• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 126
  • 28
  • 20
  • 19
  • 10
  • 6
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 283
  • 85
  • 51
  • 38
  • 37
  • 34
  • 33
  • 33
  • 33
  • 33
  • 33
  • 31
  • 27
  • 26
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Primary culture of Drosophila larval neurons with morphological analysis using NeuronMetrics

Smrt, Richard D., Lewis, Sara A., Kraft, Robert, Restifo, Linda L. 12 1900 (has links)
No description available.
112

Alternative Transcription Of The SLIT2/Mir-218-1 Transcriptional Axis Mediates Pancreatic Cancer Invasion

Rheinheimer, Brenna Ann January 2016 (has links)
The development of several organ systems through modeling and shaping of the tissue structure occurs from signaling through axon guidance molecules. The Slit family of ligands has been shown to regulate branching morphogenesis in mammary gland duct development and loss of Slit gene expression during this time leads to the formation of hyperplastic, disorganized lesions suggesting a potential role for Slits in cancer formation. Characterization of human pancreatic ductal adenocarcinoma cell lines showed a loss of SLIT2 expression in cells that contain activated Kras. Loss of SLIT2 expression was associated with DNA methylation of CpG sites within the SLIT2 core promoter and chromatin enrichment of repressive histone modifications at the SLIT2 transcriptional start site. Additionally, treatment of pancreatic ductal adenocarcinoma cell lines with demethylating agent 5-aza-2'-deoxycytidine led to SLIT2 re-expression while treatment with histone deacetylase inhibitor Trichostatin A did not. Mir-218-1 is an intronic microRNA encoded within intron 15 of the SLIT2 gene. Expression of mir-218-1 does not correlate with SLIT2 mRNA expression suggesting that it is transcribed from a promoter independent of the SLIT2 gene promoter. Pancreatic ductal adenocarcinoma cell lines showed a peak of H3K4me3 chromatin enrichment localized to a 1kb region within intron 4 of the SLIT2 gene denoting a candidate alternative promoter for mir-218-1. A concordant peak of H4ac chromatin enrichment overlapped the peak of H3K4me3 enrichment and transcriptional activity was measured from the 1kb region in all pancreatic ductal adenocarcinoma cell lines. A NF-κB binding site was also predicted to exist within the 1kb region. Transfection with two independent siRNAs to NF-κB led to an increase in both pre-mir-218-1 and mature mir-218-1 while treatment with an inhibitor to IκB kinase led to an increase in pre-mir-218-1 expression. Additionally, the p65 subunit of NF-κB was found to bind to the candidate mir-218-1 alternative promoter in pancreatic ductal adenocarcinoma cell lines that do not contain DNA CpG methylation at the predicted NF-κB binding site. It was discovered that miR-218 is a modulator of ARF6 expression suggesting a role in the inhibition of pancreatic ductal adenocarcinoma cell invasion through modulation of the actin cytoskeleton. Overexpression with a miR-218 precursor showed that miR-218 is an inhibitor of pancreatic ductal adenocarcinoma cell invasion in two dimensions. Additionally, it was found that while miR-218 does not have an affect on the ability of pancreatic ductal adenocarcinoma cells to form functional invadopodia, miR-218 is an inhibitor of the extracellular matrix degradation properties of mature invadopodia. Interestingly, the effect of miR-218 on pancreatic ductal adenocarcinoma cell invasion or extracellular matrix degradation is not reliant on the cell's dependency on Kras signaling for growth and survival. Collectively, these observations indicate that understanding the transcriptional regulation of SLIT2 and mir-218-1 expression as well as their signaling properties may provide a step toward the development of diagnostic tests and therapeutic treatments for patients with invasive or metastatic pancreatic ductal adenocarcinoma.
113

Investigation of voltage- and light-sensitive ion channels

Fromme, Ulrich 29 February 2016 (has links)
No description available.
114

Impact of normal ageing and cerebral hypoperfusion on myelinated axons and its relation to the development of Alzheimer's disease

