• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3159
  • 2037
  • 2036
  • 957
  • 305
  • 210
  • 148
  • 83
  • 70
  • 70
  • 66
  • 53
  • 51
  • 42
  • 41
  • Tagged with
  • 10963
  • 1902
  • 1771
  • 1160
  • 1101
  • 999
  • 916
  • 850
  • 840
  • 811
  • 719
  • 700
  • 676
  • 612
  • 611
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
861

Fingerskarvade armeringsnät : Normer för skarvning / Finger-jointed steel mesh : Standards for jointing

Kilström, Lars January 2009 (has links)
No description available.
862

Vindpark Vänern : Fundamentteknik och Logistik / Vindpark Vänern : Foundation Technology and Logistics

Prause, Sebastian January 2009 (has links)
No description available.
863

Bil- och järnvägstrafikens inverkan på inomhusmiljön med avseende på ljud och luft : - I planerade bostäder på Haga / Car- and railway traffics influence on indoor environment directed towards noise and air : In planned buildings in Haga

Jansson, Lillemor, Modin, Victoria January 2006 (has links)
<p>NCC has given us a commission to investigate a planned housing area in Haga, Karlstad, situated close to the traffic route Hagaleden and the railway. The housing area consists of one hundred apartments in five different houses. The houses are linked to each other by balconies with glass panels. A long carport is situated between Hagaleden and the housing area to absorb part of the noise from the road. The design of the housing area is creating a silent backyard. The idea of building houses in this place is to create an attractive living in central town and close to the river.</p><p>The air and sound level inside of the planned houses were studied. The major problem is that the noise from the railway traffic and the car traffic are of different kind. The railway traffic creates high maximum sound levels and the car traffic creates high equivalent sound levels. The different kinds of sound levels consist of high and low frequency which means that different measures have to be taken to reduce both types. The emission from the car traffic is the major problem for the air quality, but it is uncertain how much of the emissions that passes to the inside of the houses.</p><p>The result shows that the noise is the main problem. Despite the suggested noise reduction measures, the noise exceeds the limits of the building regulations on the facade of the houses. If the houses are to be built, they will not fulfill the regulations on this point. The noise is the major problem but there are many other factors that influence the air and the sound in the buildings. This essay describes different factors and every part of it ends with a checklist that can be used to create a good indoor environment. It is important for the quality of the air in the apartments that the ventilation system is correctly dimensioned for the building and is well dimensioned. It is recommended that the ventilation system should be complemented with an air treatment unit.</p><p>The purpose of this checklist is to find an easy way to ensure that the demands and regulations of the norms are fulfilled. The items are all listed in an appendix in the work, but they need to be developed to be used easily.</p><p>In the conclusion a suggestion on measures that could make the environment in the apartments better is presented. For example, the design of the balconies has been changed to prevent the noise from getting into the backyard. Suggestions on measures on the outside of the buildings are also presented; an example of this is silent asphalt, an extended carport and noise barriers.</p> / <p>Vi har fått i uppdrag av NCC att studera ett planerat bostadsområde beläget på Haga, Karlstad nära Hagaleden och järnvägen. Bostadsområdet är tänkt att bestå av fem stycken sammankopplade huskroppar innehållande cirka hundra lägenheter. Husen är ihoplänkade med hjälp av inglasade balkonger. Mellan Hagaleden och bostadsområdet är en lång carport placerad för att ta upp en del av bullret. Utformningen av bostadsområdet skapar tysta innergårdar som vetter mot Klarälven. Tanken med att bygga bostäder på denna plats är att skapa ett attraktivt boende som är beläget centralt och vattennära.</p><p>Med hjälp av litteraturstudie studeras hur innemiljön i de planerade bostäderna påverkas av Hagaleden och järnvägen med avseende på luft och ljud. Det största problemet med ljudet är att järnvägstrafiken och biltrafiken skapar olika typer av buller. Järnvägstrafiken skapar höga maximala ljudnivåer medan biltrafiken skapar höga ekvivalenta ljudnivåer. Det innebär att både höga och låga ljudfrekvenser skapas vilket medför att olika bullerdämpande åtgärder krävs för att uppnå en behaglig boendemiljö. När det gäller luften är det biltrafikens avgaser som skapar de största problemen, men det är svårt att veta vilka förorenade partiklar som slutligen tar sig in i lägenheterna.</p><p>Resultatet visar att det är bullret som är det största problemet för trots de åtgärder som tagits fram uppfylls ändå inte bullerkravet vid fasaden. Detta innebär att avsteg från normerna måste göras för att en byggstart ska bli aktuell. Bullret är det största problemet men det finns många andra faktorer som påverkar luften och ljudet i bostäderna. De olika faktorerna är beskrivna i arbetet och varje del avslutas med ”Kontrollera att” -punkter för att ingen viktig ingående del ska glömmas bort. När det gäller luften i lägenheterna är det viktigt att ventilationssystemet är väl fungerande och rätt dimensionerat för byggnaden. Det är lämpligt att ventilationssystemet i detta fall kompletteras med ett luftbehandlingsaggregat.</p><p>Tanken med att skapa dessa punkter är att det på ett enkelt sätt ska gå att kontrollera att de olika krav och normer som finns för respektive del är uppfyllda. Det finns en sammanställning, bifogad som bilaga i arbetet, över alla punkter som tagits fram men dessa behöver utvecklas för att smidigt kunna användas.</p><p>I slutsatser har förslag på åtgärder som skulle kunna förbättra inomhusmiljön arbetats fram. Bland annat föreslås ändrad utformning på de inglasade balkongerna som länkar samman husen för att minska den andel buller som kan ta sig in till innergårdarna. Även förslag på yttre åtgärder som sänker ljudnivåerna har presenterats, exempel på detta är tyst asfalt, ändrad utformning på carporten samt bullerplank.</p>
864

