• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 5
  • Tagged with
  • 14
  • 14
  • 14
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Caracterização tecnológica de minérios auríferos por análise automatizada de imagens obtidas por microscopia eletrônica de varredura. / Gold ore characterization by automated image analysis acquired by scanning electron microscope.

Guilherme Pinho Nery 11 December 2015 (has links)
O ouro, assim como outros bens minerais, é uma commodity, ou seja, um produto não diferenciado, com preço determinado pelo mercado internacional, sem a interferência de seus produtores. Diante desse cenário, associado à exaustão dos depósitos minerais de maiores teores, as mineradoras vêm buscando melhores formas de aproveitamento de matérias-primas minerais mais complexas quanto à extração e ao beneficiamento. Os retornos financeiros são obtidos no estrito controle da produção com redução de custos e mitigação de perdas nas operações unitárias. A caracterização tecnológica está inserida como uma abordagem multidisciplinar e fundamental para o melhor aproveitamento dos bens minerais. Possibilita um maior conhecimento do minério e das associações minerais presentes, que auxiliará no desenvolvimento das alternativas de explotação e na otimização do processo em funcionamento. Dentre os procedimentos de caracterização das associações minerais mais acurados citam-se os sistemas automatizados de análise de imagens adquiridas por microscopia eletrônica de varredura. Permitem a avaliação qualitativa ou quantitativa de grande número de partículas quanto à composição química e mineral, partição de elementos nos minerais presentes, formas de associações e liberação entre os minerais. Este estudo se concentra na caracterização de quatro amostras mineralizadas a ouro, de diferentes regiões do Brasil, pela análise automatizada de imagens e por métodos laboratoriais de separações minerais e extração hidrometalúrgica do ouro. A combinação de procedimentos laboratoriais com a análise de imagens permitiu confrontar os resultados das recuperações potenciais, fornecendo subsídios para abordagens de processo, para obtenção da máxima recuperação do ouro e para diagnosticar as características interferentes nesses processos. / Gold and other mineral goods are considered commodities, i.e., a non-differentiated product, at a price determined by the international market, without control of its producers. Given this, coupled with the exhaustion of mineral deposits of higher content, mining companies have been trying to find best procedure alternatives of more complex raw mineral matter. The financial returns are achieved by means of strict production controls, cost reduction and mitigation of losses in unit operations. In this context, process mineralogy is a multidisciplinary and fundamental approach to the better use of mineral goods. Enables a greater knowledge of the ore and its associations, to assist in the development of process alternatives to optimize mineral beneficiation plants. SEM-based automated images analysis is one of the most precise procedures to characterize mineral associations. These systems allow the qualitative or quantitative evaluation of a large number of particles, both as to its chemical and mineralogical content, partition of elements of interest among different minerals, phase\'s associations and liberation. This study focus on the characterization of four gold-mineralized samples from different regions of Brazil, through SEM-based automated image analysis and mineral separations at laboratory scale. The combination of experimental procedures with images analysis allowed the comparison of the results of possible recoveries, providing subsidies for process approaches, to obtain the maximum recovery of gold, and to diagnose the interfering features in these processes.
12