Karali, Kanelina January 2014 (has links)
Cerebral hypoperfusion can occur in normal ageing and is proposed to underlie white matter disturbances observed in the ageing brain. Moreover, cerebral hypoperfusion and white matter attenuation are early events in the progression of Alzheimer’s disease (AD). White matter mostly consists of myelinated axons which have distinct protein architecture, segregated into defined regions; the axon initial segment (AIS), the node of Ranvier, paranode, juxtaparanode, and internode. These sites are essential for action potential initiation and/or propagation and subsequently effective brain function. At the outset of the studies in the thesis there was evidence that the different regions within the myelinated axons are vulnerable to injury and disease. Thus it is hypothesised that in response to normal ageing and/or cerebral hypoperfusion these structures are altered and associated with cognitive impairment and that these effects are exacerbated in a transgenic mouse model (APPSw,Ind, J9 line) which develops age-dependent amyloid-β (Αβ) pathology. The first study aims to investigate the effect of normal ageing and Aβ deposition on myelinated axons and on learning and memory. To address this, the effects of normal ageing on the integrity of the AIS, nodes of Ranvier, myelin, axons, synapses and spatial working memory are examined in young and aged wild-type and TgAPPSw,Ind mice. A significant reduction in the length of nodes of Ranvier is demonstrated in aged wild-type and TgAPPSw,Ind mice. In addition, the length of AIS, is significantly reduced in the aged wild-type animals while the young TgAPPSw,Ind have significantly shorter AIS than the young wild-type mice. These effects are not influenced by the presence of Aβ. Myelin integrity is affected by age but this is more prominent in the wild-type animals whilst axonal integrity is intact. Moreover, there is an age-related decrease of presynaptic boutons only in the TgAPPSw,Ind mice. Contrary to the original hypothesis, working memory performance is not altered with age or influenced by increasing Aβ levels. The second study aims to examine the effects of cerebral hypoperfusion in combination with Αβ pathology and/or ageing on cognitive performance and the structure of myelinated axons. To address this, the effects of surgically induced cerebral hypoperfusion on the integrity of the nodes of Ranvier, paranodes, myelin, axons and spatial working memory performance are investigated in young and aged wild-type and TgAPPSw,Ind mice. A decrease in nodal length is observed in response to hypoperfusion in young and aged animals. This effect is shown to be exacerbated in the young TgAPPSw,Ind animals. Moreover, the disruption of the nodal domain is shown to occur without any gross alterations in myelin and axonal integrity. It is also demonstrated that in response to hypoperfusion, spatial working memory performance is defected in young and aged animals of both genotypes. This deficit is exacerbated in the young TgAPPSw,Ind. The observed changes in the nodal structure are associated with poor working memory performance indicating functional implication for the nodal changes. These data highlight that structures within myelinated axons are vulnerable to ageing and cerebral hypoperfusion. Therefore, the development of strategies that minimize injury or drive repair to these regions is necessary together with therapeutic approaches against the vascular insults that induce hypoperfusion and lead to white matter attenuation and cognitive decline. In the future, it would be interesting to investigate how alterations at the AIS/nodes of Ranvier affect neuronal excitability.
115

