary auditory cortex might be related to the absolute recognition of pitch chroma in AP listeners. Another potential implication of the heavy myelination is the function of myelination in neural development. In a rat model, it was demonstrated that the myelination of cortex triggers protein interactions that greatly restrict neuroplasticity after the ‘critical period’ of normal development. From genetic studies, it has been found that the onset of musical training is crucial in the acquisition of AP. Since the planum polare is related to pitch chroma processing, the increase of myelination in this region might indicate the preservation of the pitch chroma representation. Study of Intrinsic Functional Connectivity In the second study (Chapter IV), to further test the hypothesis that this highly myelinated planum polare works differently in the auditory networks, analysis of intrinsic functional connectivity using functional MRI (fMRI) measurement acquired during resting was performed. Although spontaneous neural activities during resting was once regarded as Gaussian noise without particular information, extensive researches revealed that the resting-state data (fMRI and also M/EEG) bears substantial information on the subnetworks of brain that subserve various perceptual and cognitive functions. Particularly for the perception of AP, it has been known that spontaneous and unintended recognition of pitch chroma from ambient sounds such as the siren of an ambulance. Thus it is reasonable to assume that the AP-specific network would be constantly active even at rest. From the resting-state fMRI data, greater cross-correlations between the right planum polare, which was found to be highly myelinated, and several cortical areas including the right lateral superior temporal gyrus, the anterior insula, and the left inferior frontal cortex were found in musicians with better AP performance. Moreover, greater cross-coherences between the right planum polare and the medial part of superior frontal gyrus, the anterior cingulate cortex, and the left planum polare were found in musicians with greater AP performance. As speculated, the involvement of the ventral auditory pathway in the AP-specific resting state network was strongly suggested from the tightened functional coupling between anterior supratemporal planes and the left inferior frontal cortex. Interestingly, the right planum polare exhibited greater cross-coherence with the important hub regions of the default mode network, i.e., anterior cingulate cortex and medial parts of the superior frontal cortex and the orbitofrontal cortex, implicating a link between the auditory network and default-mode network in AP listeners. This might be related to constant AP processes in AP listeners, which results in spontaneous and unintentional recognition of AP. Conclusion In the dissertation, novel MRI data from musicians with AP were provided adding knowledge of the myeloarchitectonic characteristics and related intrinsic functional connectivity of the auditory cortex to the current understanding on the neural correlates of AP. The findings were in favor of the proposed involvement of the ventral auditory pathway, which is known for processing spatially invariant properties of auditory objects. Further studies on neural behaviors of the auditory cortex in relation to the myeloarchitecture are needed in developing computational models of AP in the future. / Einleitung Diese Dissertation untersucht Strukturen und Funktionen des auditorischen Kortex in Musikern mit einer seltenen auditorischen Wahrnehmen, dem absoluten Gehör (aG), mit Hilfe des in-vivo Bildgebungsfahrens der Magnetresonanztomographie (MRT). Das absolute Gehör bezeichnet die Fähigkeit die Tonklasse (z.B. „C#“) innerhalb des 12-tönigen Systems gleichmäßiger Stimmung (12-TET) ohne externe Referenz benennen zu können. Das Phänomen des absoluten Gehöres ist Gegenstand psychologischer Untersuchungen seitdem die experimentellen Methoden vor über einem Jahrhundert vorgestellt wurden. Erste behaviorale Experimente berichteten zahlreiche Ergebnisse, die später in computer-gestützten Messverfahren validiert werden konnten. In den letzten 20 Jahren konnten Studien, unter Nutzung bildgebender Verfahren, Veränderungen in der Struktur und Funktion in den Gehirnen von Musikern mit absolutem Gehör feststellen. Bisher wurden jedoch noch keine quantitativen Modelle vorgestellt, die das Verhalten neuronaler Systeme beschreiben, die dem absoluten Gehört zugrunde liegen. Die Modellierung neuronaler Systeme stellt ein anspruchsvolles Problem der gesamten kognitiven Neurowissenschaften dar. Detaillierte Informationen bezüglich der Struktur und Funktion des neuronalen Systems müssen gesammelt, um mit Hilfe von Modelle auditorische Empfindungen wie das absolute Gehör erklären zu können. In diesem Zusammenhang haben wir die Mikroarchitektur des auditorischen Kortex von Musiker mit absolutem Gehör mit Hilfe eines ultrahohem Feld-MRTs untersucht; eine Methode mit der derzeit höchsten räumlichen Auflösung aller in-vivo Bildgebungsverfahren. Außerdem