11 |
Evolução petrogenética e geotectônica do Ofiolito Arroio Grande, SE do Cinturão Dom Feliciano (Brasil)Ramos, Rodrigo Chaves January 2018 (has links)
O Ofiolito Arroio Grande, localizado no sudeste do Cinturão Dom Feliciano, próximo à fronteira Brasil/Uruguai, entre Arroio Grande e Jaguarão (RS), é uma associação metaultramáfica-máfica-sedimentar que representa fragmentos de uma mélange ofiolítica, relacionada à amalgamação do paleocontinente Gondwana Ocidental durante os estágios finais do ciclo orogênico Brasiliano-Panafricano. As rochas do Ofiolito Arroio Grande se encontram circundadas por rochas metassiliciclásticas do Complexo Arroio Grande, do qual o ofiolito faz parte, e também como xenólitos em meio a granitoides da Suíte Pinheiro Machado e do Granito Três Figueiras (os quais integram o Batólito Pelotas-Aiguá). A unidade metaultramáfica do ofiolito compreende serpentinitos e xistos magnesianos cromíferos. Sua unidade metamáfica é constituída por anfibolitos, metagabros e metadioritos. A unidade metassedimentar compreende mármores calcíticos, intrudidos por enxame de diques máficos. O Ofiolito Arroio Grande está posicionado ao longo da Zona de Cisalhamento Ayrosa Galvão-Arroio Grande (transcorrente, dúctil, alto ângulo), responsável pela milonitização da maioria das rochas dessa associação. As investigações desenvolvidas no ofiolito tiveram o objetivo de identificar as fontes magmáticas dos protólitos e os processos que ocorreram desde sua geração no manto/crosta oceânica até sua incorporação no continente, além de obter idades (absolutas e relativas) referentes a esses processos. Para os metaultramafitos, a geoquímica de rocha total (e.g. Ni >1000 ppm; Cr > 1500 ppm), em conjunto com a química mineral de cromitas (e.g. Cr# 0,6-0,8; TiO2 0,01-0,20 %peso; Fe2+/Fe3+ ± 0,9), sugeriu protólitos harzburgíticos mantélicos, cuja fonte é um manto depletado sob uma região de espalhamento oceânico de retroarco, que experimentou altas taxas de fusão parcial. Esses harzburgitos foram posteriormente serpentinizados em ambiente oceânico, sugerido pelas razões 87Sr/86Sr630 de um serpentinito (ca. 0,707). Para os metamafitos, a geoquímica de rocha total e isotópica sugeriram protólitos toleíticos oceânicos, gerados em um contexto de suprassubducção em ambiente de retroarco (e.g. Cr 260-600 ppm; Nb/Y 0,1-0,5; Ti/Y ± 500; La/Nb 2-5; Th/Yb 0,1-5 e Nb/Yb 1-5; padrões de REE; razões 87Sr/86Sr630 variando de MORB – 0,703 – a IAT – 0,705-0,707), cuja fonte magmática foi enriquecida por material crustal e fluidos relacionados à subducção. A idade mínima para a obducção e metamorfismo das unidades ofiolíticas foi estimada em 640 Ma, a partir da datação (U-Pb SHRIMP) de um quartzo sienito. Esse último é o resultado de fusões relacionadas a intrusões diorítico-tonalíticas, atribuídas ao magmatismo de arco continental da Suíte Pinheiro Machado. Essas intrusões afetaram os mármores e os anfibolitos (fragmentos dos enxames de diques máficos), de maneira que, em pelo menos 640 Ma, rochas da mélange ofiolítica (já metamorfizadas) estavam alojadas em ambiente continental. Um evento metassomático posterior (relacionado à intrusão do Granito Três Figueiras, sincinemática à zona de cisalhamento acima referida) afetou os serpentinitos, gerando zonas de talcificação, tremolitização e cloritização, essa última representando um blackwall que também envolveu unidades metassiliciclásticas do Complexo Arroio Grande. O Ofiolito Arroio Grande foi inserido no