• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 8
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Defining the Role of Chromatin Remodelers During Forebrain Development

Cardin, Valerie 09 January 2024 (has links)
Chromatin remodelers are necessary players in modifying and protecting the chromatin landscape. Aberrant expression of these complexes can lead to epigenetic regulation defects, which is a common cause of neurodevelopmental disorders. Mutations in the BPTF gene, encoding the largest subunit of the NURF complex, cause the newly identified disorder called Neurodevelopmental Disorder with Dysmorphic Facies and distal Limb anomalies (NEDDFL). Recent research has identified a role for Bptf in progenitor proliferation and neocortical development. Here, we aimed to enhance the coverage of Bptf deletion in the neural system and we hypothesized that the phenotype of the Bptf knockout mice will recapitulate the human phenotype and will be a better model to study NEDDFL. We showed that Bptf conditional KO mice have major morphological brain defects, including an abnormal cortex and malformed hippocampus. Furthermore, assessment of these mice revealed key behavioural features found in NEDDFL patients. The ATR-X syndrome, a severe neurodevelopmental disorder with autistic-like features, is caused by mutations in the ATRX gene that encodes an ATP-dependent chromatin remodeling protein. Previous studies have reported that, in the absence of Atrx, the glutamatergic and GABAergic networks are altered, which lead us to hypothesize that alteration of the equilibrium between the excitatory and inhibitory systems play a role in the pathogenesis of ATR-X syndrome. Here, we showed that mice with Atrx deletion in excitatory neurons (AtrxVgKO) and inhibitory neurons (AtrxVtKO) die embryonically or shortly after birth which precluded a thorough mechanistic analysis, yet they exhibited distinct hippocampal defects. Lastly, we generated a new conditional Atrx mouse mutant (AtrxEcKO) that survived beyond birth. Using this model, I showed that loss of Atrx caused a hypoplastic hippocampus, hyperactive and self-injurious behaviour that could be caused by altered myelinogenesis, axonogenesis, axonal pathfinding, cell differentiation and transcriptional regulation.
2

Investigating the Effects of Nucleosome Remodeling Factor Knockdown on Anti-Tumor Immunity

Roberts, Mark G 01 January 2016 (has links)
The nucleosome remodeling factor (NURF) is a chromatin remodeling complex involved in early animal development and is implicated in a number of cancers. In previous work, knockdown of NURF’s largest subunit, BPTF, resulted in diminished tumor growth in mouse cancer cell lines. Other studies in our lab demonstrated increased activation of T-lymphocytes into BPTF KD tumors. In order to examine if this approach has any therapeutic potential, this work investigates the effects of BPTF knockdown in established tumors by using recombinant adenoviruses (rAd), as well as observe the way the immune system interacts with BPTF knockdown cells, both in vivo by flow cytometry and in culture with cytotoxicity assays.
3

Investigation into the Specification of NURF Recruitment to the Genome

Mack, Marissa 01 January 2015 (has links)
The nucleosome remodeling factor (NURF) is a mutli-protein complex that plays a role in the regulation of gene expression through its ability to remodel nucleosomes. The largest subunit of this complex, Bptf (Bromodomain PHD Finger Transcription Factor) is important for many cellular processes as a transcriptional regulator and improper function results in disease or malignancy. To further understand the genome-wide recruitment of the NURF complex, the interaction partner for the N-terminal PHD finger domain of Bptf was investigated through pull down assays followed by mass spectrometry. It was determined that this domain does not recognize histones; instead it recognizes a nonhistone protein, Thoc4 or Hmgb1. The expression of a cDNA corresponding to Bptf was also tested for expression in mouse ES cells after the addition of two exons found to be missing in the original cDNA. Addition of this sequence did not allow for exogenous Bptf expression in ES cells.
4

The Role of the Nucleosome Remodeling Factor NURF in Inhibiting T and Natural Killer Cell Mediated Antitumor Immunity by Suppressing Tumor Antigenicity and Natural Cytotoxicity Receptor Co-ligands

