• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 446
  • 42
  • 12
  • 9
  • 6
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 546
  • 546
  • 458
  • 449
  • 446
  • 445
  • 443
  • 439
  • 439
  • 151
  • 97
  • 83
  • 81
  • 73
  • 70
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

REDUNDANT FIRMWARE TEST SETUP IN SIMULATION AND HARDWARE: A FEASIBILITY STUDY

Ekström, Per, Eriksson, Elisabeth January 2018 (has links)
A reliable embedded real-time system has many requirements to fulfil. It must meet target deadlines in a number of situations, most of them in a situation that puts heavy stress on the system. To meet these demands, numerous tests have been created which test the hardware for any possible errors the developers might think of, in order to maximise system reliability and stability. These tests will take a lot of time to execute, and as system complexity grows, more tests are introduced leading to even longer testing times. In this thesis, a method to reduce the testing time of the software and, to a lesser extent, the hardware is examined. By using the full system simulator Simics, an existing industry system from ABB was integrated and tests were performed. A proof of concept test suite for automatic redundancy tests was also implemented. By looking at the test results, it was concluded that the method shows promise. However, problems with the average latency and performance troubles with Simics shows that more work must be put into this research before the system can be run at full speed.
182

A Novel Battery Management & Charging Solution for Autonomous UAV Systems

January 2018 (has links)
abstract: Currently, one of the biggest limiting factors for long-term deployment of autonomous systems is the power constraints of a platform. In particular, for aerial robots such as unmanned aerial vehicles (UAVs), the energy resource is the main driver of mission planning and operation definitions, as everything revolved around flight time. The focus of this work is to develop a new method of energy storage and charging for autonomous UAV systems, for use during long-term deployments in a constrained environment. We developed a charging solution that allows pre-equipped UAV system to land on top of designated charging pads and rapidly replenish their battery reserves, using a contact charging point. This system is designed to work with all types of rechargeable batteries, focusing on Lithium Polymer (LiPo) packs, that incorporate a battery management system for increased reliability. The project also explores optimization methods for fleets of UAV systems, to increase charging efficiency and extend battery lifespans. Each component of this project was first designed and tested in computer simulation. Following positive feedback and results, prototypes for each part of this system were developed and rigorously tested. Results show that the contact charging method is able to charge LiPo batteries at a 1-C rate, which is the industry standard rate, maintaining the same safety and efficiency standards as modern day direct connection chargers. Control software for these base stations was also created, to be integrated with a fleet management system, and optimizes UAV charge levels and distribution to extend LiPo battery lifetimes while still meeting expected mission demand. Each component of this project (hardware/software) was designed for manufacturing and implementation using industry standard tools, making it ideal for large-scale implementations. This system has been successfully tested with a fleet of UAV systems at Arizona State University, and is currently being integrated into an Arizona smart city environment for deployment. / Dissertation/Thesis / Masters Thesis Computer Engineering 2018
183

Three dimensional object recognition for robot conveyor picking

Wikander, Gustav January 2009 (has links)
Shape-based matching (SBM) is a method for matching objects in greyscale images. It extracts edges from search images and matches them to a model using a similarity measure. In this thesis we extend SBM to find the tilt and height position of the object in addition to the z-plane rotation and x-y-position. The search is conducted using a scale pyramid to improve the search speed. A 3D matching can be done for small tilt angles by using SBM on height data and extending it with additional steps to calculate the tilt of the object. The full pose is useful for picking objects with an industrial robot. The tilt of the object is calculated using a RANSAC plane estimator. After the 2D search the differences in height between all corresponding points of the model and the live image are calculated. By estimating a plane to this difference the tilt of the object can be calculated. Using the tilt the model edges are tilted in order to improve the matching at the next scale level. The problems that arise with occlusion and missing data have been studied. Missing data and erroneous data have been thresholded manually after conducting tests where automatic filling of missing data did not noticeably improve the matching. The automatic filling could introduce new false edges and remove true ones, thus lowering the score. Experiments have been conducted where objects have been placed at increasing tilt angles. The results show that the matching algorithm is object dependent and correct matches are almost always found for tilt angles less than 10 degrees. This is very similar to the original 2D SBM because the model edges does not change much for such small angels. For tilt angles up to about 25 degrees most objects can be matched and for nice objects correct matches can be done at large tilt angles of up to 40 degrees.
184