contexto geotectônico da bacia de retroarco Marmora, cujos fragmentos são encontrados na Namíbia (Terreno Marmora) e no Uruguai (Complexo Paso del Dragón e Bacia Rocha – Terreno Punta del Este). / The Arroio Grande Ophiolite, located in the southeastern region of the Dom Feliciano Belt, near the Brazil/Uruguay border, is a metaultramafic-mafic-sedimentary association which represents slices of an ophiolitic mélange, related to the Western Gondwana amalgamation during the late stages of the Brasiliano-Panafrican orogenic cycle. The Arroio Grande Ophiolite rocks are enveloped by metasiliciclastic units of the Arroio Grande Complex and occur as xenolyths within granitoids of the Pinheiro Machado Suite and within the Três Figueiras Granite (units of the Pelotas-Aiguá Batholith). The metaultramafites of the ophiolite comprise serpentinites and Cr-rich magnesian schists. The metamafites comprise amphibolites, metagabbros and metadiorites. The metasedimentary unit comprises calcitic marbles, which are intruded by mafic dykes. The ophiolite is found along the Ayrosa Galvão- Arroio Grande Shear Zone (transcurrent, ductile, high angle), responsible for the mylonitization of this association. The investigations developed in this ophiolite had the objective of identify the magmatic sources of the protoliths and the processes that occurred since their generation within the mantle/oceanic crust until their incorporation into the continental crust, including their absolute and relative ages. The bulk-rock chemistry of the metaultramafites (e.g. Ni >1000 ppm; Cr > 1500 ppm), together with the mineral chemistry of the chromites (e.g. Cr# 0.6-0.8; TiO2 0.01-0.20 wt%; Fe2+/Fe3+ ± 0.9), suggested harzburgitic protoliths, attributed to a depleted mantle source under a back-arc spreading region, which experienced high degrees of partial melting. These harzburgites were serpentinized in an oceanic setting, as suggested by the 87Sr/86Sr630 ratio of a serpentinite (ca. 0.707). The bulkrock chemistry of the metamafites suggested oceanic tholeiitic protoliths, generated in a supra-subduction setting in a back-arc environment (e.g. Cr 260-600 ppm; Nb/Y 0.1-0.5; Ti/Y ± 500; La/Nb 2-5; Th/Yb 0.1-5 and Nb/Yb 1-5; REE patterns; 87Sr/86Sr630 ratios ranging from MORB – 0.703 – to IAT – 0.705-0.707), whose magmatic source was contaminated by crustal material and subduction-related fluids. The minimum age for the obduction and metamorphism of the Arroio Grande Ophiolite rocks was estimated around 640 Ma from the U-Pb age of a quartz-syenite. The latter is the result of melting, related to dioritic-tonalitc intrusions, attributed to the continental magmatism of the Pinheiro Machado Suite. These intrusions affected both the marbles and the amphibolites (fragments of the mafic dykes), in order that, at least around 640 Ma, rocks of the ophiolitic mélange (already metamorphosed) were emplaced on the continent. A late metasomatic event (related to the emplacement of the Três Figueiras Granite, syn-kinematic to the abovementioned shear zone) affected the serpentinites, generating zones of talcification, tremolitization and chloritization, the latter representing a blackwall which also involved metasiliciclastic rocks of the Arroio Grande Complex. The Arroio Grande Ophiolite was inserted in the geotectonic context of the Marmora back-arc basin, whose fragments are found in Namibia (Marmora Terrane) and Uruguay (Paso del Dragón Complex and Rocha Basin – Punta del Este Terrane).