Mittelalterlicher Backsteinbau : zur Frage nach der Herkunft der Backsteintechnik /

Perlich, Barbara, January 2007 (has links)
Thesis (doctoral)--Technische Universität Berlin, 2005. / Includes bibliographical references (p. 266-270) and index.
865

The safety performance of apartment buildings empirical evidence from Hong Kong /

Yau, Yung. January 2006 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2006. / Title proper from title frame. Also available in printed format.
866

A parametric building energy cost optimization tool based on a genetic algorithm

Tan, Xiaowei 17 September 2007 (has links)
This record of study summarizes the work accomplished during the internship at the Energy Systems Laboratory of the Texas Engineering Experiment Station. The internship project was to develop a tool to optimize the building parameters so that the overall building energy cost is minimized. A metaheuristic: genetic algorithm was identified as the solution algorithm and was implemented in the problem under study. Through two case studies, the impacts of the three genetic algorithm parameters, namely population size, crossover and mutation rates, on the algorithm's overall performance are also studied through statistical tests. Through these statistical tests, the optimum combination of above the mentioned parameters is also identified and applied. Finally, a performance analysis based on the case studies show that the tool achieved satisfactory results.
867

Slipforming of Vertical Concrete Structures. Friction between Concrete and Slipform Panel

Fosså, Kjell Tore January 2001 (has links)
Slipforming is a construction method that has been used in several decades for production of concrete structures. It is a wide range of different structures that are slipformed, but typical are vertical structures such as towers, bridge columns and offshore platforms. Slipforming are not only used for straight vertical concrete structures, but also on structures where the geometry of the structure and the wall thickness is changed. Slipforming is normally a continuous working operation (24 hours a day), which require a well-planned supply of materials. Problems that occur during this process needs to be solved instantly. Slipforming is a rather complicated operation compared to other construction techniques. The requirements to the materials, personnel and the execution of the work are therefore accordingly higher. Slipforming of concrete structures has in most cases been carried out successfully with no or only minor supplementary work. However, in some cases, surface damages have occurred during slipforming. Typical surface damages are lifting cracks and vertical lined damages caused by lumps formed on the slipform panel. These problems have during recent years caused discussion and partly also scepticism to slipforming as a reliable construction technique. The Norwegian Public Roads Administration has recommended in Publication 77 that some concrete structures should not be slipformed depending on the environmental impact at the location, geometric degree of difficulties of the concrete structure and the type of concrete. Also in other countries there are scepticism to slipforming as a construction technique. The prime objective of the research program is to improve the understanding of the slipform technique as a construction method in order to ensure high quality concrete structures. The objective is to identify the parameters affecting the net lifting stress (friction) that occur during lifting of the slipform panel. Focus is given to the importance of the concrete properties that will influence the forces that occur between the slipform panel and the concrete. Also any connection between the friction level and the surface damages is investigated. Based on the result it should be possible to define requirements for materials, mix composition and method of execution to ensure that the specified quality in the structure is obtained. The lifting stress can be divided in static lifting stress and sliding lifting stress, where the static lifting stress represents the friction that has to be overcome in order to start sliding and the sliding lifting stress is the minimum friction that occurs during sliding. The difference between the static and sliding lifting stress is caused by the decreasing effective pressure during lifting at the sliding zone and the adhesion that occurs because of no movement of the slipform panel between two lifts. Both static and sliding lifting stress are closely related, but the static lifting stress can be extremely large compared to the sliding lifting stress. The friction law can be used to describe the correlation between the net lifting stress and the effective pressure. This correlation is almost linear and applicable for both the net static and sliding lifting stress. The effective pressure, which represents the pressure between the solid particles and the slipform panel, is the difference between the normal pressure (concrete pressure against the slipform panel) and the pore water pressure. It is primarily the pressure in the pore water that is responsible for most of the variation in the effective pressure during the plastic phase and the transition period, which means that it is mainly the variation in the pore water pressure that controls the level of the