• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 6
  • 6
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigating the Role of the Nucleosome Remodeling Factor NURF as a Regulator of Gene Expression

Alhazmi, Aiman S 01 January 2015 (has links)
The nucleosome remodeling factor (NURF) is an evolutionary conserved ATP-dependent chromatin remodeling factor. It was first isolated from Drosophila as a complex with enzymatic activity that once recruited to nucleosome, it slides the nucleosome to provide accessibility for transcription factors. Since then, numerous works from animal models and cell lines show the role of NURF as a regulator of gene expression. NURF interacts with H3K4me3 and sequence specific transcription factors that recruit the complex to promoter regions. Whether this is the only mechanism by which NURF regulates gene expression is not known. However, other ATP-dependent chromatin remodeling complexes are known to regulate gene expression independent from transcription initiation. In order to explore the role of NURF in regulating gene expression, we utilized two genome wide approaches to map NURF binding and NURF dependent changes in chromatin structure using ChIP-Seq and FAIRE-Seq, respectively. From these analyses, we discovered that NURF broadly localizes in the genome with preferences to gene bodies and 3’ends of genes. Also, we found that NURF maintains open chromatin regions at upstream, intron and downstream of genes. These novel findings shed light on new roles for NURF complex within genes, in addition to its classical role at promoter regions. Furthermore, we discovered the function of a previously uncharacterized domain in the NURF specific subunit BPTF. We show that the N-terminal the plant homeodomain (PHD) of BPTF directly interacts with THOC4, a protein associated with RNA-pol 2. Also, we show using ChIP analyses that this interaction recruits BPTF to gene bodies. Next, we investigated functional consequences for NURF recruitment to gene bodies using Cyclin D1 (Ccnd1) gene as a model. These analyses revealed that NURF is required for normal mRNA processing and loss of NURF induces intron retention, which results in unstable transcripts. Finally, we show that the defect in mRNA processing is not specific to the Ccnd1 gene, as we observe similar defects in four other BPTF dependent genes. Together, our work uncovered new role of mammalian NURF complex in regulating gene expression through mRNA processing.
2

Influence of Hmgb1 on Estrogen Responsive Gene Expression and Nucleosome Structure

Joshi, Sachindra Raj 04 December 2009 (has links)
No description available.
3

Characterizing the role of Nucleosome Remodeling Factor (NURF) in tumorigenesis and metastatic progression using mouse models of breast cancer.

Alkhatib, Suehyb 20 June 2012 (has links)
Increasingly the role of epigenetic machinery as a bridge between underlying DNA sequence and cellular phenotype is being discovered. The establishment of a myriad of unique cellular types sharing identical gene sequences in a multicellular organism gives a broad sense for the inherent role of epigenetic influence on cell differentiation. Importantly, the epigenetic mechanisms involved in establishing cell identity unsurprisingly contribute to diseased states, including cancer. Recent research continues to elucidate contributory roles of epigenetic mechanisms, such as DNA methylation, histone modification, and microRNA regulation, in human cancers. Additionally, chromatin remodelers, such as the Nucleosome Remodeling Factor (NURF), have been identified as important regulators for normal cell biology. While much has been done to identify and characterize the role of NURF chromatin remodeling complex as a key regulator of development in a number of model organisms, little has been published on the implications of NURF in diseases such as cancer. Our preliminary data shows dysregulation of E-cadherins, N-cadherins, and MHC-I genes in Bptf (an essential subunit of NURF) knocked down murine breast cancer cell lines. These proteins have well documented roles in the development and metastatic progression of cancers. To study the effect of Bptf knockdown on the development and progression of cancer we injected Bptf knocked down mouse breast cancer cell lines, 4T1, 66cl4, and 67NR, into syngenic BALB/c mice. Our findings reveal decreased tumor growth in 66cl4 and 67NR as measured by tumor weight at 3-4 weeks post injection. Tumor growth did not appear to be significantly affected in 4T1 challenged mice. However, mice inoculated with Bptf knockdown 4T1 cell lines have decreased metastasis to lungs as compared to control while metastasis of 66cl4 tumors to the lungs appear unaffected. To assess the role of the immune system in decreasing tumor growth in BALB/c mice, we injected 66cl4 tumors into NOD-SCID-Gamma (NSG) immune deficient mice. The tumors from these mice show no difference in tumor growth between Bptf knockdown and control tumors, implicating a role for the immune system regulating the decreased tumor weight in BALB/c mice. To delineate which immune cell effector may impede breast cancer carcinogenesis, we performed an in vitro natural killer (NK) cell cytotoxicity assay against 66cl4 tumors and found greater susceptibility to NK killing in Bptf knockdown tumors.
4

High Resolution study of NF-kB - DNA Interactions

Lone, Imtiaz Nisar 14 February 2013 (has links) (PDF)
In this thesis we have attempted to study four basic aspects of DNA-protein interactions: Affinity, specificity, accessibility and kinetics. With NF-kB as our model transcription factor, we wanted to investigate how a particular dimer recognizes a specific binding sequence? How fast are these interactions? And finally, how does the NF-kB interact with it binding site in the chromatin context? Specificity of NF-kB-DNA interactions has recently come into focus after it was shown that these dimers can bind to the sequences which do not fall into the NF-kB general consensus motif. We studied seven such sequences for their specificity for four NF-kB dimers. Our results show that p50 homodimers are least discriminative and can bind specifically to all these sequences. While as, RelA homodimers were highly discriminative and did not bind to most of these nontraditional sequences. We used two different methods to measure binding affinities: traditional gel mobility shift assay (EMSA) and a novel technique called as UV laser footprinting. Our results show that UV laser footprinting is the better method to determine the binding constants.For studying the dynamics of NF-kB-DNA binding, we combined UV laser footprinting with stopped flow device. This combination, not only give us one base pair resolution but also milli-second time resolution. Using p50 homodimers as a model transcription factor, we showed that the binding of this factor follows a two-step mechanism. First step involves the fast recognition of the sequence and second step follows a slower kinetics most likely for the stabilization of the complex. Our experiments suggest that flanking sequences play a role in the recognition and stabilization process of the complex formation.Finally, we also studied the accessibility of nucleosomes to NF-kB. Our in vitro data sheds light on the in vivo requirements for the alterations in chromatin structure necessary for the productive binding of NF-kB. These include either a removal of H2A-H2B dimers from the nucleosome and/or chromatin remodeler induced relocation of the histone octamer.Our data sheds light on the in vivo requirements for the alterations in chromatin structure necessary for the productive binding of NF-kB. We hypothesize that some factors like PU.1 might be able to target the chromatin remodeling/dimer eviction machinery to particular nucleosomes and lead to productive binding of NF-kB.
5