ROLES OF EMX2 IN ODORANT RECEPTOR GENE EXPRESSION AND OLFACTORY SENSORY NEURON AXON GROWTH

McIntyre, Jeremy Colin 01 January 2009 (has links)
The sense of smell relies upon the detection of odorants by neurons located in the nasal cavity. These neurons, referred to as olfactory sensory neurons (OSNs), line the olfactory epithelium and extend axons that make synaptic connections with mitral/tufted cells in the olfactory bulb. The mechanisms by which these synaptic connections form remain largely unknown. The development of these synaptic connections relies on the axons of immature OSNs innervating the olfactory bulb. The primary goal of this dissertation was to identify components of the mechanisms used by immature OSN axons to innervate the olfactory bulb. To accomplish this goal, a knockout mouse model was used. OSN axons, of Emx2 knockout mice fail to innervate the olfactory bulb. As EMX2 is a transcription factor, this model was used investigate the possible causes of the defective OSN axon growth. To gain a better understanding of OSN axon growth, differences in expression of axon growth and guidance genes in immature and mature OSNs was investigated. This analysis revealed that many axon growth and guidance genes are differential expressed, and helped to identify immature OSN specific genes. The data also revealed a previously unrecognized developmental stage, termed nascent OSNs, identified by the expression of Cxcr4. Analysis of Emx2-/- mice revealed that EMX2 is necessary for OSN survival, odorant receptor expression and expression of the axonogenesis related gene Ablim1. EMX2 is necessary for the expression of many odorant receptor genes; however the loss of odorant receptor expression does not explain the axon growth defects. Apoptosis is increased in Emx2-/- mice, an outcome that may be due to the failed axon growth. Analysis of axon guidance gene expression identified a large reduction in Ablim1 expression in Emx2-/- mice. Ablim1 is expressed by immature OSNs, placing it in the proper cell type to regulate OSN axon growth. The loss of Ablim1 expression in Emx2-/- mice indicates defective signaling in the axon growth cone and a possible mechanism regulating OSN axon growth into the olfactory bulb. The data presented in this dissertation provide new insight into the regulation of odorant receptor gene expression and OSN axon growth.
116

Functional analysis of the CNS-specific F-box protein FBXO41 in cerebellar development / Functional analysis of the CNS-specific F-box protein FBXO41 in cerebellar development

Mukherjee, Chaitali 08 June 2015 (has links)
No description available.
117

Adaptive map alignment in the superior colliculus of the barn owl : a neuromorphic implementation

Huo, Juan January 2010 (has links)
Adaptation is one of the basic phenomena of biology, while adaptability is an important feature for neural network. Young barn owl can well adapt its visual and auditory integration to the environmental change, such as prism wearing. At first, a mathematical model is introduced by the related study in biological experiment. The model well explained the mechanism of the sensory map realignment through axongenesis and synaptogenesis. Simulation results of this model are consistent with the biological data. Thereafter, to test the model’s application in hardware, the model is implemented into a robot. Visual and auditory signals are acquired by the sensors of the robot and transferred back to PC through bluetooth. Results of the robot experiment are presented, which shows the SC model allowing the robot to adjust visual and auditory integration to counteract the effects of a prism. Finally, based on the model, a silicon Superior Colliculus is designed in VLSI circuit and fabricated. Performance of the fabricated chip has shown the synaptogenesis and axogenesis can be emulated in VLSI circuit. The circuit of neural model provides a new method to update signals and reconfigure the switch network (the chip has an automatic reconfigurable network which is used to correct the disparity between signals). The chip is also the first Superior Colliculus VLSI circuit to emulate the sensory map realignment.
118

Pathological and cognitive alterations in mouse models of traumatic brain injury and hypoperfusion