lifting stress. The pore water pressure is decreasing slightly in early phase because of the settlement in the concrete. During the elastic phase, the pore water pressure start to decrease faster as an effect of the chemical shrinkage that occurs because of the cement reaction. The pore water pressure development can be characterised by the decrease rate of the pore water pressure and the minimum pore water pressure. The minimum pore water pressure is defined as the pore water pressure at the time of maximum lifting stress. The minimum pore water pressure occurs just before the pressure is increasing at the sliding zone close to the slipform panel. It is primarily the level of the minimum pore water pressure that will decide the maximum level of the static and sliding lifting stress. The pore water pressure decrease rate and the minimum pore water pressure depends on the particle concentration and particle size distribution for the finer particles and also the air content in the concrete. Higher particle concentration and finer particle size distribution will both result in a faster pore water pressure decrease rate and a lower minimum pore water pressure. A higher air content will reduce the effect from the chemical shrinkage because the existing air volume will act as a pressure release volume, resulting in a lower pore water pressure decrease rate and a higher minimum pore water pressure. Also the compaction method will have an impact on the decrease rate of the pore water pressure and the minimum pore water pressure, because the air content will be reduced with prolonged vibration time. Prolonged vibration will in general result in a higher lifting stress, depending on the response on the concrete during vibration. When lightweight aggregate is used in the concrete, the entrapped air in the lightweight aggregate will increase the pore water pressure and result in a lower lifting stress. Porous lightweight aggregate will have larger impact on the pore water pressure than denser lightweight aggregate. Pressure gradients that occur between two concrete layers will affect the decrease rate of the pore water pressure. Water will “flow” from layers with younger concrete without any negative pressure to concrete layers with lower pore water pressure. This will reduce the decrease rate in the concrete layer that receives the water. In later stage the same concrete that supplied the concrete layer below with water will receive water from the concrete layer above. The pressure gradient at the joint (between two concrete layers) will be more even as a result of the water communications between the concrete layers. Evaporation of water from a fresh concrete surface will result in a faster decrease rate and a lower minimum pore water pressure because of the drying process will form menisci near the surface. The water communication is in general good in the concrete in this phase. The time at which the minimum pore water pressure occurs will also have an impact on the minimum pressure level. A shorter period of time from the minimum pore water pressure occur to the time of initial set will result in a relatively higher minimum pore water pressure and a lower lifting stress. The minimum pore water pressure has occurred earlier when water has evaporated from an exposed concrete surface. Also when very rough slipform panel is used, the incipient vacuum between the slipform panel and the concrete is punctured early (collapse of the capillary system at the sliding zone) because of the rough panel surface and will result in a relative low lifting stress. Both the lifting frequency and the lifting height has a considerable effect on the static lifting stress. Lower lifting height or decreased lifting frequency will both result in a lower pore water pressure and a higher static lifting stress. This is probably because the interface zone is disturbed each time the slipform panel is lifted. Less disturbance of the interface will result in a lower minimum pore water pressure. The lifting stress is decreasing during lifting as an effect of the decreasing effective pressure at the sliding zone and the reduced adhesion. The effective pressure at the sliding zone is probably at minimum and the adhesion is completely broken when the lifting stress is stabilized on a minimum level. The sliding lifting stress is also affected of the lifting frequency and the lifting height if not the minimum level is reached during the lift. Surface damages caused by high lifting stress are not demonstrated in the vertical slipform rig. However, similar concrete mix design that has been used in a field project, where surface damages occurred, has been tested in the vertical slipform rig. The concrete mix in this field project was replaced with a new concrete mix, where no or only minor surface damages occurred after the replacement. Both concrete mixes is tested in the vertical slipform rig and the result show a considerable higher static and sliding lifting stress for the concrete mix that was used when surface damages occurred. This indicates that there are a connection between high lifting stress and risk for surface damages. This means also that concrete mixes that obtains high lifting stress in the vertical slipform rig is more exposed to surface damages than concrete mixes that has obtained lower lifting stress.
868