Live Single Cell Imaging and Analysis Using Microfluidic Devices

Khorshidi, Mohammad Ali January 2013 (has links)
Today many cell biological techniques study large cell populations where an average estimate of individual cells’ behavior is observed. On the other hand, single cell analysis is required for studying functional heterogeneities between cells within populations. This thesis presents work that combines the use of microfluidic devices, optical microscopy and automated image analysis to design various cell biological assays with single cell resolution including cell proliferation, clonal expansion, cell migration, cell-cell interaction and cell viability tracking. In fact, automated high throughput single cell techniques enable new studies in cell biology which are not possible with conventional techniques. In order to automatically track dynamic behavior of single cells, we developed a microwell based device as well as a droplet microfluidic platform. These high throughput microfluidic assays allow automated time-lapse imaging of encapsulated single cells in micro droplets or confined cells inside microwells. Algorithms for automatic quantification of cells in individual microwells and micro droplets are developed and used for the analysis of cell viability and clonal expansion. The automatic counting protocols include several image analysis steps, e.g. segmentation, feature extraction and classification. The automatic quantification results were evaluated by comparing with manual counting and revealed a high success rate. In combination these automatic cell counting protocols and our microfluidic platforms can provide statistical information to better understand behavior of cells at the individual level under various conditions or treatments in vitro exemplified by the analysis of function and regulation of immune cells. Thus, together these tools can be used for developing new cellular imaging assays with resolution at the single cell level. To automatically characterize transient migration behavior of natural killer (NK) cells compartmentalized in microwells, we developed a method for single cell tracking. Time-lapse imaging showed that the NK cells often exhibited periods of high motility, interrupted with periods of slow migration or complete arrest. These transient migration arrest periods (TMAPs) often overlapped with periods of conjugations between NK cells and target cells. Such conjugation periods sometimes led to cell-mediated killing of target cells. Analysis of cytotoxic response of NK cells revealed that a small sub-class of NK cells called serial killers was able to kill several target cells. In order to determine a starting time point for cell-cell interaction, a novel technique based on ultrasound was developed to aggregate NK and target cells into the center of the microwells. Therefore, these assays can be used to automatically and rapidly assess functional and migration behavior of cells to detect differences between health and disease or the influence of drugs. The work presented in this thesis gives good examples of how microfluidic devices combined with automated imaging and image analysis can be helpful to address cell biological questions where single cell resolution is necessary. / <p>QC 20130927</p>
13

Plasmonic waveguides self-assembled on DNA origami templates: from synthesis to near-field characterizations