Spain, Aisling Mary January 2011 (has links)
Intact white matter is critical for normal cognitive function. In traumatic brain injury (TBI), chronic cerebral hypoperfusion and Alzheimer’s disease (AD) damage to white matter is associated with cognitive impairment. However, these conditions are associated with grey matter damage or with other pathological states and the contribution of white matter damage in isolation to their pathogenesis is not known. Furthermore, TBI is a risk factor for AD and cerebral hypoperfusion is an early feature of AD. It is hypothesised that white matter damage following TBI or chronic cerebral hypoperfusion will be associated with cognitive deficits and that white matter changes after injury contribute to AD pathogenesis. To investigate this, this thesis examined the contribution of white matter damage to cognitive deficits after TBI and chronic cerebral hypoperfusion and furthermore, investigated the role of white matter damage in the relationship between TBI and AD. Three studies addressed these aims. In the first, mild TBI was induced in wild-type mice and the effects on axons, myelin and neuronal cell bodies examined at time points from 4 hours to 6 weeks after injury. Spatial reference learning and memory was tested at 3 and 6 weeks after injury. Injured mice showed axonal damage in the cingulum, close to the injury site in the hours after injury and at 6 weeks, damage in the thalamus and external capsule were apparent. Injured and sham animals had comparable levels of neuronal damage and no change was observed in myelin. Injured animals showed impaired spatial reference learning at 3 weeks after injury, demonstrating that selective axonal damage is sufficient to impair cognition. In the second study mild TBI was induced in a transgenic mouse model of AD and the effects on white matter pathology and AD-related proteins examined 24 hours after injury. There was a significant increase in axonal damage in the cingulum and external capsule and parallel accumulations of amyloid were observed in these regions. There were no changes in tau or in overall levels of AD-related proteins. This suggests that axonal damage may have a role in mediating the link between TBI and AD. The third study used a model of chronic cerebral hypoperfusion in wild type mice and investigated white matter changes after one and two months of hypoperfusion as well as a comprehensive assessment of learning and memory. Chronic cerebral hypoperfusion resulted in diffuse myelin damage in the absence of ischaemic neuronal damage at both 1 and 2 months after induction of hypoperfusion. Hypoperfused animals also showed minimal axonal damage and microglial activation. Cognitive testing revealed a selective impairment in spatial working memory but not spatial reference or episodic memory in hypoperfused animals, showing that modest reductions in blood flow have effects on white matter sufficient to cause cognitive impairment. These results demonstrate that selective damage to white matter components can have a long-term impact on cognitive function as well as on the development of AD. This suggests that minimisation of axonal damage after TBI is a target for reducing subsequent risk of AD and that repair or prevention of white matter damage is a promising strategy for rescuing cognitive function in individuals who have experienced mild TBI or chronic cerebral hypoperfusion.
119

Rôle de la semaphorine 3a et deL1CAM dans la mise en place des reseaux de neurones GABA dans le cervelet / Role of semaphorin 3a and L1CAM in cerebellar gabaergic interneuron local circuit formation

Telley, Ludovic 17 December 2010 (has links)
Une des questions fondamentales en neurobiologie du développement est de comprendre quels sont les mécanismes responsables de la formation des circuits neuronaux. Alors que les circuits de neurones projecteurs ont fait l'objet d'études intensives, aujourd'hui encore peu de chose est connu sur les molécules et les voies de signalisation impliquées dans la croissance et la différentiation axonale des interneurones GABA. Au cours de ma thèse, j'ai étudié le rôle de la molécule de guidage axonal Semaphorine 3a (Sema3A) dans le développement des axones des interneurones GABA du cervelet. Pour mener à bien cette étude, j'ai développé de nouvelles approches expérimentales in vitro et in vivo. En utilisant ces nouveaux outils, j'ai montré que la SEMA3A était capable d'attirer l'axone des interneurones GABA. In vitro, la SEMA3A induit une augmentation locale de la formation de branches axonales et l'apparition précoce d'un marqueur présynaptique (GAD65). Nous avons également montré que la combinaison d'expression de SEMA3A avec une molécule d'adhésion de la famille L1CAM dans les cellules hétérologues était capable d'induire l'innervation de cette cellule de manière spécifique par les interneurones GABA du cervelet. Cette étude nous a permis de montrer que la combinaison entre une molécule de guidage axonal et une molécule d'adhésion cellulaire spécifique était suffisante pour induire des mécanismes de reconnaissance cellulaire par les interneurones GABA du cervelet. / GABAergic interneurons are fundamental component in neural processing and their specific innervation patterns are though to be the building block for physiological brain function and computing. However the molecular and cellular mechanisms that assemble inhibitory local circuits remain largely unknown. In cerebellar cortex, molecular layer GABAergic interneurons are key regulators of cerebellar signal coding and memory formation by sending specifically their axons to innervate the Purkinje cells. Here, we show that a combination of both secreted axon guidance and recognition molecules of L1CAM family is sufficient to trigger target cell recognition by molecular layer GABAergic interneuron˙s in vivo. Using BAC transgenic reporter mice for cell-type specific gene-expression profiling of secreted SEMAPHORIN molecules, we identified that SEMAPHORIN3A (SEMA3A) expression picked precisely at relevant time-point of GABAergic local circuit formati on. In vitro, in a co-culture model, we found that semaphorin3A (SEMA3A) secreted by CHO cells attracts GABAergic interneurons axons and triggers their local specific branching. In vivo, the injection of these heterologous cells expressing SEMA3A ectopically in the granule cell layer is able to disrupt the « crystal »like organization of molecular GABAergic interneurons and attracts their axons in this ectopic territory. Moreover we found that both in vitro and in vivo, the co-expression of SEMA3A and the L1CAM family recognition molécules, Neurofascin, but not their respective expression alone, are able to induced heterologous cells innervation by molecular GABAergic interneurons. These results suggest that specific combination between axon guidance molecules and L1CAM family is sufficient to specify cell type recognition in a space and timely dependent manner.
120