Improvement Fatigue Performance of Threaded Drillstring Connections by Cold Rolling

Kristoffersen, Steinar January 2002 (has links)
The research work presented in this thesis is concerned with analytical, numerical and experimental studies of the effect of cold rolling on the fatigue behaviour of threaded drillstring connections. A comprehensive literature study is made of the various effects on the fatigue behaviour of residual stresses introduced by mechanical deformation of notched components. Some of the effects studied are cyclic hardening behaviour after prestraining, cyclic creep, fatigue initiation in prestrained materials, short cracks and crack growth models including crack closure. Residual stresses were introduced in the surface of a smooth pipe by a rolling device to simulate a cold rolling process and verify the calculated residual stresses by measurements. Strain hardening and contact algorithm of the two bodies were incorporated in the FE analyses. Two significant errors were found in the commercial software package for residual stress evaluation, Restan v. 3.3.2a also called SINT, when using the Schajer method. The Schajer algorithm is the only hole-drilling algorithm without theoretical shortcomings, and is recommended when measuring large residual stress gradients in the depth directions. Using the Schajer method solved by in-house Matlab-routines good agreement between measured residual stress gradients and residual stress gradients from FE analyses was found. Full scale fatigue tests were performed on pipes cut used drillstrings with notches of similar geometry as threads used in drillstring connections. The simulated threads consisted of four full depth helix notches with runouts at the surface. The pipe threads were cold rolled and fatigue tested in a full-scale four-point rotating bending fatigue testing rig. The test results showed that cold rolling had an effect on the crack initiating period. A major part of the fatigue life was with cracks observed at the notch root, but due to the increased fatigue crack propagation resistance the final fracture initiated at pits inside the pipe. Therefor, an optimisation of the roll geometry and rolling parameters was not possible. However, a significant fatigue life improvement was achieved. Based on experiments, a roller with similar profile as the thread root is recommended. A rolling force of maximum 20 KN is recommended to minimise the possibility of damaging the thread profile. Shallow cracks were observed typically when 5% of the fatigue life had expired. Re-rolling after 50% of expected improved fatigue life, when also short cracks were observed in the notch roots further increased the fatigue improvements. Pretensioned small steel specimens with a notch were used to simulate cold rolled threats. The specimens were fatigue tested in tension with minimum load close to zero. Pretensioning increased the fatigue life form approximately 50 000 cycles to an infinite number of cycles. In these test non-propagating cracks of typically 0.4 mm length were found. The benefit from pretensioning gradually disappeared with increasing mean stress. FE analyses indicated that an almost instant relaxation of residual stresses to a level with no monotonic strain hardening from preloading would take place when cycled to moderate mean stress. Cycled at low mean stress, an instant relaxation of the surface layer was found in analysis. All observations from notched pretensioned fatigue specimens were in good agreement with the available literature. However, preloading was found to be strain rate dependent in tests where a pretension load held for 2 minutes gave a longer fatigue life than a sinusoidal loading-unloading cycle performed over a one minute interval. Strain hardening was found not contributing to the fatigue life improvement, whereas the polishing effect from improved surface quality after cold rolling increased the fatigue initiation period. However, residual stress and subsequent early crack closure was the dominating effect at moderate cyclic mean loads. The material data required to perform FE fatigue simulation studies of a full threaded cold rolled coupling incorporating make-up torque, include cyclic stress strain behaviour at various amplitudes and mean stress caused by various degrees of prestraining. Such data are not readily available today, and are only possible to obtain in carefully planned and executed experiments. Also, 3D FE model required for cold rolling analysis is extremely CPU time consuming. Consequently, cold rolling simulations could not be successfully implemented in this work. One of the main conclusions from this work is that drillstring connections will respond differently to thread rolling at the pin or box. A significant improvement in the fatigue life of box threads from residual stresses is expected mainly from increased resistance to crack propagation. However, the compressive residual stress is sensitive to overloading in compression, and the improvement from residual stress depends strongly on the mean stress (or R-ratio). At values of R of approximately 0.6 or higher the beneficial of rolling therefore tends to disappear. At the critical locations of the pin, which are the last engaged thread or the stress relief groove, the effect of residual stresses introduced by rolling is therefore likely to be severely reduced by the high mean stress imposed during make-up of the connection. However, a beneficial effect of rolling is expected to remain due to improved surface condition and due to a possible effect of strain hardening. The net results of these factors on the fatigue performance of actual drillstrings can only be determined in full scale rotating bending tests.
869