|
12 |
Evolução petrogenética e geotectônica do Ofiolito Arroio Grande, SE do Cinturão Dom Feliciano (Brasil)Ramos, Rodrigo Chaves January 2018 (has links)
O Ofiolito Arroio Grande, localizado no sudeste do Cinturão Dom Feliciano, próximo à fronteira Brasil/Uruguai, entre Arroio Grande e Jaguarão (RS), é uma associação metaultramáfica-máfica-sedimentar que representa fragmentos de uma mélange ofiolítica, relacionada à amalgamação do paleocontinente Gondwana Ocidental durante os estágios finais do ciclo orogênico Brasiliano-Panafricano. As rochas do Ofiolito Arroio Grande se encontram circundadas por rochas metassiliciclásticas do Complexo Arroio Grande, do qual o ofiolito faz parte, e também como xenólitos em meio a granitoides da Suíte Pinheiro Machado e do Granito Três Figueiras (os quais integram o Batólito Pelotas-Aiguá). A unidade metaultramáfica do ofiolito compreende serpentinitos e xistos magnesianos cromíferos. Sua unidade metamáfica é constituída por anfibolitos, metagabros e metadioritos. A unidade metassedimentar compreende mármores calcíticos, intrudidos por enxame de diques máficos. O Ofiolito Arroio Grande está posicionado ao longo da Zona de Cisalhamento Ayrosa Galvão-Arroio Grande (transcorrente, dúctil, alto ângulo), responsável pela milonitização da maioria das rochas dessa associação. As investigações desenvolvidas no ofiolito tiveram o objetivo de identificar as fontes magmáticas dos protólitos e os processos que ocorreram desde sua geração no manto/crosta oceânica até sua incorporação no continente, além de obter idades (absolutas e relativas) referentes a esses processos. Para os metaultramafitos, a geoquímica de rocha total (e.g. Ni >1000 ppm; Cr > 1500 ppm), em conjunto com a química mineral de cromitas (e.g. Cr# 0,6-0,8; TiO2 0,01-0,20 %peso; Fe2+/Fe3+ ± 0,9), sugeriu protólitos harzburgíticos mantélicos, cuja fonte é um manto depletado sob uma região de espalhamento oceânico de retroarco, que experimentou altas taxas de fusão parcial. Esses harzburgitos foram posteriormente serpentinizados em ambiente oceânico, sugerido pelas razões 87Sr/86Sr630 de um serpentinito (ca. 0,707). Para os metamafitos, a geoquímica de rocha total e isotópica sugeriram protólitos toleíticos oceânicos, gerados em um contexto de suprassubducção em ambiente de retroarco (e.g. Cr 260-600 ppm; Nb/Y 0,1-0,5; Ti/Y ± 500; La/Nb 2-5; Th/Yb 0,1-5 e Nb/Yb 1-5; padrões de REE; razões 87Sr/86Sr630 variando de MORB – 0,703 – a IAT – 0,705-0,707), cuja fonte magmática foi enriquecida por material crustal e fluidos relacionados à subducção. A idade mínima para a obducção e metamorfismo das unidades ofiolíticas foi estimada em 640 Ma, a partir da datação (U-Pb SHRIMP) de um quartzo sienito. Esse último é o resultado de fusões relacionadas a intrusões diorítico-tonalíticas, atribuídas ao magmatismo de arco continental da Suíte Pinheiro Machado. Essas intrusões afetaram os mármores e os anfibolitos (fragmentos dos enxames de diques máficos), de maneira que, em pelo menos 640 Ma, rochas da mélange ofiolítica (já metamorfizadas) estavam alojadas em ambiente continental. Um evento metassomático posterior (relacionado à intrusão do Granito Três Figueiras, sincinemática à zona de cisalhamento acima referida) afetou os serpentinitos, gerando zonas de talcificação, tremolitização e cloritização, essa última representando um blackwall que também envolveu unidades metassiliciclásticas do Complexo Arroio Grande. O Ofiolito Arroio Grande foi inserido no contexto geotectônico da bacia de retroarco Marmora, cujos fragmentos são encontrados na Namíbia (Terreno Marmora) e no Uruguai (Complexo Paso del Dragón e Bacia Rocha – Terreno Punta del Este). / The Arroio Grande Ophiolite, located in the southeastern region of the Dom Feliciano Belt, near the Brazil/Uruguay border, is a metaultramafic-mafic-sedimentary association which represents slices of an ophiolitic mélange, related to the Western Gondwana amalgamation during the late stages of the Brasiliano-Panafrican orogenic cycle. The Arroio Grande Ophiolite rocks are enveloped by metasiliciclastic units of the Arroio Grande Complex and occur as xenolyths within granitoids of the Pinheiro Machado Suite and within the Três Figueiras Granite (units of the Pelotas-Aiguá Batholith). The metaultramafites of the ophiolite comprise serpentinites and Cr-rich magnesian schists. The metamafites comprise amphibolites, metagabbros and metadiorites. The metasedimentary unit comprises calcitic marbles, which are intruded by mafic dykes. The ophiolite is found along the Ayrosa Galvão- Arroio Grande Shear Zone (transcurrent, ductile, high angle), responsible for the mylonitization of this association. The investigations developed in this ophiolite had the objective of identify the magmatic sources of the protoliths and the processes that occurred since their generation within the mantle/oceanic crust until their incorporation into the continental crust, including their absolute and relative ages. The bulk-rock chemistry of the metaultramafites (e.g. Ni >1000 ppm; Cr > 1500 ppm), together with