Mayes, Kimberly 01 January 2017 (has links)
Tumor immunoediting is a dynamic process in which the immune response attacks tumor cells by detecting danger signals and tumor antigens. In order to survive, tumor cells develop mechanisms to avoid detection or destruction by the immune system. To counteract this, several strategies are being developed to enhance the antitumor immune response, including the depletion of immunosuppressive cells, enhancing the activation of antitumor immune cells and increasing tumor cell immunogenicity. These therapies have seen limited success individually, however, and it is likely that combination therapy with novel targets will be necessary to see reproducible beneficial responses. Epigenetic modifications are attractive therapeutic targets because they are reversible and affect gene expression in cancer cells. Within this framework, this study aimed to elucidate the role of the chromatin remodeling complex nucleosome remodeling factor (NURF) in cancer immunoediting by silencing of bromodomain PHD-finger containing transcription factor (BPTF), the largest and essential subunit of NURF. Using two syngeneic mouse models of cancer, BPTF was found to suppress T cell antitumor activity in the tumor microenvironment. In vitro, enhanced cytolytic activity was observed for individual CD8 T cell clones only from mice bearing BPTF-silenced tumors, implicating the involvement of novel antigens. Mechanistic investigations revealed that NURF directly suppresses the expression of genes encoding immunoproteasome subunits Psmb8 and Psmb9 and the antigen transporter genes Tap1 and Tap2. PSMB8 inhibition reversed the effects of BPTF ablation, consistent with a critical role for the immunoproteasome in improving tumor immunogenicity. Thus, NURF normally suppresses tumor cell antigenicity and its depletion improves CD8 T cell antitumor immunity. In a concurrent study using different tumor lines, BPTF was also found to suppress natural killer (NK) cell antitumor immunity in vivo. Enhanced NK cell cytolytic activity toward BPTF-depleted targets in vitro was dependent on the natural cytotoxicity receptors (NCR). Molecular studies revealed that BPTF directly activates heparanase (Hpse) expression, resulting in reduced cell surface abundance of the NCR co-ligands: heparan sulfate proteoglycans. Thus, NURF represses NCR co-ligand abundance and its depletion enhances NK cell cytotoxicity. Therefore, NURF emerges as a candidate therapeutic target to enhance CD8 T or NK cell antitumor immunity.
5

Investigating the Role of the Nucleosome Remodeling Factor NURF as a Regulator of Gene Expression

Alhazmi, Aiman S 01 January 2015 (has links)
The nucleosome remodeling factor (NURF) is an evolutionary conserved ATP-dependent chromatin remodeling factor. It was first isolated from Drosophila as a complex with enzymatic activity that once recruited to nucleosome, it slides the nucleosome to provide accessibility for transcription factors. Since then, numerous works from animal models and cell lines show the role of NURF as a regulator of gene expression. NURF interacts with H3K4me3 and sequence specific transcription factors that recruit the complex to promoter regions. Whether this is the only mechanism by which NURF regulates gene expression is not known. However, other ATP-dependent chromatin remodeling complexes are known to regulate gene expression independent from transcription initiation. In order to explore the role of NURF in regulating gene expression, we utilized two genome wide approaches to map NURF binding and NURF dependent changes in chromatin structure using ChIP-Seq and FAIRE-Seq, respectively. From these analyses, we discovered that NURF broadly localizes in the genome with preferences to gene bodies and 3’ends of genes. Also, we found that NURF maintains open chromatin regions at upstream, intron and downstream of genes. These novel findings shed light on new roles for NURF complex within genes, in addition to its classical role at promoter regions. Furthermore, we discovered the function of a previously uncharacterized domain in the NURF specific subunit BPTF. We show that the N-terminal the plant homeodomain (PHD) of BPTF directly interacts with THOC4, a protein associated with RNA-pol 2. Also, we show using ChIP analyses that this interaction recruits BPTF to gene bodies. Next, we investigated functional consequences for NURF recruitment to gene bodies using Cyclin D1 (Ccnd1) gene as a model. These analyses revealed that NURF is required for normal mRNA processing and loss of NURF induces intron retention, which results in unstable transcripts. Finally, we show that the defect in mRNA processing is not specific to the Ccnd1 gene, as we observe similar defects in four other BPTF dependent genes. Together, our work uncovered new role of mammalian NURF complex in regulating gene expression through mRNA processing.
6

