• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 116
  • 6
  • 4
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 164
  • 112
  • 73
  • 71
  • 66
  • 64
  • 50
  • 46
  • 45
  • 42
  • 42
  • 37
  • 36
  • 34
  • 32
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Unsupervised Detection of Interictal Epileptiform Discharges in Routine Scalp EEG : Machine Learning Assisted Epilepsy Diagnosis

Shao, Shuai January 2023 (has links)
Epilepsy affects more than 50 million people and is one of the most prevalent neurological disorders and has a high impact on the quality of life of those suffering from it. However, 70% of epilepsy patients can live seizure free with proper diagnosis and treatment. Patients are evaluated using scalp EEG recordings which is cheap and non-invasive. Diagnostic yield is however low and qualified personnel need to process large amounts of data in order to accurately assess patients. MindReader is an unsupervised classifier which detects spectral anomalies and generates a hypothesis of the underlying patient state over time. The aim is to highlight abnormal, potentially epileptiform states, which could expedite analysis of patients and let qualified personnel attest the results. It was used to evaluate 95 scalp EEG recordings from healthy adults and adult patients with epilepsy. Interictal Epileptiform discharges (IED) occurring in the samples had been retroactively annotated, along with the patient state and maneuvers performed by personnel, to enable characterization of the classifier’s detection performance. The performance was slightly worse than previous benchmarks on pediatric scalp EEG recordings, with a 7% and 33% drop in specificity and sensitivity, respectively. Electrode positioning and partial spatial extent of events saw notable impact on performance. However, no correlation between annotated disturbances and reduction in performance could be found. Additional explorative analysis was performed on serialized intermediate data to evaluate the analysis design. Hyperparameters and electrode montage options were exposed to optimize for the average Mathew’s correlation coefficient (MCC) per electrode per patient, on a subset of the patients with epilepsy. An increased window length and lowered amount of training along with an common average montage proved most successful. The Euclidean distance of cumulative spectra (ECS), a metric suitable for spectral analysis, and homologous L2 and L1 loss function were implemented, of which the ECS further improved the average performance for all samples. Four additional analyses, featuring new time-frequency transforms and multichannel convolutional autoencoders were evaluated and an analysis using the continuous wavelet transform (CWT) and a convolutional autoencoder (CNN) performed the best, with an average MCC score of 0.19 and 56.9% sensitivity with approximately 13.9 false positives per minute.
162

La découverte de nouvelle physique à l'aide de la détection d'anomalies avec l'apprentissage automatique au Grand collisionneur de hadrons