wurde die funktionelle Konnektivität zwischen dem auditorischen Kortex und anderen Regionen des gesamten Kortex untersucht. In Kapitel I der Dissertation wird detailliertes Grundwissen zur Empfindung von Tonklassen, vom menschlichen auditorischen System bis zum nicht-primären auditorischen Kortex, vermittelt. Eine vertiefte Diskussion der in-vivo Bildgebungsverfahren, der Bildverarbeitung und den statistischen Rückschlüssen ist Thema von Kapitel II, mit einem Fokus auf der üblichen Verwendung, den Stärken und potentiellen Fehlern der verwendeten Methoden. In den Kapiteln III und IV habe ich die MRT-Studien der Doktorarbeit erklärt und die Ergebnisse diskutiert. Kapitel V fasst die wesentlichen Forschungsergebnisse zusammen und diskutiert eine mögliche Interpretation der Ergebnisse auf Grundlage der Dual Auditory Pathway Hypothese. Untersuchung der Myelinarchitektur In der ersten Studie (Kapitel III) wurde eine neuartige MRT Sequenz, die magnetization-prepared two rapid gradient echo (MP2RAGE) Sequenz, genutzt um die kortikale Myelinisierung zu untersuchen. Die Myelinarchitektur des zerebralen Kortex ist eine der wichtigsten histologischen Konzepte, um sowohl die Organisation einer kortikalen Kolumne als auch die Zytoarchitektur zu verstehen. Die Neuronen des Kortex sind nicht nur an entfernte Neuronen über die weiße Substanz gekoppelt, sondern auch durch vertikale und horizontale Verbindungen an unmittelbar benachbarte Neuronen. Diese kurzen und langen axonalen Verbindungen formen die Myelinarchitektur des Kortex. Die MP2RAGE Sequenz bewertet die longitudinalen Relaxations Raten (R1), welche sensitiv für die Myelinkonzentration des untersuchten Gewebes ist. Verglichen mit einer Kontrollgruppe von Musikern ohne aG konnten wir einen höheren R1- Wert im anterioren Teil der rechten supra-temporalen Ebene in Musikern mit aG feststellen. Da das Ergebnis spezifisch für eine mittlere Tiefe des Kortex war ist es wahrscheinlicher, dies auf lokale Verbindungen als auf lange axonale Verbindungen zurückzuführen. Als genauer Ort der Gruppendifferenz wurde das rechte planum polare sowohl in einem idealisierten Gehirn als auch in den individuellen Gehirnen der Probanden festgestellt. Aufgrund dieses Ergebnisses habe ich die Hypothese aufgestellt, dass die Wirkungsweise des absoluten Gehörs mit der Dual Auditory Pathway-Theorie zusammenhängt. Diese Theorie besagt, dass räumliche auditorische Information entlang einer dorsalen Bahn (vom primären auditorischen Kortex zum planum temporale, supramarginalen Gyrus, Parietallappen und dorsolateralen präfrontalen Kortex) und nicht-räumliche Informationen entlang einer ventralen Bahn (vom primären auditorischen Kortex zum planum polare, Temporalpol, anterior insular und ventrolateralen präfrontalen Kortex), ähnlich dem visuellen System, verarbeitet werden. Da die Tonklasse eine räumlich invariante Eigenschaft eines auditorischen Objektes ist und es zudem für die auditorische Szenenunterscheidung weniger bedeutsam ist als die generelle Tonhöhe, habe ich die Vermutung angestellt, dass das kortikale Myelin im anterioren nicht-primären auditorischen Kortex mit dem absoluten Gehört für die Tonklasse im Zusammenhang steht. Eine weitere Implikation der starken Myelinisierung betrifft die Funktion von Myelin in der neuronalen Entwicklung. Im Tiermodell einer Ratte konnte gezeigt werden, dass die Myelinisierung des Kortex Proteininteraktionen auslöst, die die Neuroplastizität nach einer ‚kritischen Periode‘ der normalen Entwicklung erheblich einschränkt. Genetische Studien haben gezeigt, dass der Beginn der musikalischen Ausbildung für die Entwicklung des absoluten Gehöres entscheidend ist. Da das planum polare mit der Verarbeitung von Tonklassen in Verbindung gebracht wird, könnte ein Anstieg der Myelinisierung in diesem Bereich einen Erhalt der Tonklassenrepräsentation bedeuten. Untersuchung der intrinsischen funktionellen Konnektivität In der zweiten Studie (Kapitel IV) wurde die Hypothese, dass das stark myelinisierte planum polare in den auditorischen Netzwerken verschieden wirkt, mittels funktioneller MRT (fMRT) im entspannten Wachzustand weiter untersucht. Spontane Hirnaktivität wurde lange Zeit als Gaußsches Rauschen ohne spezielle Informationen angesehen. Umfangreiche Studien konnten jedoch zeigen, dass Messungen des Ruhezustandes, sowohl fMRT als auch M/EEG, Information bezüglich der Sub-Netzwerke tragen, die Hirnfunktionen der Wahrnehmung und Kognition unterstützen. Besonders in Bezug auf die Wahrnehmung mit absolutem Gehör konnte festgestellt werden, dass Umgebungstöne wie die Sirene eines Krankenwagens unbewusst hinsichtlich der Tonklasse erkannt werden. Diese Erkenntnis stützt die Annahme, dass das aG-Netzwerk auch im Ruhezustand aktiv ist. Mit Hilfe der fMRT-Daten wurde festgestellt, dass die Kreuzkorrelation zwischen dem stark myelinisierten rechten planum polare und weiteren kortikalen Arealen wie dem rechten lateral- superioren temporalen Gyrus, der anterioren insula und dem linken inferior-frontalen Kortex in Musikern mit besserer aG-Performanz erhöht ist. Weiterhin