• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Simulations of a self-stabilizing fully submerged hydrofoil / Simulering av ett självstabiliserande helt nedsänkt bärplanssystem

Jacobson, Henry January 2023 (has links)
Two models of a self-stabilizing hydrofoil system is developed where the effects from the struts and hydrofoil give torques for angular rotations. Lifting line theory for the hydrofoil which can twist is used. Nonlinear versions of the models are also developed and compared to find that the linear models use valid approximations. Backward Differentiation Formula is used to get numerical solutions, and eigenvalues of linear system matrices are used to get stability regions. The models did not accurately capture what has been seen in testing. / Två modeller för ett självstabiliserande bärplanssystem utvecklas där effekter från stöttor och bärplan ger vridmoment för vinkelrotationer. Lyftande linjeteori för det skevande bärplanet används. Icke-linjära versioner av modellerna tas också fram och jämförs för att finna att de linjära modellerna använder giltiga approximationer. Backward Differentiation Formula används för att fram numeriska lösningar, och egenvärden i det linjära systemetsmatriser används för att hitta stabilitetsregioner. Modellerna fångade inte korrekt vad som har setts i testning.
2

Defect Clustering in Irradiated Thorium Dioxide and alpha-Uranium

Sanjoy Kumar Mazumder (16634130) 07 August 2023 (has links)
<p>Thorium dioxide (ThO<sub>2</sub>) and metallic uranium (alpha-U) represent important alternative nuclear fuels. Investigating the behavior of defects introduced into these materials in an irradiation environment is critical for understanding microstructure evolution and property changes. The objective of this dissertation is to investigate the clustering of point defects in ThO<sub>2</sub> and alpha-U under irradiation, into voids and prismatic dislocation loops as a function of irradiation dose rate and temperature. To achieve this, we have developed a mean-field cluster dynamics (CD) model based on reaction rate theory to predict the evolution of self-interstitial atom (SIA) and vacancy loops in neutron-irradiated alpha-U. Detailed atomistic simulations have been carried out using molecular dynamics (MD) to study the configuration of such loops and compute their energetics, which are essential parameters of the CD model. Bond-boost hyper-MD simulations have been performed to compute the diffusivity of uranium SIA and vacancies, which govern the kinetics of the clustering phenomenon. Another CD model has been demonstrated for proton-irradiated ThO<sub>2</sub>, considering the clustering of Th and O SIA and vacancies into SIA loops and voids, respectively, with varying sizes and stoichiometry. The compositions of all SIA loops and voids dictated by crystallography of ThO<sub>2</sub> in its fluorite structure have been presented in their respective cluster composition space (CCS). The CD model solves the density evolution of off-stoichiometric loops and voids, with irradiation, in their respective CCS. MD simulations have been performed to compute the energetics of different clusters in their CCS, as parameters of the CD model. Temperature-accelerated MD simulations have been performed to compute the diffusivity of Th and O point defects, that dictates the kinetics of defect clustering on irradiation. In alpha-U, the CD predictions show an accumulation of small sized vacancy loops and the growth of SIA loops with irradiation dose, which closely fits the reported size distribution of loops in neutron-irradiated alpha-U by Hudson and coworkers. The CD predicted density of defect clusters in proton-irradiated ThO<sub>2</sub>, shows the evolution of near-stoichiometric SIA loops in their CCS. The size distribution of SIA loops at high irradiation doses closely corresponds to the transmission electron microscopy (TEM) observations reported in the literature. Also, the CD model did not predict the growth of voids and vacancy clusters, which is consistent with findings in literature. The model was further used to predict the density of sub-nanometric defect clusters and point defects, on low-dose irradiation, that significantly impairs the thermal conductivity of ThO<sub>2</sub>. An extensive TEM and CD investigation has also been carried out to study the growth and coarsening of SIA loop and voids during post-irradiation isochronal annealing of ThO<sub>2</sub> at high temperatures.</p>

Page generated in 0.139 seconds