Leissner-Martin, Julien 12 1900 (has links)
La physique des particules est une branche de la science qui est actuellement régie sous un ensemble de lois nommé le \textit{modèle standard} (MS). Il dicte notamment quelles particules existent et comment elles interagissent entre elles. Il permet de prédire toutes sortes de résultats qui sont constamment testés et confirmés par une multitude d'expériences, dont l'expérience ATLAS, au Grand Collisionneur de Hadrons (LHC). Toutefois, ce modèle hautement précis et juste ne peut décrire qu'environ 5\% de la matière de l'Univers et s'avère donc incomplet. Les scientifiques passent au peigne fin plusieurs études pour y retrouver de la nouvelle physique, mais en vain. \\ Les théoriciens ne sont pas en reste non plus, et ont concocté plusieurs théories pouvant être vues comme des extensions du modèle standard. Malheureusement, plus de dix ans après la découverte du boson de Higgs au LHC qui venait confirmer la théorie actuelle du MS, aucun signe de ces extensions n'a pu être trouvé. Nous proposons dans ce mémoire d'utiliser l'intelligence artificielle pour aider à trouver certains indices de nouvelle physique. \\ Pour ce faire, nous entraînerons des modèles d'apprentissage automatique \textit{(machine learning)} à reconnaître des signes de la nouvelle physique dans des données réelles ou simulées issues de collisions proton-proton au sein du détecteur ATLAS. Ce détecteur oeuvre au LHC, le plus grand collisionneur au monde, où nos données proviennent d'énergies de centre de masse de \mbox{13 TeV.} Nous utiliserons les quadrivecteurs des particules contenues dans les jets boostés à grand rayon, des amas collimatés de particules présents dans ATLAS, qui pourraient contenir cette fameuse nouvelle physique. Dans ce mémoire, nous tenterons entre autres de retrouver des signaux de quarks top ainsi que de particules hypothétiques issues d'un modèle avec un secteur étendu du boson de Higgs. \\ Actuellement, nos modèles sont capables de bien distinguer le signal du bruit de fond. Toutefois, les résultats sont corrélés à la masse des jets et toute tentative pour contrecarrer cette corrélation diminue de beaucoup la discrimination du signal et du bruit de fond. De plus, nous devrons améliorer le rejet du bruit de fond pour espérer retrouver de la nouvelle physique dans les données d'ATLAS. \\ \textbf{Mots-clés : physique des particules, LHC, Grand collisionneur de hadrons, ATLAS, CERN, intelligence artificielle, apprentissage automatique, réseau de neurones, auto-encodeur variationnel, anomalies, jet boosté, jet à grand rayon} / Particle physics is currently governed by a set of laws called the Standard Model. This model notably includes which particles exist and how they interact with one another. It also allows the prediction of many results which are constantly tested and confirmed by all kinds of experiments, like the ATLAS experiment at the Large Hadron Collider (LHC). However, this highly precise model can only describe 5\% of the Universe, so it is incomplete. Scientists across the globe analyzed all kinds of data to find new physics, but to no avail. \\ Theorists also aren't resting, and have concocted many new theories which can be seen as Standard Model extensions. Unfortunately, more than ten years after the discovery of the Higgs boson at LHC that confirmed the last bits of the Standard Model, no signs of these extensions have been found. In light of this, we propose to use artificial intelligence to help us find signs of new physics. \\ To perform this task, we will train machine learning models to recognize signs of new physics inside real or simulated data originating from proton-proton collisions in the ATLAS detector. This detector operates at LHC, the biggest particle collider in the world, where our data will come from center-of-mass energies of \mbox{13 TeV.} We will use four-vectors of particles contained within large radius and boosted jets, which are dense streams of particles present in ATLAS and where new physics might hide. In this dissertation, we will notably try to find signals of top quarks and hypothetical particles originating from a model with an extended Higgs boson sector. \\ Currently, our models are able to distinguish between signal and background noise. However, these results are heavily correlated to jet mass, and any attempt at diminishing this correlation yields worse discriminating power between signal and background. We will also need to improve the background rejection to hope find new physics in the ATLAS data. \\ \textbf{Keywords : particle physics, LHC, ATLAS, CERN, artificial intelligence, deep learning, neural network, variational autoencoder, anomaly, boosted jet, large radius jet}
163