Calibration of Multispectral Sensors

Isoz, Wilhelm January 2005 (has links)
This thesis describes and evaluates a number of approaches and algorithms for nonuniform correction (NUC) and suppression of fixed pattern noise in a image sequence. The main task for this thesis work was to create a general NUC for infrared focal plane arrays. To create a radiometrically correct NUC, reference based methods using polynomial approximation are used instead of the more common scene based methods which creates a cosmetic NUC. The pixels that can not be adjusted to give a correct value for the incomming radiation are defined as dead. Four separate methods of identifying dead pixels are used to find these pixels. Both the scene sequence and calibration data are used in these identifying methods. The algorithms and methods have all been tested by using real image sequences. A graphical user interface using the presented algorithms has been created in Matlab to simplify the correction of image sequences. An implementation to convert the corrected values from the images to radiance and temperature is also performed.
185

Signal- och bildbehandling på moderna grafikprocessorer

Pettersson, Erik January 2005 (has links)
En modern grafikprocessor är oerhört kraftfull och har en prestanda som potentiellt sett är många gånger högre än för en modern mikroprocessor. I takt med att grafikprocessorn blivit alltmer programmerbar har det blivit möjligt att använda den för beräkningstunga tillämpningar utanför dess normala användningsområde. Inom det här arbetet utreds vilka möjligheter och begränsningar som uppstår vid användandet av grafikprocessorer för generell programmering. Arbetet inriktas främst mot signal- och bildbehandlingstillämpningar men mycket av principerna är tillämpliga även inom andra områden. Ett ramverk för bildbehandling implementeras och några algoritmer inom bildanalys realiseras och utvärderas, bland annat stereoseende och beräkning av optiskt flöde. Resultaten visar på att vissa tillämpningar kan uppvisa en avsevärd prestandaökning i en grafikprocessor jämfört med i en mikroprocessor men att andra tillämpningar kan vara ineffektiva eller mycket svåra att implementera. / The modern graphical processing unit, GPU, is an extremely powerful unit, potentially many times more powerful than a modern microprocessor. Due to its increasing programmability it has recently become possible to use it in computation intensive applications outside its normal usage. This work investigates the possibilities and limitations of general purpose programming on GPUs. The work mainly concentrates on signal and image processing although much of the principles are applicable to other areas as well. A framework for image processing on GPUs is implemented and a few computer vision algorithms are implemented and evaluated, among them stereo vision and optical flow. The results show that some applications can gain a substantial speedup when implemented correctly in the GPU but others can be inefficent or extremly hard to implement.
186

Segmentering och klassificering av LiDAR-data / Segmentation and Classification of LiDAR data

Landgård, Jonas January 2005 (has links)
With numerous applications in both military and civilian life, the demand for accurate 3D models of real world environments increases rapidly. Using an airborne laser scanner for the raw data acquisition and robust methods for data processing, the researchers at the Swedish Defence Research Agency (FOI) in Linköping hope to fully automate the modeling process. The work of this thesis has mainly been focused on three areas: ground estimation, image segmentation and classification. Procedures have in each of these areas been developed, leading to a new algorithm for ground estimation, a number of segmentation methods as well as a full comparison of various decision values for an object based classification. The ground estimation algorithm developed has yielded good results compared to the method based on active contours previously elaborated at FOI. The computational effort needed by the new method has been greatly reduced compared to the former, as performance, particularly in urban areas, has been improved. The segmentation methods introduced have shown promising results in separating different types of objects. A new set of decision values and descriptors for the object based classifier has been suggested, which, according to tests, prove to be more efficient than the set p reviously used. / Med många tillämpningar både inom det civila och militära, ökar efterfrågan på noggranna och korrekta omvärldesmodeller snabbt. Forskare på FOI, Totalförsvarets Forskningsinstitut, arbetar med att fullt ut kunna automatisera den process som genererar dessa tredimensionella modeller av verkliga miljöer. En luftburen laserradar används för datainsamlingen och robusta metoder är under ständig utveckling för den efterföljande databehandlingen. Arbetet som presenteras i denna rapport kan delas in i tre huvudområden: skattning av markyta, segmentering av data samt klassificering. Metoder inom varje område har utvecklats vilket lett fram till en ny algoritm för markestimering, en rad metoder för segmentering samt en noggrann jämförelse av olika beslutsvärden för en objektbaserad klassificering. Markskattningsalgoritmen har visat sig vara effektiv i jämförelse med en metod baserad på aktiva konturer som sedan tidigare utvecklats på FOI. Beräkningsbördan för den nya metoden är endast en bråkdel av den förra, samtidigt som prestandan, särskilt i urbana miljöer, har kunnat förbättras. De segmenteringsmetoder som introducerats har visat på lovande resultat vad gäller möjligheten att särskilja olika typer av objekt. Slutligen har en ny uppsättning deskriptorer och beslutsvärden till den objektbaserade klassificeraren föreslagits. Den har enligt de tester som presenteras i rapporten visats sig vara mer effektiv än den uppsättning som använts fram till idag.
187