Bptf is essential for murine neocortical development

Zapata, Gerardo 26 October 2020 (has links)
Chromatin remodeling complexes modulate DNA accessibility permitting neuronal progenitor cells to proliferate and differentiate to form the mammalian neocortex. In the case of BPTF (Bromodomain PHD transcription Factor), the major subunit of a chromatin remodelling complex called NURF (Nucleosome Remodelling Factor), mutations leading to its haploinsufficiency have been linked to cause a recently annotated human neurodevelopmental disorder called NEDDFL (Neurodevelopmental disorder with dysmorphic facies and distal limb anomalies). Patients with this syndrome are mainly characterized with microcephaly and intellectual disability. We conditionally knockout (cKO) the Bptf gene during neocortical neurogenesis to analyze its role during embryonic and postnatal brain development. The Bptf cKO animals reveal significant forebrain hypoplasia. During cortical neurogenesis, the Bptf cKO mice show a reduction in intermediate neuronal progenitor (INP) cells, an increase in apoptosis as well as a prolonged cell cycle within proliferating progenitors. Similarly, the postmitotic pyramidal neurons of the Bptf cKO mice contained lower levels of Ctip2 and Foxp1. Lastly, our RNA-seq analysis delineated gene pathways deregulated by Bptf removal, which are involved in neurogenesis and neuronal differentiation. Our results indicate that Bptf is critical for murine telencephalon neurogenesis. The hypoplasia demonstrated in the mouse model can resemble the microcephaly displayed by the human NEDDFL patients, highlighting the relevance of chromatin remodelling complexes during intricate neural developmental processes.
7

Characterizing the role of Nucleosome Remodeling Factor (NURF) in tumorigenesis and metastatic progression using mouse models of breast cancer.

Alkhatib, Suehyb 20 June 2012 (has links)
Increasingly the role of epigenetic machinery as a bridge between underlying DNA sequence and cellular phenotype is being discovered. The establishment of a myriad of unique cellular types sharing identical gene sequences in a multicellular organism gives a broad sense for the inherent role of epigenetic influence on cell differentiation. Importantly, the epigenetic mechanisms involved in establishing cell identity unsurprisingly contribute to diseased states, including cancer. Recent research continues to elucidate contributory roles of epigenetic mechanisms, such as DNA methylation, histone modification, and microRNA regulation, in human cancers. Additionally, chromatin remodelers, such as the Nucleosome Remodeling Factor (NURF), have been identified as important regulators for normal cell biology. While much has been done to identify and characterize the role of NURF chromatin remodeling complex as a key regulator of development in a number of model organisms, little has been published on the implications of NURF in diseases such as cancer. Our preliminary data shows dysregulation of E-cadherins, N-cadherins, and MHC-I genes in Bptf (an essential subunit of NURF) knocked down murine breast cancer cell lines. These proteins have well documented roles in the development and metastatic progression of cancers. To study the effect of Bptf knockdown on the development and progression of cancer we injected Bptf knocked down mouse breast cancer cell lines, 4T1, 66cl4, and 67NR, into syngenic BALB/c mice. Our findings reveal decreased tumor growth in 66cl4 and 67NR as measured by tumor weight at 3-4 weeks post injection. Tumor growth did not appear to be significantly affected in 4T1 challenged mice. However, mice inoculated with Bptf knockdown 4T1 cell lines have decreased metastasis to lungs as compared to control while metastasis of 66cl4 tumors to the lungs appear unaffected. To assess the role of the immune system in decreasing tumor growth in BALB/c mice, we injected 66cl4 tumors into NOD-SCID-Gamma (NSG) immune deficient mice. The tumors from these mice show no difference in tumor growth between Bptf knockdown and control tumors, implicating a role for the immune system regulating the decreased tumor weight in BALB/c mice. To delineate which immune cell effector may impede breast cancer carcinogenesis, we performed an in vitro natural killer (NK) cell cytotoxicity assay against 66cl4 tumors and found greater susceptibility to NK killing in Bptf knockdown tumors.
8