the mineral chemistry of the chromites (e.g. Cr# 0.6-0.8; TiO2 0.01-0.20 wt%; Fe2+/Fe3+ ± 0.9), suggested harzburgitic protoliths, attributed to a depleted mantle source under a back-arc spreading region, which experienced high degrees of partial melting. These harzburgites were serpentinized in an oceanic setting, as suggested by the 87Sr/86Sr630 ratio of a serpentinite (ca. 0.707). The bulkrock chemistry of the metamafites suggested oceanic tholeiitic protoliths, generated in a supra-subduction setting in a back-arc environment (e.g. Cr 260-600 ppm; Nb/Y 0.1-0.5; Ti/Y ± 500; La/Nb 2-5; Th/Yb 0.1-5 and Nb/Yb 1-5; REE patterns; 87Sr/86Sr630 ratios ranging from MORB – 0.703 – to IAT – 0.705-0.707), whose magmatic source was contaminated by crustal material and subduction-related fluids. The minimum age for the obduction and metamorphism of the Arroio Grande Ophiolite rocks was estimated around 640 Ma from the U-Pb age of a quartz-syenite. The latter is the result of melting, related to dioritic-tonalitc intrusions, attributed to the continental magmatism of the Pinheiro Machado Suite. These intrusions affected both the marbles and the amphibolites (fragments of the mafic dykes), in order that, at least around 640 Ma, rocks of the ophiolitic mélange (already metamorphosed) were emplaced on the continent. A late metasomatic event (related to the emplacement of the Três Figueiras Granite, syn-kinematic to the abovementioned shear zone) affected the serpentinites, generating zones of talcification, tremolitization and chloritization, the latter representing a blackwall which also involved metasiliciclastic rocks of the Arroio Grande Complex. The Arroio Grande Ophiolite was inserted in the geotectonic context of the Marmora back-arc basin, whose fragments are found in Namibia (Marmora Terrane) and Uruguay (Paso del Dragón Complex and Rocha Basin – Punta del Este Terrane).
|
13 |
Delineating the geometry of the Central Metasedimentary Belt Boundary Zone of the Grenville Province: Nd isotope evidence of a failed back-arc rift zone between Minden and Bancroft, OntarioMoretton, Katherine 08 1900 (has links)
<p> The Grenville Province represents the remains of a collisional orogeny ca. 1.2 -
1.0 Ga and contains the Central Metasedimentary Belt (CMB). Generally thought to
represent one or more accreted island arcs, the CMB is located between belts of highgrade
gneisses and contains a number of identified structural terranes. Neodymium (Nd)
model ages of the high-grade gneisses on either side of the CMB yield similar values
(~1.5 Ga) while the average model age within the CMB is usually more juvenile (<1.3
Ga). This distinction, along with observations about the geometrical shape of the juvenile
zone, has led to the creation of an alternative model for the development of the CMB in
the Grenville Province as developed by Dickin and McNutt, (2007). The new model
equates the CMB with an ensimatic rift zone with an en echelon morphology consisting
of a series of segments with NNE trends, separated by one or more horsts of older crustal
rock. The development of the CMB under these conditions implies that restricted access
to seawater may have facilitated limestone deposition prior to major biogenic influences,
and thus the morphology of the rift is defined in part by the extent of the Grenville
marble outcrops. </p> <p> The present study tests this model through the use of 80 new Nd isotope analyses to map the NW boundary of the CMB, known as the Central Metasedimentary Belt
Boundary Zone (CMBBZ), west of Bancroft, Ontario. Within this part of the CMBBZ,
the age boundary between pre-Grenvillian and juvenile gneisses is relatively sharp (1 - 4
km wide) and this age boundary makes a near 90-degree tum from a NNE trend near
Minden to an E-W trend near Haliburton. Two blocks of older material are located within
the juvenile terranes of the CMB, which are interpreted as being blocks of older crust
rifted from the walls of the older Muskoka domain to the north of the study region. These
structures are analogous to similar horsts of older crustal material found in the Afar
region of East Africa. Therefore, we suggest that the locus of the CMBBZ was
constrained by older structures, representing a transition from the side of a rift zone
segment south of Minden, to the truncated end of this rift segment between Haliburton
and Bancroft. Hence, the detailed structure of the CMBBZ in this region provides further
evidence in support of the rift zone model. </p> / Thesis / Master of Science (MSc)
|
14 |
Deformation processes in great subduction zone earthquake cyclesHu, Yan 29 April 2011 (has links)
This dissertation consists of two parts and investigates the crustal deformation associated with great subduction zone earthquake at two different spatial scales. At the small scale, I investigate the stress transfer along the megathrust during great earthquakes and its effects on the forearc wedge. At the large scale, I investigate the viscoelastic crustal deformation of the forearc and the back arc associated with great earthquakes.