Gür, Fatih Nadi 12 June 2018 (has links) (PDF)
Manipulating light by controlling surface plasmons on metals is being discussed as a means for bridging the size gap between micrometer-sized photonic circuits and nanometer-sized integrated electronics. Plasmonic waveguides based on metal nanoparticles are of particular interest for circumventing the diffraction limit, thereby enabling high-speed communication over short-range distances in miniaturized micro-components. However, scalable, inexpensive fine-tuning of particle assemblies remains a challenge and near-field probing is required to reveal plasmonic interactions. In this thesis, self-assembled waveguides should be produced on DNA scaffolds. DNA origami is an extremely versatile and robust self-assembly method which allows scalable production of nanostructures with a fine control of assemblies at the nanoscale. To form the plasmonic waveguides, six-helix bundle DNA origami nanotubes are used as templates for attachment of highly monodisperse and monocrystalline gold nanoparticles with an inter-particle distance of 1-2 nm. In the first part of this thesis, the effects of parameters which are involved in assembly reactions are systematically investigated. The assembly yield and binding occupancy of the gold nanoparticles are determined by an automated, high-throughput image analysis of electron micrographs of the formed complexes. As a result, unprecedented binding site occupancy and assembly yield are achieved with the optimized synthesis protocol. In addition, waveguides with different sizes of gold nanoparticles and different inter-particle distances, quantum dots attachments to the waveguides and multimerization of the waveguides are successfully realized. In the second part of this thesis, direct observation of energy transport through a self-assembled waveguide towards a fluorescent nanodiamond is demonstrated. High-resolution, near-field mapping of the waveguides are studied by electron energy loss spectroscopy and cathodoluminescence imaging spectroscopy. The experimental and simulation results reveal that energy propagation through the waveguides is enabled by coupled surface plasmon modes. These surface plasmon modes are probed at high spatial and spectral resolutions. The scalable self-assembly approach presented here will enable the construction of complex, sub diffraction plasmonic devices for applications in high-speed optical data transmission, quantum information technology, and sensing. / Die Manipulation des Lichts durch die Kontrolle von Oberflächenplasmonen auf metallischen Oberflächen und Nanopartikeln gilt als vielversprechende Methode zur Überbrückung der Größen-Lücke zwischen Mikrometer-großen photonischen und nanometer-großen elektronischen Schaltkreisen. Plasmonische Wellenleiter basierend auf metallischen Nanopartikeln sind vom besonderen Interesse, da sie die Umgehung des Beugungslimits und somit eine Hochgeschwindigkeitskommunikation über kurze Distanzen in immer kleiner werdenden Schaltkreisen ermöglichen könnten. Allerdings ist die skalierbare und kostengünstige Anordnung von Partikeln eine große Herausforderung und es werden Nahfelduntersuchungen benötigt um plasmonische Interaktionen detektieren zu können. Das Ziel dieser Arbeit ist die Selbstassemblierung von multi-partikel Wellenleitern auf DNA Gerüsten. Die Verwendung von DNA-Origami bietet eine äußerst vielseitige Plattform zur skalierbaren Herstellung von Nanostrukturen mittels Selbstassemblierung und ermöglicht eine präzise Kontrolle der Anordnungen im Nanobereich. Für den Aufbau der plasmonischen Wellenleiter werden DNA-Origami Nanoröhren, bestehend aus sechs Helices als Templat für die Anbindung von monodispersen und monokristallinen Goldnanopartikeln mit einem interpartikulären Abstand von 1-2 nm verwendet. Im ersten Abschnitt dieser Arbeit werden die beeinflussenden Faktoren dieser Assemblierungsreaktion systematisch untersucht. Die Ausbeute der assemblierten Strukturen und die Besetzung der Bindungsstellen werden durch eine automatisierte und effiziente Bildanalyse von Elektronenmikroskopieaufnahmen ausgewertet. Durch die Entwicklung eines optimierten Syntheseprotokolls werden bisher unerreichte Assemblierungsausbeuten ermöglicht. Zusätzlich erfolgen die experimentelle Realisierung von Strukturen mit verschieden großen Goldnanopartikeln und unterschiedlichen interpartikulären Abständen, sowie die Anbindung von Quantenpunkten an die Wellenleiter und eine Verknüpfung der assemblierten Strukturen. Der zweite Abschnitt dieser Dissertation befasst sich mit der Untersuchung des Energietransports in selbstassemblierten Wellenleitern über einen fluoreszierenden Nanodiamanten. Dazu erfolgen hochaufgelöste Nahfeldmessungen der Wellenleiter mittels Elektronenenergieverlustspektroskopie und Kathodolumineszenz-mikroskopie. Die experimentellen Ergebnisse und zusätzlich durchgeführte Simulationen bestätigen eine durch gekoppelte Oberflächenplasmonenmoden induzierte Weitergabe der Energie innerhalb des Wellenleiters. Diese Oberflächenplasmonenmoden werden bei hoher räumlicher und spektraler Auflösung untersucht. Das hier umgesetzte Konzept der Selbstassemblierung wird den Aufbau komplexer plasmonischer Geräte für Anwendungen im Bereich der optischen Hochgeschwindigkeitsdatenübertragung, der Quanteninformations-technolgie und der Sensorik ermöglichen.
14

Plasmonic waveguides self-assembled on DNA origami templates: from synthesis to near-field characterizations