Études des leucémies de l’enfant induites par les oncogènes de fusion NUP98::KDM5A et CBFA2T3::GLIS2

Roussy, Mathieu 12 1900 (has links)
Acute myeloid leukemia (AML) is a genetically heterogeneous disease and represents about 20% of pediatric leukemias. Survival rates vary depending on subtypes but are particularly unfavorable for acute megakaryoblastic leukemia (AMKL), a rare subtype of AML that usually affects children under 3 years old (≤ 30% survival for certain subtypes of AMKL). In pediatrics, genetic rearrangement leading to the expression of a chimeric fusion gene are present in many cases and are considered initiator events in the development of leukemia. In AMKL cases, more than 70% of them exhibit such rearrangement. Several of these chimeric transcripts, such as NUP98::KDM5A and CBFA2T3::GLIS2, occur in a higher proportion of cases. The analysis of the transcriptome from pediatric leukemic cases allowed us to identify new chimeric fusion transcripts in pediatric leukemias. Specifically, we discovered BPTF as a new fusion partner of NUP98 in the case of acute megakaryoblastic leukemia (AMKL), and the ACIN1::NUTM1 fusion in B-cell lymphoid leukemias. These studies have refined the molecular classification of these leukemias and provided tools for diagnosis and disease monitoring. The hypothesis of my thesis is that the NUP98::KDM5A and CBFA2T3::GLIS2 fusions are oncogenic and their expression in normal human hematopoietic and progenitor cells leads to transformation into acute megakaryoblastic leukemia in immunodeficient recipient mice, allowing for the generation of renewable xenograft models. My work has contributed to the generation of AMKL models with NUP98::KDM5A (N5A) and CBFA2T3::GLIS2 (CG2) fusions. To do this, we optimized a pipeline for transducing these chimeric genes in CD34+ cells isolated from cord blood, followed by transplantation into immunodeficient mice. These xenograft models phenocopy the leukemia of patients from a morphological, immunophenotypic, and transcriptomic standpoint. These synthetic AMKL models can be serially transplanted into mice and have a high frequency of leukemic stem cells. I also contributed to the development of a unique patient-derived xenograft (PDX) model derived from primary cells of a patient with an NUP98::BPTF genotype AMKL leukemia. These synthetic and PDX models then served as substrates for my experiments and those of several members of our laboratory. My research has allowed us to identify and characterize new biomarkers specific to NUP98- rearranged and CBFA2T3::GLIS2 positive AMKL. Taking advantage of the biomass generated by these AMKL leukemia models, we conducted transcriptomic and proteomic studies of the membrane surface. These results were compared to normal cells isolated from cord blood to identify several surface proteins specific to each leukemia genotype and shed light on new potential biomarkers. Furthermore, we confirmed the sensitivity of our AMKL models to JAK-STAT pathway inhibitors and performed synergy assays between JAK-STAT and the PI3K-AKT-mTOR pathway inhibitors. These experiments demonstrated the synergistic induction of apoptosis in our models upon the combine exposure to JAK-STAT and PI3K-AKT-mTOR pathway inhibitors. These works allowed us to identify potential therapeutic vulnerabilities of AMKL. Finally, since research on AMKL is affected by the limited number of patient samples, the human models and molecular data presented in this thesis constitute an invaluable resource to accelerate translational research for these high-risk leukemias. / La leucémie myéloïde aiguë (LMA) est une maladie hétérogène sur le plan génétique et représente environ 20% des leucémies