Part I: In a subduction zone, the frontal region of the forearc can be morphologically divided into the outer wedge and the inner wedge. The outer wedge which features much active plastic deformation has a surface slope angle generally larger than that of the inner wedge which hosts stable geological formations. The megathrust can be represented by a three-segment model, the updip zone (velocity-strengthening), seismogenic zone (velocity-weakening), and downdip zone (velocity-strengthening). Our dynamic Coulomb wedge theory postulates that the outer wedge overlies the updip zone, and the inner wedge overlies the seismogenic zone. During an earthquake, strengthening of the updip zone may result in compressive failure in the outer wedge. The inner wedge undergoes elastic deformation. I have examined the geometry and mechanical processes of outer wedges of twenty-three subduction zones. The surface slope of these wedges is generally too high to be explained by the classical critical taper theory but can be explained by the dynamic Coulomb wedge theory.
Part II: A giant earthquake produces coseismic seaward motion of the upper plate and induces shear stresses in the upper mantle. After the earthquake, the fault is re-locked, causing the upper plate to move slowly landward. However, parts of the fault will undergo continuous aseismic afterslip for a short duration, causing areas surrounding the rupture zone to move seaward. At the same time, the viscoelastic relaxation of the earthquake-induced stresses in the upper mantle causes prolonged seaward motion of areas farther landward including the forearc and the back arc. The postseismic and interseismic crustal deformation depends on the interplay of these three primary processes. I have used three-dimensional viscoelastic finite element models to study the contemporary crustal deformation of three margins, Sumatra, Chile, and Cascadia, that are presently at different stages of their great earthquake cycles. Model results indicate that the earthquake cycle deformation of different margins is governed by a common physical process. The afterslip of the fault must be at work immediately after the earthquake. The model of the 2004 Sumatra earthquake constrains the characteristic time of the afterslip to be 1.25 yr. With the incorporation of the transient rheology, the model well explains the near-field and far-field postseismic deformation within a few years after the 2004 Sumatra event. The steady-state viscosity of the continental upper mantle is determined to be 10^19 Pa S, two orders of magnitude smaller than that of the global value obtained through global postglacial rebound models. / Graduate
|
15 |
Deformation processes in great subduction zone earthquake cyclesHu, Yan 29 April 2011 (has links)
This dissertation consists of two parts and investigates the crustal deformation associated with great subduction zone earthquake at two different spatial scales. At the small scale, I investigate the stress transfer along the megathrust during great earthquakes and its effects on the forearc wedge. At the large scale, I investigate the viscoelastic crustal deformation of the forearc and the back arc associated with great earthquakes.
Part I: In a subduction zone, the frontal region of the forearc can be morphologically divided into the outer wedge and the inner wedge. The outer wedge which features much active plastic deformation has a surface slope angle generally larger than that of the inner wedge which hosts stable geological formations. The megathrust can be represented by a three-segment model, the updip zone (velocity-strengthening), seismogenic zone (velocity-weakening), and downdip zone (velocity-strengthening). Our dynamic Coulomb wedge theory postulates that the outer wedge overlies the updip zone, and the inner wedge overlies the seismogenic zone. During an earthquake, strengthening of the updip zone may result in compressive failure in the outer wedge. The inner wedge undergoes elastic deformation. I have examined the geometry and mechanical processes of outer wedges of twenty-three subduction zones. The surface slope of these wedges is generally too high to be explained by the classical critical taper theory but can be explained by the dynamic Coulomb wedge theory.