Underwater 3-D imaging with laser triangulation

Norström, Christer January 2006 (has links)
The objective of this master thesis was to study the performance of an active triangulation system for 3-D imaging in underwater applications. Structured light from a 20 mW laser and a conventional video camera was used to collect data for generation of 3-D images. Different techniques to locate the laser line and transform it into spatial coordinates were developed and evaluated. A field- and a laboratory trial were performed. From the trials we can conclude that the distance resolution is much higher than the lateral- and longitudinal resolution. The lateral resolution can be improved either by using a high frame rate camera or simply by using a low scanning speed. It is possible to obtain a range resolution of less than a millimeter. The maximum range of vision was 5 meters under water measured on a white target and 3 meters for a black target in clear sea water. These results are however dependent on environmental and system parameters such as laser power, laser beam divergence and water turbidity. A higher laser power would for example increase the maximum range.
188

Standardized Volume Rendering Protocols for Magnetic Resonance Imaging using Maximum-Likelihood Modeling

Othberg, Fredrik January 2006 (has links)
Volume rendering (VRT) has been used with great success in studies of patients using computed tomography (CT), much because of the possibility of standardizing the rendering protocols. When using magnetic resonance imaging (MRI), this procedure is considerably more difficult, since the signal from a given tissue can vary dramatically, even for the same patient. This thesis work focuses on how to improve the presentation of MRI data by using VRT protocols including standardized transfer functions. The study is limited to exclusively examining data from patients with suspected renal artery stenosis. A total number of 11 patients are examined. A statistical approach is used to standardize the volume rendering protocols. The histogram of the image volume is modeled as the sum of two gamma distributions, corresponding to vessel and background voxels. Parameters describing the gamma distributions are estimated with a Maximum-likelihood technique, so that expectation (E1 and E2) and standard deviation of the two voxel distributions can be calculated from the histogram. These values are used to generate the transfer function. Different combinations of the values from the expectation and standard deviation were studied in a material of 11 MR angiography datasets, and the visual result was graded by a radiologist. By comparing the grades, it turned out that using only the expectation of the background distribution (E1) and vessel distribution (E2) gave the best result. The opacity is then defined with a value of 0 up to a signal threshold of E1, then increasing linearly up to 50 % at a second threshold E2, and after that a constant opacity of 50 %. The brightness curve follows the opacity curve to E2, after which it continues to increase linearly up to 100%. A graphical user interface was created to facilitate the user-control of the volumes and transfer functions. The result from the statistical calculations is displayed in the interface and is used to view and manipulate the transfer function directly in the volume histogram. A transfer function generated with the Maximum-likelihood VRT method (ML-VRT) gave a better visual result in 10 of the 11 cases than when using a transfer function not adapting to signal intensity variations.
189

Range Gated Viewing with Underwater Camera

Andersson, Adam January 2005 (has links)
The purpose of this master thesis, performed at FOI, was to evaluate a range gated underwater camera, for the application identification of bottom objects. The master thesis was supported by FMV within the framework of “arbetsorder Systemstöd minjakt (Jan Andersson, KC Vapen)”. The central part has been field trials, which have been performed in both turbid and clear water. Conclusions about the performance of the camera system have been done, based on resolution and contrast measurements during the field trials. Laboratory testing has also been done to measure system specific parameters, such as the effective gate profile and camera gate distances. The field trials shows that images can be acquired at significantly longer distances with the tested gated camera, compared to a conventional video camera. The distance where the target can be detected is increased by a factor of 2. For images suitable for mine identification, the increase is about 1.3. However, studies of the performance of other range gated systems shows that the increase in range for mine identification can be about 1.6. Gated viewing has also been compared to other technical solutions for underwater imaging.
190

Optical Flow Computation on Compute Unified Device Architecture / Optiskt flödeberäkning med CUDA

Ringaby, Erik January 2008 (has links)
There has been a rapid progress of the graphics processor the last years, much because of the demands from computer games on speed and image quality. Because of the graphics processor’s special architecture it is much faster at solving parallel problems than the normal processor. Due to its increasing programmability it is possible to use it for other tasks than it was originally designed for. Even though graphics processors have been programmable for some time, it has been quite difficult to learn how to use them. CUDA enables the programmer to use C-code, with a few extensions, to program NVIDIA’s graphics processor and completely skip the traditional programming models. This thesis investigates if the graphics processor can be used for calculations without knowledge of how the hardware mechanisms work. An image processing algorithm calculating the optical flow has been implemented. The result shows that it is rather easy to implement programs using CUDA, but some knowledge of how the graphics processor works is required to achieve high performance.

Page generated in 0.1275 seconds