• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nappes de tourbillon-courant en magnétohydrodynamique / Current-vortex sheets in magnetohydrodynamics

Pierre, Olivier 10 July 2017 (has links)
On considère dans cette thèse le couplage de deux plasmas homogènes et idéaux, présentant une discontinuité tangentielle le long d’une hypersurface évoluant au cours de temps. Le mouvement d’un tel fluide est dicté par les équations de la magnétohydrodynamique idéale incompressible. Le phénomène de cisaillement du plasma conduit à la création d’une nappe de tourbillon-courant. Un premier travail consiste à construire des solutions analytiques au système des nappes de tourbillon-courant, en utilisant un théorème de Cauchy-Kowalevskaya. Dans une seconde partie, on s’attarde sur le comportement qualitatif des solutions exactes du système des nappes de tourbillon-courant, issues de données initiales de faible amplitude et fortement oscillantes. Pour ce faire, on utilise des outils d’optique géométrique, et on met en évidence la formation d’ondes de surface lorsque les données initiales oscillent à des fréquences bien particulières. / In this thesis, we consider the coupling between two ideal and homogeneous plasmas, giving rise to a tangential discontinuity across a time-dependent hypersurface. The motion of such a fluid is described by the ideal incompressible magnetohydrodynamics equations. This shear flow leads to the creation of a current-vortex sheet. The first part of this work is devoted to the construction of analytic solutions to the current-vortex sheet system, using a Cauchy-Kowalevskaya theorem. In a second part, we look at the qualitative behavior of exact solutions to the current-vortex sheet system, obtained from highly oscillating initial data. We use tools of geometric optics and we exhibit the creation of surface waves when the initial datum is oscillating with particular frequencies.
2

Oscillations, concentration et dispersion pour des équations d'ondes et de Schrödinger

Carles, Rémi 27 May 2005 (has links) (PDF)
Nous présentons des travaux autour de trois axes : 1- Phénomène de focalisation en un point en optique géométrique non linéaire. Les équations considérées sont principalement des équations d'ondes et de Schrödinger non linéaires. 2- Rôle des oscillations quadratiques dans les équations de Schrödinger non linéaires. 3- Equations de Schrödinger non linéaire en présence d'un potentiel extérieur.
3

Steady-state Modeling Of Detonation Phenomenon In Premixed Gaseous Mixtures And Energetic Solid Explosives

Cengiz, Fatih 01 February 2007 (has links) (PDF)
This thesis presents detailed description of the development of two computer codes written in FORTRAN language for the analysis of detonation of energetic mixtures. The first code, named GasPX, can compute the detonation parameters of premixed gaseous mixtures and the second one, named BARUT-X, can compute the detonation parameters of C-H-N-O based solid explosives. Both computer codes perform the computations on the basis of Chapman-Jouguet Steady State Detonation Theory and in chemical equilibrium condition. The computed detonation point by the computer codes is one of the possible solutions of the Rankine&ndash / Hugoniot curve and it also satisfies the Rayleigh line. By examining the compressibility of the gaseous products formed after detonation of premixed gaseous mixtures, it is inferred that the ideal-gas equation of state can be used to describe the detonation products. GasPX then calculates the detonation parameters complying with ideal-gas equation of state. However, the assumption of the ideal gas behavior is not valid for gaseous detonation products of solid explosives. Considering the historical improvement of the numerical studies in the literature, the BKW (Becker-Kistiakowsky-Wilson) Equation of State for gaseous products and the Cowan &amp / Fickett Equation of State for solid carbon (graphite) in the products are applied to the numerical model of BARUT-X. Several calculations of detonation parameters are performed by both GasPX and BARUT-X. The results are compared with those computed by the other computer codes as well as the experimental data in the literature. Comparisons show that the results are in satisfactory agreement with experiments and also in good agreement with the calculations performed by the other codes.
4

Interactions d’ondes et de bord

Marcou, Alice 17 June 2011 (has links)
Tout d'abord, des ondes de surface, solutions de problèmes aux limites hyperboliques non linéaires, sont étudiées : on construit une solution BKW sous forme de développement infini en puissance de epsilon. On le justifie rigoureusement, en construisant une solution exacte, qui admet ce développement asymptotique. On montre que la solution n'est pas nécessairement purement localisée sur la frontière, même lorsque le terme source l'est ; l'exemple d'un cas particulier de l'élasticité est traité. Ensuite, on étudie la réflexion d'ondes non linéaires discontinues, pour des problèmes aux limites hyperboliques, faiblement bien posés, ni fortement stables, ni fortement instables. On étudie comment les singularités d'une solution striée sont réfléchies lorsque la solution atteint la frontière. On prouve des estimations striées et en normes infinies. On montre qu'une discontinuité du gradient de la solution à travers un hyperplan peut être réfléchie en une discontinuité de la solution elle-même. / We first study surface waves, solutions of hyperbolic nonlinear boundary value problems. We construct BKW solutions in the weakly nonlinear regime with infinite expansion in powers of ε. We rigorously justify this expansion,constructing exact solutions, which admit the asymptotic expansions. We also show that the solution is not necessarily localized at the order O(ε∞) in the interior, even if the data are ; a particular case of elasticity is studied: we prove that fast oscillatory elastic surface waves can produce non trivial internal non oscillatory displacements.Afterwards, we study the reflection of non linear discontinuous waves, for weakly well-posed hyperbolic boundary value problems, satisfying the (WR) condition, which has been introduced in [1, 12], that is in a case where the IBVP is neither strongly stable, nor strongly unstable. We study how the singularities of a striated solution are reflected when the solution hits the boundary. We prove striated estimates and L∞ estimates and observe the loss of one derivative: we show that a discontinuityof the gradient of the solution across an hyperplane can be reflected in a discontinuity across an hyperplane of the solution itself.

Page generated in 0.0213 seconds