• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 1
  • 1
  • 1
  • Tagged with
  • 22
  • 22
  • 17
  • 13
  • 11
  • 9
  • 9
  • 9
  • 9
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Towards topology-aware Variational Auto-Encoders : from InvMap-VAE to Witness Simplicial VAE / Mot topologimedvetna Variations Autokodare (VAE) : från InvMap-VAE till Witness Simplicial VAE

Medbouhi, Aniss Aiman January 2022 (has links)
Variational Auto-Encoders (VAEs) are one of the most famous deep generative models. After showing that standard VAEs may not preserve the topology, that is the shape of the data, between the input and the latent space, we tried to modify them so that the topology is preserved. This would help in particular for performing interpolations in the latent space. Our main contribution is two folds. Firstly, we propose successfully the InvMap-VAE which is a simple way to turn any dimensionality reduction technique, given its embedding, into a generative model within a VAE framework providing an inverse mapping, with all the advantages that this implies. Secondly, we propose the Witness Simplicial VAE as an extension of the Simplicial Auto-Encoder to the variational setup using a Witness Complex for computing a simplicial regularization. The Witness Simplicial VAE is independent of any dimensionality reduction technique and seems to better preserve the persistent Betti numbers of a data set than a standard VAE, although it would still need some further improvements. Finally, the two first chapters of this master thesis can also be used as an introduction to Topological Data Analysis, General Topology and Computational Topology (or Algorithmic Topology), for any machine learning student, engineer or researcher interested in these areas with no background in topology. / Variations autokodare (VAE) är en av de mest kända djupa generativa modellerna. Efter att ha visat att standard VAE inte nödvändigtvis bevarar topologiska egenskaper, det vill säga formen på datan, mellan inmatningsdatan och det latenta rummet, försökte vi modifiera den så att topologin är bevarad. Det här skulle i synnerhet underlätta när man genomför interpolering i det latenta rummet. Denna avhandling består av två centrala bidrag. I första hand så utvecklar vi InvMap-VAE, som är en enkel metod att omvandla vilken metod inom dimensionalitetsreducering, givet dess inbäddning, till en generativ modell inom VAE ramverket, vilket ger en invers avbildning och dess tillhörande fördelar. För det andra så presenterar vi Witness Simplicial VAE som en förlängning av en Simplicial Auto-Encoder till dess variationella variant genom att använda ett vittneskomplex för att beräkna en simpliciel regularisering. Witness Simplicial VAE är oberoende av dimensionalitets reducerings teknik och verkar bättre bevara Betti-nummer av ett dataset än en vanlig VAE, även om det finns utrymme för förbättring. Slutligen så kan de första två kapitlena av detta examensarbete också användas som en introduktion till Topologisk Data Analys, Allmän Topologi och Beräkningstopologi (eller Algoritmisk Topologi) till vilken maskininlärnings student, ingenjör eller forskare som är intresserad av dessa ämnesområden men saknar bakgrund i topologi.
22

Towards meaningful and data-efficient learning : exploring GAN losses, improving few-shot benchmarks, and multimodal video captioning

Huang, Gabriel 09 1900 (has links)
Ces dernières années, le domaine de l’apprentissage profond a connu des progrès énormes dans des applications allant de la génération d’images, détection d’objets, modélisation du langage à la réponse aux questions visuelles. Les approches classiques telles que l’apprentissage supervisé nécessitent de grandes quantités de données étiquetées et spécifiques à la tâches. Cependant, celles-ci sont parfois coûteuses, peu pratiques, ou trop longues à collecter. La modélisation efficace en données, qui comprend des techniques comme l’apprentissage few-shot (à partir de peu d’exemples) et l’apprentissage self-supervised (auto-supervisé), tentent de remédier au manque de données spécifiques à la tâche en exploitant de grandes quantités de données plus “générales”. Les progrès de l’apprentissage profond, et en particulier de l’apprentissage few-shot, s’appuient sur les benchmarks (suites d’évaluation), les métriques d’évaluation et les jeux de données, car ceux-ci sont utilisés pour tester et départager différentes méthodes sur des tâches précises, et identifier l’état de l’art. Cependant, du fait qu’il s’agit de versions idéalisées de la tâche à résoudre, les benchmarks sont rarement équivalents à la tâche originelle, et peuvent avoir plusieurs limitations qui entravent leur rôle de sélection des directions de recherche les plus prometteuses. De plus, la définition de métriques d’évaluation pertinentes peut être difficile, en particulier dans le cas de sorties structurées et en haute dimension, telles que des images, de l’audio, de la parole ou encore du texte. Cette thèse discute des limites et des perspectives des benchmarks existants, des fonctions de coût (training losses) et des métriques d’évaluation (evaluation metrics), en mettant l’accent sur la modélisation générative - les Réseaux Antagonistes Génératifs (GANs) en particulier - et la modélisation efficace des données, qui comprend l’apprentissage few-shot et self-supervised. La première contribution est une discussion de la tâche de modélisation générative, suivie d’une exploration des propriétés théoriques et empiriques des fonctions de coût des GANs. La deuxième contribution est une discussion sur la limitation des few-shot classification benchmarks, certains ne nécessitant pas de généralisation à de nouvelles sémantiques de classe pour être résolus, et la proposition d’une méthode de base pour les résoudre sans étiquettes en phase de testing. La troisième contribution est une revue sur les méthodes few-shot et self-supervised de détection d’objets , qui souligne les limites et directions de recherche prometteuses. Enfin, la quatrième contribution est une méthode efficace en données pour la description de vidéo qui exploite des jeux de données texte et vidéo non supervisés. / In recent years, the field of deep learning has seen tremendous progress for applications ranging from image generation, object detection, language modeling, to visual question answering. Classic approaches such as supervised learning require large amounts of task-specific and labeled data, which may be too expensive, time-consuming, or impractical to collect. Data-efficient methods, such as few-shot and self-supervised learning, attempt to deal with the limited availability of task-specific data by leveraging large amounts of general data. Progress in deep learning, and in particular, few-shot learning, is largely driven by the relevant benchmarks, evaluation metrics, and datasets. They are used to test and compare different methods on a given task, and determine the state-of-the-art. However, due to being idealized versions of the task to solve, benchmarks are rarely equivalent to the original task, and can have several limitations which hinder their role of identifying the most promising research directions. Moreover, defining meaningful evaluation metrics can be challenging, especially in the case of high-dimensional and structured outputs, such as images, audio, speech, or text. This thesis discusses the limitations and perspectives of existing benchmarks, training losses, and evaluation metrics, with a focus on generative modeling—Generative Adversarial Networks (GANs) in particular—and data-efficient modeling, which includes few-shot and self-supervised learning. The first contribution is a discussion of the generative modeling task, followed by an exploration of theoretical and empirical properties of the GAN loss. The second contribution is a discussion of a limitation of few-shot classification benchmarks, which is that they may not require class semantic generalization to be solved, and the proposal of a baseline method for solving them without test-time labels. The third contribution is a survey of few-shot and self-supervised object detection, which points out the limitations and promising future research for the field. Finally, the fourth contribution is a data-efficient method for video captioning, which leverages unsupervised text and video datasets, and explores several multimodal pretraining strategies.

Page generated in 0.0536 seconds