A deep learning based anomaly detection pipeline for battery fleets

Khongbantabam, Nabakumar Singh January 2021 (has links)
This thesis proposes a deep learning anomaly detection pipeline to detect possible anomalies during the operation of a fleet of batteries and presents its development and evaluation. The pipeline employs sensors that connect to each battery in the fleet to remotely collect real-time measurements of their operating characteristics, such as voltage, current, and temperature. The deep learning based time-series anomaly detection model was developed using Variational Autoencoder (VAE) architecture that utilizes either Long Short-Term Memory (LSTM) or, its cousin, Gated Recurrent Unit (GRU) as the encoder and the decoder networks (LSTMVAE and GRUVAE). Both variants were evaluated against three well-known conventional anomaly detection algorithms Isolation Nearest Neighbour (iNNE), Isolation Forest (iForest), and kth Nearest Neighbour (k-NN) algorithms. All five models were trained using two variations in the training dataset (full-year dataset and partial recent dataset), producing a total of 10 different model variants. The models were trained using the unsupervised method and the results were evaluated using a test dataset consisting of a few known anomaly days in the past operation of the customer’s battery fleet. The results demonstrated that k-NN and GRUVAE performed close to each other, outperforming the rest of the models with a notable margin. LSTMVAE and iForest performed moderately, while the iNNE and iForest variant trained with the full dataset, performed the worst in the evaluation. A general observation also reveals that limiting the training dataset to only a recent period produces better results nearly consistently across all models. / Detta examensarbete föreslår en pipeline för djupinlärning av avvikelser för att upptäcka möjliga anomalier under driften av en flotta av batterier och presenterar dess utveckling och utvärdering. Rörledningen använder sensorer som ansluter till varje batteri i flottan för att på distans samla in realtidsmätningar av deras driftsegenskaper, såsom spänning, ström och temperatur. Den djupinlärningsbaserade tidsserieanomalidetekteringsmodellen utvecklades med VAE-arkitektur som använder antingen LSTM eller, dess kusin, GRU som kodare och avkodarnätverk (LSTMVAE och GRU) VAE). Båda varianterna utvärderades mot tre välkända konventionella anomalidetekteringsalgoritmer -iNNE, iForest och k-NN algoritmer. Alla fem modellerna tränades med hjälp av två varianter av träningsdatauppsättningen (helårsdatauppsättning och delvis färsk datauppsättning), vilket producerade totalt 10 olika modellvarianter. Modellerna tränades med den oövervakade metoden och resultaten utvärderades med hjälp av en testdatauppsättning bestående av några kända anomalidagar under tidigare drift av kundens batteriflotta. Resultaten visade att k-NN och GRUVAE presterade nära varandra och överträffade resten av modellerna med en anmärkningsvärd marginal. LSTMVAE och iForest presterade måttligt, medan varianten iNNE och iForest tränade med hela datasetet presterade sämst i utvärderingen. En allmän observation avslöjar också att en begränsning av träningsdatauppsättningen till endast en ny period ger bättre resultat nästan konsekvent över alla modeller.
164

Intelligent Energy-Savings and Process Improvement Strategies in Energy-Intensive Industries / Intelligent Energy-Savings and Process Improvement Strategies in Energy-Intensive Industries

Teng, Sin Yong January 2020 (has links)
S tím, jak se neustále vyvíjejí nové technologie pro energeticky náročná průmyslová odvětví, stávající zařízení postupně zaostávají v efektivitě a produktivitě. Tvrdá konkurence na trhu a legislativa v oblasti životního prostředí nutí tato tradiční zařízení k ukončení provozu a k odstavení. Zlepšování procesu a projekty modernizace jsou zásadní v udržování provozních výkonů těchto zařízení. Současné přístupy pro zlepšování procesů jsou hlavně: integrace procesů, optimalizace procesů a intenzifikace procesů. Obecně se v těchto oblastech využívá matematické optimalizace, zkušeností řešitele a provozní heuristiky. Tyto přístupy slouží jako základ pro zlepšování procesů. Avšak, jejich výkon lze dále zlepšit pomocí moderní výpočtové inteligence. Účelem této práce je tudíž aplikace pokročilých technik umělé inteligence a strojového učení za účelem zlepšování procesů v energeticky náročných průmyslových procesech. V této práci je využit přístup, který řeší tento problém simulací průmyslových systémů a přispívá následujícím: (i)Aplikace techniky strojového učení, která zahrnuje jednorázové učení a neuro-evoluci pro modelování a optimalizaci jednotlivých jednotek na základě dat. (ii) Aplikace redukce dimenze (např. Analýza hlavních komponent, autoendkodér) pro vícekriteriální optimalizaci procesu s více jednotkami. (iii) Návrh nového nástroje pro analýzu problematických částí systému za účelem jejich odstranění (bottleneck tree analysis – BOTA). Bylo také navrženo rozšíření nástroje, které umožňuje řešit vícerozměrné problémy pomocí přístupu založeného na datech. (iv) Prokázání účinnosti simulací Monte-Carlo, neuronové sítě a rozhodovacích stromů pro rozhodování při integraci nové technologie procesu do stávajících procesů. (v) Porovnání techniky HTM (Hierarchical Temporal Memory) a duální optimalizace s několika prediktivními nástroji pro podporu managementu provozu v reálném čase. (vi) Implementace umělé neuronové sítě v rámci rozhraní pro konvenční procesní graf (P-graf). (vii) Zdůraznění budoucnosti umělé inteligence a procesního inženýrství v biosystémech prostřednictvím komerčně založeného paradigmatu multi-omics.

Page generated in 0.0311 seconds