Part II: A giant earthquake produces coseismic seaward motion of the upper plate and induces shear stresses in the upper mantle. After the earthquake, the fault is re-locked, causing the upper plate to move slowly landward. However, parts of the fault will undergo continuous aseismic afterslip for a short duration, causing areas surrounding the rupture zone to move seaward. At the same time, the viscoelastic relaxation of the earthquake-induced stresses in the upper mantle causes prolonged seaward motion of areas farther landward including the forearc and the back arc. The postseismic and interseismic crustal deformation depends on the interplay of these three primary processes. I have used three-dimensional viscoelastic finite element models to study the contemporary crustal deformation of three margins, Sumatra, Chile, and Cascadia, that are presently at different stages of their great earthquake cycles. Model results indicate that the earthquake cycle deformation of different margins is governed by a common physical process. The afterslip of the fault must be at work immediately after the earthquake. The model of the 2004 Sumatra earthquake constrains the characteristic time of the afterslip to be 1.25 yr. With the incorporation of the transient rheology, the model well explains the near-field and far-field postseismic deformation within a few years after the 2004 Sumatra event. The steady-state viscosity of the continental upper mantle is determined to be 10^19 Pa S, two orders of magnitude smaller than that of the global value obtained through global postglacial rebound models. / Graduate
|
16 |
Characterization of hydrothermal vent faunal assemblages in the Mariana Back-Arc Spreading CentreGiguere, Thomas 04 May 2020 (has links)
Researchers have learned much about the biological assemblages that form around hydrothermal vents. However, identities of species in these assemblages and their basic ecological features are often lacking. In 2015, the first leg of the Hydrothermal Hunt expedition identified likely new vent sites in the Mariana Back-arc Spreading Center (BASC). In 2016, the second leg of the expedition used a remotely operated vehicle (ROV) to confirm and sample two new sites and two previously known sites. My first objective is to identify the animals collected from these four vent sites. In these samples, I identify 42 animal taxa, including the discovery of four new vent-associated species, five potentially new species and six taxa not previously reported in the Mariana BASC vents. My second objective is to combine these new data with previous studies and examine the species distributions among all known vent sites in the Mariana BASC using the α-, β-, and γ-diversity framework. I present updated species absence-presence lists for all eight Mariana BASC vent sites, which begin to resolve some of the issues with species identification. In this thesis, my approach to assessing β-diversity is novel in the field of hydrothermal vent ecology. My work also provides the first intra-regional scale assessments of β-diversity that include all sites known in a vent system. My third objective is to explore environmental factors driving these species distribution patterns. The α-diversity of BASC vent sites gradually increases with latitude, and the β-diversity calculated using the Raup-Crick index correlates with distance to nearby vent sites. Stochastic assembly processes likely shape the diversity patterns throughout the Mariana BASC as few environmental variables are known to correlate with these patterns. My fourth objective is to compare the β-diversity patterns between the Mariana BASC vent sites and those in two other vent systems: the Mariana Arc and the Juan de Fuca Ridge. The γ- and average α-diversity values for the BASC vents are relatively low compared to the other two systems. The Jaccard index revealed that the average number of shared species among the Arc vent sites is much lower than those of the BASC and the Juan de Fuca Ridge. The Raup-Crick index indicates that stochastic processes explain the average β-diversity of the Mariana BASC vents better than those of the Mariana Arc and Juan de Fuca Ridge. / Graduate / 2021-04-17
|
17 |
Tectonic reconstruction of the Alpine orogen in the western Mediterranean regionRosenbaum, Gideon January 2003 (has links)
Abstract not available
|
18 |
Interactions magma-roche, déformation à haute température et anisotropie sismique dans le manteau de la transition continent-océan et dans la lithosphère océanique / Melt-rock interaction, High-temperature deformation, and seismic properties in the continent-ocean transition mantle, and in the oceanic lithosphereSatsukawa, Takako 08 February 2012 (has links)