Evaluation of energy performance in single family houses

Lindgren-Mönestam, Björn January 2013 (has links)
In order to improve people’s living situation and decrease the use of fossil energy in the world, researchers’ attention has been focused on the energy side of the building sector. Especially single family houses in the Nordic countries Norway, Sweden and Finland have been given attention in the Increasing Energy Efficiency in Buildings (IEEB) project, with the purpose of increasing energy efficiency in buildings. In the project presented in this report, this has been studied by simulating a low energy single family house at different locations in Scandinavia, and applying the various national building codes to the house to see how it would match the energy requirements. The simulated locations included the different climates in Helsinki, Oulu (Finland), Oslo, Narvik (Norway), Piteå, Umeå, Karlstad, Borlänge, Stockholm and Kalmar (Sweden). The house fulfilled almost all the national energy requirements with more or less margin because of its low energy use. A comparison with actual measurements of the house did not match as good, because of uncertainty in measurement methods and climate aspects. The national building codes and climate in the Nordic countries turned out to be similar enough for a coordination of the building codes to be possible in the future.
870

Förslag till utökning av antalet gästboxar på Färjestadstravet / Suggestion to increase the number of boxes for guest horses on Färjestadstravet

Eriksson, Stefan January 2008 (has links)
Färjestadstravet behöver utöka antalet boxplatser för gästande hästar med 30 stycken. Bör detta göras genom att bygga nya gästboxar? Eller bör nya boxar för permanentuppstallning byggas, och då bygga om några befintliga stall till gäststallar? Hur kan stallet utformas? Var på stallbacken bör stallet byggas?   För att besvara dessa frågor har jag tittat på vilka praktiska lösningar de olika typerna av stallar behöver, samt gjort vissa ekonomiska överslagsberäkningar. Thomas Söderberg som är anläggningschef på Färjestadstravet frågade tränarna om de var intresserade av att hyra ett nybyggt stall. De flesta var positiva till detta men ingen var villig att betala högre boxhyra än de gör idag. Detta gör att det är mer fördelaktigt att bygga nya boxar för gästande hästar då dessa ger en något högre avkastning per år, samt att byggkostnaden är lägre för ett gäststall då det inte kräver lika stora utrymmen.   Arbetet har lett fram till ett förslag på byggnad innehållande 30 gästboxar med förspänningsmöjlighet, fördelade på tre mittgångar, samt fyra dusch boxar i byggnadens södra gavel. Det nya stallet placeras bredvid infarten till stallområdet. / Färjestadstravet needs to increase the number of boxes for guest horses with 30. Should this be done by building new boxes for guest horses? Or should a new longtime stable be built, and some of the existing stables be rebuilt for guest horses? Which lay out is suitable for the stable? Where on the stable yard should it be located?   To solve this, I’ve looked on which practical solutions the different type of stables needs, and made some economical estimate estimations. Thomas Söderberg who is manager over constructions on Färjestadstravet asked the trotter trainers if they were interested in renting a new stable. Most of them were interested but no one was willing to pay more in rent than they do today. That makes it more favorable to build new stables for guest horses, since they yield a little better return, and are cheaper to build, since a guest stable needs less space.   This work has led to a recommendation of a building containing 30 boxes for guest horses with chance to shaft the horses. The 30 boxes will be divided in three passages and four shower boxes will be built in the south gable. The new building will be placed next to the entrance to the stable yard

Page generated in 0.0423 seconds