pédiatriques. Les taux de survie varient selon les sous- types mais sont particulièrement défavorables pour les leucémies aiguës mégacaryoblastiques (AMKL), un sous-type rare de LMA touchant généralement les enfants de moins de 3 ans (≤ 30% de survie pour certains sous-types d’AMKL). En pédiatrie, les réarrangements génétiques entraînant l’expression d’un gène de fusion chimérique sont présentes dans un grand nombre de cas et sont considérées comme des événements initiateurs à l’origine de la leucémie. Chez les leucémies de type AMKL, c’est plus de 70% des cas qui présentent un tel réarrangement. Quelques-uns de ces transcrits chimériques, tels que NUP98::KDM5A et CBFA2T3::GLIS2, surviennent dans une plus grande proportion des cas. Dans le cadre de mes recherches, l’analyse du transcriptome de leucémies pédiatriques nous ont permis de mettre en évidence de nouveaux transcrits chimériques. Notamment, nous avons découvert BPTF comme étant un nouveau partenaire de fusion de NUP98 dans le cas d’une AMKL, ainsi que la fusion ACIN1::NUTM1 chez des leucémies lymphoïdes à cellules B. Ces travaux ont permis de raffiner la classification moléculaire de ces leucémies et propose de nouvelles approches pour le diagnostic et le suivi de la maladie. L’hypothèse de ma thèse est que les fusions NUP98::KDM5A et CBFA2T3::GLIS2 sont oncogéniques et leur expression chez des cellules souches hématopoïétiques et progénitrices humaines normales entraîne une transformation en leucémie aiguë mégacaryoblastique dans les souris receveuses immunodéficientes, permettant de générer des modèles de xénogreffe. Mes travaux ont contribué à la génération de modèles d’AMKL arborant les fusions NUP98::KDM5A ainsi que CBFA2T3::GLIS2. Pour ce faire, nous avons optimisé un processus de transduction de ces gènes chimériques chez des cellules CD34+ isolées de sang de cordon, suivi de transplantation chez la souris immunodéficiente. Ces modèles de xénogreffe récapitulent la leucémie des patients aux points de vue morphologique, immunophenotypique et transcriptomique. Ces modèles synthétiques d’AMKL peuvent être transplantés de manière sériée en souris et présentent une fréquence élevée de cellules souches leucémiques. De plus, nous avons aussi développé un modèle pdx unique (patient derived xenograft) dérivé des cellules primaires d’un patient atteint d’une leucémie AMKL présentant la fusions NUP98::BPTF. Ces modèles synthétiques et pdx ont ensuite servi de substrats à mes expériences ainsi que celles de plusieurs membres du laboratoire. Mes recherches ont permis d’identifier et de caractériser de nouveaux biomarqueurs spécifiques aux AMKL présentant un transcrit de NUP98 réarrangé et CBFA2T3::GLIS2. Tirant avantage de la biomasse générée par ces modèles de leucémie AMKL, nous avons fait des études transcriptomiques et protéomiques de la surface membranaire de nos modèles. Ces résultats furent comparés aux cellules normales isolées de sang de cordon afin d’identifier plusieurs protéines de surface spécifiques aux leucémies initiées par NUP98 réarrangé et CBFA2T3::GLIS2 afin de mettre en lumière de nouveaux biomarqueurs potentiels. De plus, nous avons aussi confirmé la sensibilité de nos modèles AMKL aux inhibiteurs de la voie JAK-STAT ainsi que démontré l’induction synergique de l’apoptose de nos modèles en présence des inhbitieurs combinés des voies JAK-STAT et PI3K-AKT-mTOR. Finalement, puisque la recherche sur les AMKL est ralentie par la quantité limitante d’échantillons de patient, les modèles humains et les données moléculaires présentés dans cette thèse constituent une ressource inestimable afin d’accélérer la recherche translationnelle pour ces leucémies à haut risque.

Page generated in 0.0239 seconds