Cette thèse regroupe deux études distinctes, qui documentent le contrôle des microstructures sur les propriétés sismiques des roches. La première partie traite du développement des orientations préférentielles cristallographiques (OPC) dans le manteau supérieur, associé aux interactions liquide/magma-roche, enregistré dans des xénolites de péridotites du bassin d'arrière-arc de la mer du Japon. Les caractéristiques microstucturales et géochimiques des échantillons étudiés montrent que l'ouverture arrière-arc active est associée à une déformation du manteau supérieure similaire à celle observée dans l'ophiolite d'Oman. L'initiation de l'extension d'arrière-arc n'est pas associée à de fortes interactions entre percolation magmatique et déformation, en comparaison avec les zones de rifting continentales, probablement en raison des taille et durée relativement petites de l'épisode d'ouverture. La seconde partie présente une base de données unique d'OPC de plagioclase de roches mafiques plus ou moins déformées. Les OPC sont classées en 3 types principaux; leurs caractéristiques en fonction du régime de déformation (magmatique ou plastique) sont présentées et discutées. Les propriétés sismiques calculées des roches gabbroiques montrent que l'anisotropie tend à croitre avec l'intensité des fabriques, bien qu'elle soit généralement faible, en raison des effets opposés des olivines/clinopyroxènes et du plagioclase. / This thesis compiles two distinct studies that both document the control of microstructures on rock seismic properties. The first part deals with the development of crystallographic preferred orientations (CPO) in the uppermost mantle associated with melt/fluid-rock interactions, recorded in peridotites xenoliths from the Japan sea back-arc basin. The microstructural and geochemical characteristics of the studied samples reveal that active spreading is associated to uppermost mantle deformation similar to that observed in the Oman ophiolite. At the onset of back-arc spreading, there are no strong interactions between melt percolation and deformation in comparison to continental rift zones, probably due to the relatively small size and short duration of the spreading event. The second part presents a unique database of plagioclase CPO from variously deformed mafic rocks. CPO are grouped in three main types; their characteristics as a function of deformation regime (magmatic or crystal-plastic) are outlined and discussed. Calculated seismic properties of gabbroic rocks show that anisotropy tends to increase as a function of fabric strength, although it is generally weak, due to the competing effect of olivine/clinopyroxene and plagioclase.
|
19 |
Contraintes par imagerie sismique pénétrante sur l'évolution d'une marge Cénozoïque réactivée en compression (cas de la marge algérienne, secteur de Tipaza) / Constraints by penetrating seismic imaging on the evolution of a Cenozoic margin reactivated in compression (Algerian margin, sector of Tipaza)Leprêtre, Angélique 18 December 2012 (has links)
L'inversion des marges passives apparaît comme le premier stade vers l'initiation de nouvelles zones de subduction. Cette étape cruciale dans la tectonique des plaques soulève néanmoins encore de nombreuses questions. L'étude des marges actuellement réactivées en compression apparaît ainsi comme essentielle pour mieux comprendre ce processus. Ces marges sont peu nombreuses, situées dans des contextes géodynamiques variés, et les facteurs déterminant leur évolution mal contraints. Située au nord de l'Afrique, la marge algérienne fait partie de ces rares exemples potentiels à travers le monde. L'évolution de cette marge formée au Miocène en contexte d'arrière-arc s'intègre dans le puzzle complexe de l'histoire de la Méditerranée occidentale. Elle est depuis quelques millions d'années réactivée en compression dans le cadre de la convergence lente entre les plaques européenne et africaine, générant un potentiel sismogène fort au nord de l'Algérie. La relative jeunesse du bassin algérien, la charge sédimentaire, les forces aux limites compressives, constituent des conditions favorables à la formation d'une future subduction. A la suite des travaux menés depuis une dizaine d'années, les principales lacunes de connaissances identifiées portent sur (1) la structuration profonde du bassin algérien et de sa marge sud (type de marge, nature du socle,dimension et nature de la transition océan-continent, style et distribution de la déformation compressive), et (2) l'histoire de l'évolution cinématique et géodynamique du bassin, ce qui limite à l'heure actuelle une analyse approfondie des modalités d'inversion de cette marge. L'étude menée se focalise sur la marge centre-algérienne, dans le secteur de Tipaza (à l'ouest d'Alger), un endroit clé pour la compréhension des mécanismes d'ouverture du bassin algérien. Le traitement et l'analyse de nouvelles données de sismique profonde grand-angle et multitraces acquises dans le cadre du projet franco-algérien SPIRAL (Sismique Profonde et Investigations Régionales en Algérie, 2009) ont notamment permis de déterminer la structure crustale du bassin algérien et de sa marge sud, ainsi que la structuration pseudo-3D d'une structure spécifique au secteur d'étude constituée par le haut topographique sous-marin de Khayr-al-Din. L'analyse de la structure