Développement et caractérisation d’une méthode photonique pour créer des distributions spatiales de protéines

Bélisle, Jonathan M. 12 1900 (has links)
Les cellules sont capables de détecter les distributions spatiales de protéines et ainsi de migrer ou s’étendre dans la direction appropriée. Une compréhension de la réponse cellulaire aux modifications de ces distributions spatiales de protéines est essentielle pour l’avancement des connaissances dans plusieurs domaines de recherches tels que le développement, l’immunologie ou l’oncologie. Un exemple particulièrement complexe est le guidage d’axones se déroulant pendant le développement du système nerveux. Ce dernier nécessite la présence de plusieurs distributions de molécules de guidages étant attractives ou répulsives pour connecter correctement ce réseau complexe qu’est le système nerveux. Puisque plusieurs indices de guidage collaborent, il est particulièrement difficile d’identifier la contribution individuelle ou la voie de signalisation qui est déclenchée in vivo, il est donc nécessaire d’utiliser des méthodes pour reproduire ces distributions de protéines in vitro. Plusieurs méthodes existent pour produire des gradients de protéines solubles ou liées aux substrats. Quelques méthodes pour produire des gradients solubles sont déjà couramment utilisées dans plusieurs laboratoires, mais elles limitent l’étude aux distributions de protéines qui sont normalement sécrétées in vivo. Les méthodes permettant de produire des distributions liées au substrat sont particulièrement complexes, ce qui restreint leur utilisation à quelques laboratoires. Premièrement, nous présentons une méthode simple qui exploite le photoblanchiment de molécules fluorescentes pour créer des motifs de protéines liées au substrat : Laser-assisted protein adsorption by photobleaching (LAPAP). Cette méthode permet de produire des motifs de protéines complexes d’une résolution micrométrique et d’une grande portée dynamique. Une caractérisation de la technique a été faite et en tant que preuve de fonctionnalité, des axones de neurones du ganglion spinal ont été guidés sur des gradients d’un peptide provenant de la laminine. Deuxièmement, LAPAP a été amélioré de manière à pouvoir fabriquer des motifs avec plusieurs composantes grâce à l’utilisation de lasers à différentes longueurs d’onde et d’anticorps conjugués à des fluorophores correspondants à ces longueurs d’onde. De plus, pour accélérer et simplifier le processus de fabrication, nous avons développé LAPAP à illumination à champ large qui utilise un modulateur spatial de lumière, une diode électroluminescente et un microscope standard pour imprimer directement un motif de protéines. Cette méthode est particulièrement simple comparativement à la version originale de LAPAP puisqu’elle n’implique pas le contrôle de la puissance laser et de platines motorisées, mais seulement d’envoyer l’image du motif désiré au modulateur spatial. Finalement, nous avons utilisé LAPAP pour démontrer que notre technique peut être utilisée dans des analyses de haut contenu pour quantifier les changements morphologiques résultant de la croissance neuronale sur des gradients de protéines de guidage. Nous avons produit des milliers de gradients de laminin-1 ayant différentes pentes et analysé les variations au niveau du guidage de neurites provenant d’une lignée cellulaire neuronale (RGC-5). Un algorithme pour analyser les images des cellules sur les gradients a été développé pour détecter chaque cellule et quantifier la position du centroïde du soma ainsi que les angles d’initiation, final et de braquage de chaque neurite. Ces données ont démontré que les gradients de laminine influencent l’angle d’initiation des neurites des RGC-5, mais n’influencent pas leur braquage. Nous croyons que les résultats présentés dans cette thèse faciliteront l’utilisation de motifs de protéines liées au substrat dans les laboratoires des sciences de la vie, puisque LAPAP peut