Gür, Fatih Nadi 26 March 2018 (has links)
Manipulating light by controlling surface plasmons on metals is being discussed as a means for bridging the size gap between micrometer-sized photonic circuits and nanometer-sized integrated electronics. Plasmonic waveguides based on metal nanoparticles are of particular interest for circumventing the diffraction limit, thereby enabling high-speed communication over short-range distances in miniaturized micro-components. However, scalable, inexpensive fine-tuning of particle assemblies remains a challenge and near-field probing is required to reveal plasmonic interactions. In this thesis, self-assembled waveguides should be produced on DNA scaffolds. DNA origami is an extremely versatile and robust self-assembly method which allows scalable production of nanostructures with a fine control of assemblies at the nanoscale. To form the plasmonic waveguides, six-helix bundle DNA origami nanotubes are used as templates for attachment of highly monodisperse and monocrystalline gold nanoparticles with an inter-particle distance of 1-2 nm. In the first part of this thesis, the effects of parameters which are involved in assembly reactions are systematically investigated. The assembly yield and binding occupancy of the gold nanoparticles are determined by an automated, high-throughput image analysis of electron micrographs of the formed complexes. As a result, unprecedented binding site occupancy and assembly yield are achieved with the optimized synthesis protocol. In addition, waveguides with different sizes of gold nanoparticles and different inter-particle distances, quantum dots attachments to the waveguides and multimerization of the waveguides are successfully realized. In the second part of this thesis, direct observation of energy transport through a self-assembled waveguide towards a fluorescent nanodiamond is demonstrated. High-resolution, near-field mapping of the waveguides are studied by electron energy loss spectroscopy and cathodoluminescence imaging spectroscopy. The experimental and simulation results reveal that energy propagation through the waveguides is enabled by coupled surface plasmon modes. These surface plasmon modes are probed at high spatial and spectral resolutions. The scalable self-assembly approach presented here will enable the construction of complex, sub diffraction plasmonic devices for applications in high-speed optical data transmission, quantum information technology, and sensing. / Die Manipulation des Lichts durch die Kontrolle von Oberflächenplasmonen auf metallischen Oberflächen und Nanopartikeln gilt als vielversprechende Methode zur Überbrückung der Größen-Lücke zwischen Mikrometer-großen photonischen und nanometer-großen elektronischen Schaltkreisen. Plasmonische Wellenleiter basierend auf metallischen Nanopartikeln sind vom besonderen Interesse, da sie die Umgehung des Beugungslimits und somit eine Hochgeschwindigkeitskommunikation über kurze Distanzen in immer kleiner werdenden Schaltkreisen ermöglichen könnten. Allerdings ist die skalierbare und kostengünstige Anordnung von Partikeln eine große Herausforderung und es werden Nahfelduntersuchungen benötigt um plasmonische Interaktionen detektieren zu können. Das Ziel dieser Arbeit ist die Selbstassemblierung von multi-partikel Wellenleitern auf DNA Gerüsten. Die Verwendung von DNA-Origami bietet eine äußerst vielseitige Plattform zur skalierbaren Herstellung von Nanostrukturen mittels Selbstassemblierung und ermöglicht eine präzise Kontrolle der Anordnungen im Nanobereich. Für den Aufbau der plasmonischen Wellenleiter werden DNA-Origami Nanoröhren, bestehend aus sechs Helices als Templat für die Anbindung von monodispersen und monokristallinen Goldnanopartikeln mit einem interpartikulären Abstand von 1-2 nm verwendet. Im ersten Abschnitt dieser Arbeit werden die beeinflussenden Faktoren dieser Assemblierungsreaktion systematisch untersucht. Die Ausbeute der assemblierten Strukturen und die Besetzung der Bindungsstellen werden durch eine automatisierte und effiziente Bildanalyse von Elektronenmikroskopieaufnahmen ausgewertet. Durch die Entwicklung eines optimierten Syntheseprotokolls werden bisher unerreichte Assemblierungsausbeuten ermöglicht. Zusätzlich erfolgen die experimentelle Realisierung von Strukturen mit verschieden großen Goldnanopartikeln und unterschiedlichen interpartikulären Abständen, sowie die Anbindung von Quantenpunkten an die Wellenleiter und eine Verknüpfung der assemblierten Strukturen. Der zweite Abschnitt dieser Dissertation befasst sich mit der Untersuchung des Energietransports in selbstassemblierten Wellenleitern über einen fluoreszierenden Nanodiamanten. Dazu erfolgen hochaufgelöste Nahfeldmessungen der Wellenleiter mittels Elektronenenergieverlustspektroskopie und Kathodolumineszenz-mikroskopie. Die experimentellen Ergebnisse und zusätzlich durchgeführte Simulationen bestätigen eine durch gekoppelte Oberflächenplasmonenmoden induzierte Weitergabe der Energie innerhalb des Wellenleiters. Diese Oberflächenplasmonenmoden werden bei hoher räumlicher und spektraler Auflösung untersucht. Das hier umgesetzte Konzept der Selbstassemblierung wird den Aufbau komplexer plasmonischer Geräte für Anwendungen im Bereich der optischen Hochgeschwindigkeitsdatenübertragung, der Quanteninformations-technolgie und der Sensorik ermöglichen.

Page generated in 0.0713 seconds