profonde de la marge indique un certain nombre de structures héritées de son évolution complexe : (1) une croûte de nature continentale de plus de 15 km d'épaisseur sur le haut de marge (banc de Khayr-al-Din), (2)une croûte fine de nature océanique de 5-6 km d'épaisseur dans le bassin incluant des vitesses légèrement élevées à sa base (7,2 km/s - 7,3 km/s), (3) des similitudes avec des marges formées dans des contextes de déformation transformante, (4) un approfondissement progressif de l'ensemble de la pile sédimentaire et l'épaississement des sédiments Plio-Quaternaire, depuis le bassin profond distal vers le pied de marge,coïncidant avec (5) une flexuration à grande longueur d'onde du socle. Les résultats obtenus apportent de nouvelles contraintes sur (1) la géométrie et la nature de la marge et du bassin, (2) l'évolution de la marge,suggérant une histoire multiphasée comprenant un stade de rifting et/ou d'accrétion océanique, suivi d'un épisode de déformation coulissante tardive liée à la migration du bloc Alboran vers l'ouest, et d'une reprise en compression distribuée du bassin profond au haut de la marge au Plio-Quaternaire; (3) les modalités de réactivation qui se traduisent par des chevauchements aveugles néoformés à pendages sud, notamment au pied du banc de Khayr-al-Din, suggérant un soulèvement du banc de 0,2 mm/an à 0,75 mm/an au Plio-Quaternaire et un début d'écaillage crustal. / The inversion of passive margins appears to be one of the first steps towards the initiation of new subduction zones. This crucial step in plate tectonics nevertheless still raises many questions. The study of margins currently reactivated by compressional tectonics is thus essential to better understand this process. These margins are uncommon, located in different geodynamic settings, and the factors determining their evolution are poorly constrained. The Algerian margin, located in North Africa, is one of handful of modern examples worldwide. The evolution of this margin, rifted during the Miocene, in a back-arc setting, is part ofthe complex puzzle of the western Mediterranean. Since a few million years, the margin has suffered inversion and compression in the framework of slow on going convergence between the European and African plates. This convergence generates moderate to strong earthquakes in North Algeria. The relatively young age of the Algerian basin, the large sediment load, and the compressive forces, constitute favorable conditions to the formation of a future subduction zone. Studies from the past ten years indicate, that themain unresolved questions are related to (1) the deep structure of the Algerian basin and its southern margin (the type of margin, the nature of the basement, the dimension and nature of the ocean-continent transition, the style and the distribution of the compressional deformation), and (2) the history of the kinematic and geodynamic evolution of the basin. All of these unknowns have prevented a complete and thorough analysis of modalities of the Algerian margin inversion. This study focuses on the Central Algerian margin, in the area of Tipaza (West of Algiers), a key region to understand the mechanism of the opening of the Algerian basin. Processing and analysis of a deep wide-angle and multichannel seismic new data set acquired in the context of the French-Algerian project SPIRAL (Sismique profonde et Investigation Régionales en Algérie, 2009)have enabled us to determine the crustal structure of the Algerian basin and its southern continental margin,as well as the pseudo-3D structure of a specific feature in the study area: the submarine topographic highformed by the Khayr-al-Din bank. The analysis of the deep structure of the margin reveals features inherited from its complex evolution: (1) a crust of continental nature of more than 15 km thick at the upper margin(Khayr-al-Din Bank), (2) a thin crust of oceanic nature, 5-6 thick in the deep basin, including slightly high velocities at its base (7.2 km/s - 7.3 km/s), (3) similarities with margins formed in context of transform deformation, (4) a progressive deepening of the whole sedimentary cover and the thickening of the Plio-Quaternary sediments, from the distal deep basin towards the margin foot, coeval with (5) a long wavelengthflexuration of the basement in the basin. Results from this study provide new constraints on (1) the geometryand nature of the margin and the basin, (2) the evolution of the margin, suggesting a multiphased history including a stage of rifting and/or oceanic spreading, a transcurrent episode due to the westward migration of the Alboran block, and a diffuse Plio-Quaternary compressional reactivation distributed from the deep basinto the upper margin; (3) the mechanisms of the reactivation marked by newly formed south-dipping blind-thrusts, especially at the foot of the Khayr-al-Din bank, and suggesting a Plio-Quaternary uplift of the bankof 0.2 mm/y to 0.75 mm/y and the early stages of imbricate thrusting of crustal scales.
|
Page generated in 0.0495 seconds