être effectué à l’aide d’un microscope confocal ou d’un microscope standard légèrement modifié. Cela pourrait contribuer à l’augmentation du nombre de laboratoires travaillant sur le guidage avec des gradients liés au substrat afin d’atteindre la masse critique nécessaire à des percées majeures en neuroscience. / Cells are able to sense spatial distribution of proteins and accordingly migrate or extend in the appropriate direction. Understanding cellular responses to modifications in molecular spatial distributions is essential for advances in several fields such as development, immunology and oncology. A particularly complex example is axonal guidance that occurs during the development of the nervous system, which relies on distributions of attractive and repulsive guidance molecules to correctly wire this intricate network. Since several guidance cues collaborate to development of the nervous system, it is particularly difficult to assess the individual contribution of each cue and the signaling cascade each trigger in vivo; therefore methods to reproduce those distributions individually in vitro are necessary to study in detail the effect of each guidance cue. Several methods exist to produce graded distributions of protein that are either soluble or substrate-bound. A few methods making solution gradients are already widely used in several laboratories to perform experiments with the guidance cues that are normally diffusing in vivo. However, current methods allowing the fabrication of substrate-bound gradients are quite complex, which restrict their use to a few laboratories. First, we present a straightforward method exploiting photobleaching of a fluorescently tagged molecule using a visible laser to generating substrate-bound protein patterns: Laser-assisted protein adsorption by photobleaching (LAPAP). This method allows producing complex patterns of protein with micron spatial resolution and high dynamic range. An extensive characterization of the technique was performed and as proof of functionality, axons from dorsal root ganglions cells were guided on laminin peptide gradients. Secondly, LAPAP was improved in order to produce multicomponent patterns by using lasers at different wavelengths and antibodies conjugated to fluorophores corresponding to these wavelengths. Moreover, to speed-up the fabrication process and simplify the device, we developed widefield illumination LAPAP which uses a spatial light modulator, a light emitting diode and a standard microscope to directly print patterns. This patterning method is relatively simple compared to the original LAPAP setup, since it does not involve controlling the laser power or a motorized stage, but only sends an image of the desired pattern to a spatial light modulator. Finally, we used LAPAP to show how it could be used in automated high-content screening assays to quantify the morphological changes resulting from axon growth on gradients of guidance proteins. We produced thousands of laminin-1 gradients of different slopes and analyzed the variations in neurite guidance of neuron-like cells (RGC-5). An image analysis algorithm was developed to process bright field microscopy images, detecting each cell and quantifying the soma centroid and the initiation, terminal and turning angles of the maximal neurite. This data showed that laminin gradients influence the initiation angle of neurite extension of RGC-5, but does not contribute to its turning. We believe that the results presented in this thesis will facilitate the use of substrate- bound protein patterning in typical life science laboratories, since a confocal microscope or a slightly modified standard microscope is the only specialized equipment needed to fabricate patterns by LAPAP. This could increase the number of laboratories working with substrate-bound protein patterns in order to reach the critical mass necessary for major advances in neuroscience.

Page generated in 0.0324 seconds