wurde eine erhöhte Kreuzkorrelation zwischen dem rechten planum polare und dem medialen Teil des superior-frontalen Gyrus, dem anterioren cingulate Kortex und dem linken planum polare in Musikern mit noch besser aG- Performanz festgestellt. Die erhöhte funktionelle Kopplung der anterioren supra-temporalen Ebene mit dem linken inferior-frontalen Kortex bekräftigt die Hypothese, dass der ventrale auditorische Pfad in dem aG- spezifischen Netzwerk des Ruhezustands beteiligt ist. Bemerkenswerterweise zeigte das rechte planum polare eine erhöhte Kreuzkorrelation mit wichtigen Hub-regionen des Default-Mode Netzwerkes, also dem anterioren cingulate Kortex und medialen Teilen des superior-frontalen Kortex, sowie dem orbito-frontalen Kortex. Dies bedeutet eine Verknüpfung des auditorischen Netzwerkes und des Default-Mode Netzwerkes in Menschen mit absolutem Gehör und könnte mit aG-Prozessen zusammenhängen, die die spontane und unbewusste Erkennung des absoluten Gehörs erlauben. Schlussfolgerung In dieser Dissertation wurden MRT-Daten von Musikern mit absolutem Gehör untersucht und damit zur Erweiterung des Wissensstandes bezüglich der Myelinarchitektur und der damit zusammenhängenden funktionellen Konnektivität des auditorischen Kortex beigetragen. Die Ergebnisse sprechen zugunsten der Einbindung des ventralen auditorischen Pfades, bekannt für die Verarbeitung räumlich-invarianter Eigenschaften auditorischer Objekte. Weitere Untersuchungen bezüglich des neuronalen Verhaltens des auditorischen Kortex in Verbindung mit der Myelinarchitektur sind notwendig, um quantitative Modelle des absoluten Gehörs entwickeln zu können.
49

Computational Analysis of Thalamocortical Communication of Auditory Information using Pairwise Spike Recordings / Beräkningsanalys av thalamokortikal kommunikation av auditorisk information med hjälp av parvisa neuronala registreringar av aktionspotentialer

Guo, Xinxing January 2022 (has links)
Investigating the properties and mechanisms of coordination among neurons plays an important role in understanding how the brain encodes information and performs in thalamocortical processing in the auditory system. Whether the coordinated neuronal spikes in the auditory thalamus enhance the thalamocortical communications in the auditory cortex (AC) is the main concern in this project. Researchers are mostly focusing on the investigation of the V1 and V2 in visual system and corticortical circuits in auditory system using neuronal pairwise correlations as the method. However, what we explored in this project is the coordination among neurons in thalamocortical circuits. we applied the Jensen-Shannon divergence method to measure the similarity between two distributions and analyze the coordination in thalamus neurons and different parts of AC in ascending pathway and descending pathway of auditory system respectively. At the same time, we designed an algorithm to calculated spiking coordination. The result shows that the coordination pattern differs in separate pathway when keeping sound stimulation and basal forebrain (BF) stimulation on or off. In ascending pathway, the coordination in thalamus neurons precedes information to AC when the brain is silent, keeping sound and BF stimulation off. In descending pathway, the coordination mainly in the superficial area of AC precedes information to thalamus. The coordination is lower in the case of keeping sound on. In the future, more data on rats can be verified using our method and algorithm to investigate the coordinated spikes in auditory system. / Att undersöka egenskaperna och mekanismerna för koordination mellan neuroner spelar en viktig roll för att förstå hur hjärnan kodar information och fungerar i talamokortikal bearbetning i hörselsystemet. Huruvida de koordinerade neuronala spikarna i den auditiva thalamus förstärker den talamokortikala kommunikationen i den auditiva cortex (AC) är huvudproblemet i detta projekt. Forskare fokuserar mestadels på undersökningen av V1 och V2 i visuella system och kortikokortikala kretsar i hörselsystemet med hjälp av neuronala parvisa korrelationer som metod. Men vad vi utforskade i detta projekt är koordinationen mellan neuroner i talamokortikala kretsar. vi tillämpade Jensen-Shannon-divergensmetoden för att mäta likheten mellan två distributioner och analysera koordinationen i thalamusneuroner och olika delar av AC i stigande bana respektive fallande bana i hörselsystemet. Samtidigt designade vi en algoritm för att beräkna spikkoordination. Resultatet visar att koordinationsmönstret skiljer sig åt i separata vägar när ljudstimulering och basal framhjärnsstimulering (BF) hålls på eller av. I stigande väg föregår koordinationen i talamusneuroner information till AC när hjärnan är tyst, vilket håller ljud och BF-stimulering borta. I fallande väg föregår koordinationen huvudsakligen i det ytliga området av AC information till thalamus. Koordinationen är lägre när det gäller att hålla ljud på. I framtiden kan mer data om råttor verifieras med vår metod och algoritm för att undersöka de samordnade spikarna i hörselsystemet.