Impact épigénomique de mutations associées à des syndromes neurodéveloppementaux dans des régulateurs de la chromatine

Ehresmann, Sophie 04 1900 (has links)
No description available.
6

High Resolution study of NF-kB - DNA Interactions / Etude en haute résolution des interactions NF-kB – ADN

Lone, Imtiaz Nisar 14 February 2013 (has links)
Dans cette thèse nous avons étudié quatre aspects fondamentaux de l’interaction ADN-protéine, notamment : l’affinité, la spécificité, l’accessibilité et la cinétique. En particulier, nous avons adressé les questions suivantes : comment un dimer du facteur de transcription NF-kB reconnait spécifiquement sa séquence d’ADN-cible, quelle est la rapidité de ces interactions, comment NF-kB interagit avec son site de fixation dans le contexte de la chromatine? Récemment, la spécificité de l’interaction NF-kB – ADN a reçu une attention particulière après l’observation que NF-kB peut se lier à des séquences qui n’entrent pas dans la classification de ses motifs « consensus ». Nous avons étudié la spécificité d’interaction de sept de ces motifs avec quatre dimers de NF-kB. Nos résultats montrent que le homo-dimer p50 sont les moins discriminatives et peuvent s’associer spécifiquement avec ces sept séquences. Par contre, les homo-dimers RelA se sont révélés hautement discriminatives ne pouvant pas s’associer spécifiquement avec ces séquences. Pour mesurer l’affinité de l’interaction nous avons utilisés deux méthodes distinctes : le traditionnel gel de retard (EMSA) et une nouvelle technique – « l’empreinte » au laser UV. Nos résultats montrent que le deuxième approche est plus approprié pour la mesure des constantes spécifiques de dissociation.Pour étudier la dynamique de l’interaction NF-kB – ADN, nous avons couplé l’empreinte au laser UV avec un appareil de mélange-rapide à façon. Cette combinaison nous a permis d’atteindre une résolution spatiale d’un nucléotide et temporaire de quelques millisecondes. Nous avons montré que l’homo-dimer p50 s’associe avec sa séquence-cible (MHC) H2 en suivant une cinétique à 2 pas. Le premier, de durée ~100 ms, reflète une reconnaissance initiale rapide, tandis que le deuxième, de durée ~1s, reflète une stabilisation lente du complexe. Nos expériences suggèrent aussi que les séquences voisines du site de reconnaissance jouent aussi un rôle dans la stabilisation du complexe.Finalement, nous avons étudié aussi l’accessibilité du nucléosome pour le NF-kB. Nos données in vitro montre que l’invasion spécifique de l’ADN à l’intérieure du nucléosome par NF-kB nécessite une perturbation majeure de la structure du nucléosome telle que l’éviction d’au moins un dimer d’histones H2A-H2B. / In this thesis we have attempted to study four basic aspects of DNA-protein interactions: Affinity, specificity, accessibility and kinetics. With NF-kB as our model transcription factor, we wanted to investigate how a particular dimer recognizes a specific binding sequence? How fast are these interactions? And finally, how does the NF-kB interact with it binding site in the chromatin context? Specificity of NF-kB-DNA interactions has recently come into focus after it was shown that these dimers can bind to the sequences which do not fall into the NF-kB general consensus motif. We studied seven such sequences for their specificity for four NF-kB dimers. Our results show that p50 homodimers are least discriminative and can bind specifically to all these sequences. While as, RelA homodimers were highly discriminative and did not bind to most of these nontraditional sequences. We used two different methods to measure binding affinities: traditional gel mobility shift assay (EMSA) and a novel technique called as UV laser footprinting. Our results show that UV laser footprinting is the better method to determine the binding constants.For studying the dynamics of NF-kB-DNA binding, we combined UV laser footprinting with stopped flow device. This combination, not only give us one base pair resolution but also milli-second time resolution. Using p50 homodimers as a model transcription factor, we showed that the binding of this factor follows a two-step mechanism. First step involves the fast recognition of the sequence and second step follows a slower kinetics most likely for the stabilization of the complex. Our experiments suggest that flanking sequences play a role in the recognition and stabilization process of the complex formation.Finally, we also studied the accessibility of nucleosomes to NF-kB. Our in vitro data sheds light on the in vivo requirements for the alterations in chromatin structure necessary for the productive binding of NF-kB. These include either a removal of H2A-H2B dimers from the nucleosome and/or chromatin remodeler induced relocation of the histone octamer.Our data sheds light on the in vivo requirements for the alterations in chromatin structure necessary for the productive binding of NF-kB. We hypothesize that some factors like PU.1 might be able to target the chromatin remodeling/dimer eviction machinery to particular nucleosomes and lead to productive binding of NF-kB.

Page generated in 0.0901 seconds