50

Stimulus- and context-dependent temporal filtering in the auditory pathway of the locust

Wirtssohn, Sarah Kaarina 18 December 2015 (has links)
Die zeitliche Filterung von sensorischem Input ist entscheidend für das Erkennen vieler Stimuli. Auditorische Neurone führen dazu mehrere Verarbeitungsschritte und Signaltransformationen durch, u.a. durch zeitliche Integration, zeitliche Auflösung und Selektion eines zeitlichen Merkmals. Um zu testen ob zeitliche Filterung von Stimuluseigenschaften (Intensität) oder Kontext (Temperatur) abhängt untersuchte ich Neurone in der Hörbahn der Wanderheuschrecke. Zuerst untersuchte ich zeitliche Integration in Rezeptoren und Interneuronen. Zeitverlauf und Ausmaß der Integration waren Neuronen-spezifisch. Während periphere Neurone die akustische Energie integrierten, unterschied sich die zeitliche Integration der Interneuronentypen stark, was eine spezifische zeitliche Filterung ermöglicht. Die Analyse postsynaptischer Potentiale deckte presynaptische und intrinsische Mechanismen der Integration auf, was darauf hindeutet, dass Unterschiede zwischen Neuronen wahrscheinlich auf Typ-spezifischer Verarbeitung beruhen. Zweitens erforschte ich die neuronale Antwort auf den zweiten Stimulus in einem Stimuluspaar mit einem Interstimulus-Intervall von wenigen Millisekunden. Die Veränderung der Antwort auf den zweiten im Vergleich zum ersten Stimulus zeigt den Effekt von akuter, kurzfristiger Adaptation und ist ein Maß für die maximale zeitliche Auflösung. In der sensorischen Peripherie trat moderate Adaptation auf, deren Einfluss exponentiell abfiel. Viele Interneurone zeigten dagegen nicht-lineare Effekte, wie die Unterdrückung oder Verstärkung der Antwort auf den zweiten Stimulus. Drittens testete ich den Effekt von Temperatur auf zeitliche Filterung. Die Selektivität von Interneuronen für zeitliche Stimulusmerkmale wurde bei wechselnden Temperaturen untersucht. Mit steigender Temperatur präferierten Neurone ein zeitlich komprimiertes Merkmal. Diese temperaturabhängige Veränderung könnte zur Temperatur-Kopplung von Sender und Empfänger bei den wechselwarmen Heuschrecken beitragen. / Temporal filtering of sensory input is crucial for the recognition of many sensory stimuli. Auditory neurons perform various computations and signal transformations to accomplish temporal filtering of acoustic input, comprising temporal integration, temporal resolution and temporal feature selection. To test whether temporal filtering processes within a neuron type depend on stimulus features, such as intensity, and on context, such as temperature, I conducted neurophysiological recordings from neurons in the auditory pathway of migratory locusts. First, I examined temporal integration in receptors and interneurons. The time course and extent of integration of subthreshold acoustic stimuli were neuronspecific. While peripheral sensory neurons acted as energy integrators, interneurons showed different temporal integration profiles, enabling neuron-specific temporal filtering. The analysis of postsynaptic potentials elucidated implemented mechanisms, suggesting that temporal integration is based on neuron-specific presynaptic and neuron-intrinsic computations. Second, I studied the response recovery of receptors and interneurons to the second stimulus in a stimulus pair, separated by a few milliseconds. This revealed the effect of acute, short-term adaptation and thus indicated the maximal temporal resolution of these neurons. In the sensory periphery response recovery was shaped by moderate adaptation and an exponential recovery. In many interneurons non-linear effects occurred, comprising a suppression of the response to the second stimulus and a response gain. Third, I tested the effect of temperature on temporal filtering. Temporal feature selectivity of interneurons was examined at cold and warm temperatures. With increasing temperature, the neurons preferred a temporally compressed feature. Temperature-dependent changes in temporal feature selectivity might thus contribute to temperature coupling of the sender and the receiver of the poikilothermic grasshoppers.

Page generated in 0.0662 seconds