Spelling suggestions: "subject:"bahadur"" "subject:"bahaduro""
1 |
Modelos multinomiais multivariados aplicados em sequências de DNA / Multivariate multinomial models applied do DNA sequencesCuyabano, Beatriz Castro Dias 17 August 2018 (has links)
Orientador: Hildete Prisco Pinheiro / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-17T18:30:16Z (GMT). No. of bitstreams: 1
Cuyabano_BeatrizCastroDias_M.pdf: 2595939 bytes, checksum: 953e397b509acd3e1a11de6f0e8c015b (MD5)
Previous issue date: 2011 / Resumo: Modelos Multivariados são propostos para descrever a frequência de códons em sequências de DNA, bem como a ordem e frequência em que as bases nitrogenadas se apresentam em cada códon, considerando a dependência entre as bases dentro do códon. Modelos logísticos regressivos são utilizados com diferentes estruturas de dependência entre as posições do códon. Também, modelos baseados em uma extensão da representação de Bahadur para o caso multinomial são propostos para explicar dados multinomiais correlacionados. Uma aplicação desses modelos para o gene NADH4 do genoma mitocondrial humano é apresentada, e comparações desses modelos são feitas a partir de diferentes critérios como AIC, BIC e validação cruzada. Por fim, uma breve análise de diagnósticos é realizada para os modelos logísticos regressivo / Abstract: Multivariate models are proposed to describe the codons frequencies in DNA sequences, as well as the order and frequency that nucleotide bases have in each codon, considering the dependence among the bases inside a codon. Logistic regressive models are used with different structures of dependence among the three positions in a codon. Also, models based on a multinomial extension of the Bahadur's representation are proposed to explain correlated multinomial data. An application of these models to the NADH4 gene from human mitochondrial genome is presented, and model comparisons among them are done by different criteria such as AIC, BIC and cross validation. At last, a brief diagnostic analysis is done upon the logistic regressive models / Mestrado / Estatistica / Mestre em Estatística
|
2 |
Bahadur Efficiencies for Statistics of Truncated P-value Combination MethodsChen, Xiaohui 30 April 2018 (has links)
Combination of p-values from multiple independent tests has been widely studied since 1930's. To find the optimal combination methods, various combiners such as Fisher's method, inverse normal transformation, maximal p-value, minimal p-value, etc. have been compared by different criteria. In this work, we focus on the criterion of Bahadur efficiency, and compare various methods under the TFisher. As a recently developed general family of combiners, TFisher cover Fisher's method, the rank truncated product method (RTP), the truncation product method (TPM, or the hard-thresholding method), soft-thresholding method, minimal p-value method, etc. Through the Bahadur asymptotics, we better understand the relative performance of these methods. In particular, through calculating the Bahadur exact slopes for the problem of detecting sparse signals, we reveal the relative advantages of truncation versus non-truncation, hard-thresholding versus soft-thresholding. As a result, the soft thresholding method is shown superior when signal strength is relatively weak and the ratio between the sample size of each p-value and the number of combining p-values is small.
|
3 |
Contribution à l'étude des M-estimateurs polynômes locauxSabbah, Camille 01 July 2010 (has links) (PDF)
L'objet de cette thèse est d'établir des résultats asymptotiques pour l'estimateur du quantile conditionnel par la méthode des polynômes locaux ainsi qu'à la généralisation de ces résultats pour les M-estimateurs. Nous étudions ces estimateurs et plus particulièrement leur représentation de Bahadur et leur biais. Nous donnons en outre un résultat sur les intervalles de confiance uniformes construits à partir de cette représentation pour le quantile conditionnel et ses dérivées.
|
4 |
Statistická inference v modelech extrémních událostí / Stochastical inference in the model of extreme eventsDienstbier, Jan January 2011 (has links)
Title: Stochastical inference in the model of extreme events Author: Jan Dienstbier Department/Institute: Department of probability and mathematical statistics Supervisor of the doctoral thesis: Doc. RNDr. Jan Picek, CSc. Abstract: The thesis deals with extremal aspects of linear models. We provide a brief explanation of extreme value theory. The attention is then turned to linear models Yn×1 = Xn×pβp×1 + En×1 with the errors Ei ∼ F, i = 1, . . . , n fulfilling the do- main of attraction condition. We examine the properties of the regression quantiles of Koenker and Basset (1978) under this setting we develop theory dealing with extremal characteristics of linear models. Our methods are based on an approximation of the regression quantile process for α ∈ [0, 1] expanding older results of Gutenbrunner et al. (1993). Our result holds in [α∗ n, 1 − α∗ n] with a better rate of α∗ n → 0 than the other approximations described previously in the literature. Consecutively we provide an ap- proximation of the tails of regression quantile. The approximations of the tails enable to develop theory of the smooth functionals, which are used to establish a new class of estimates of extreme value index. We prove T(F−1 n (1 − knt/n)) is consistent and asymp- totically normal estimate of extreme for any T member of the class....
|
5 |
Surfaces quantile : propriétés, convergences et applications / Quantile surfaces : properties, convergence and applicationsAhidar-Coutrix, Adil 03 July 2015 (has links)
Dans la thèse on introduit et on étudie une généralisation spatiale sur $\R^d$ du quantile réel usuel sous la forme d'une surface quantile via des formes $\phi$ et d'un point d'observation $O$. Notre point de départ est de simplement admettre la subjectivité due à l'absence de relation d'ordre totale dans $\R^d$ et donc de développer une vision locale et directionnelle des données. Ainsi, les observations seront ordonnées du point de vue d'un observateur se trouvant à un point $O \in \R^d$. Dans le chapitre 2, on introduit la notion du quantile vue d'un observateur $O$ dans la direction $u \in \Sd$ et de niveau $\alpha$ via des des demi-espaces orthogonaux à chaque direction d'observation. Ce choix de classe implique que les résultats de convergence ne dépendent pas du choix de $O$. Sous des hypothèses minimales de régularité, l'ensemble des points quantile vue de $O$ définit une surface fermée. Sous hypothèses minimales, on établit pour les surfaces quantile empiriques associées les théorèmes limites uniformément en le niveau de quantile et la direction d'observation, avec vitesses asymptotiques et bornes d'approximation non-asymptotiques. Principalement la LGNU, la LLI, le TCLU, le principe d'invariance fort uniforme puis enfin l'approximation du type Bahadur-Kiefer uniforme, et avec vitesse d'approximation. Dans le chapitre 3, on étend les résultats du chapitre précédent au cas où les formes $\phi$ sont prises dans une classe plus générale (fonctions, surfaces, projections géodésiques, etc) que des demi-espaces qui correspondent à des projections orthogonales par direction. Dans ce cadre plus général, les résultats dépendent fortement du choix de $O$, et c'est ce qui permet de tirer des interprétations statistiques. Dans le chapitre 4, des conséquences méthodologiques en statistique inférentielle sont tirées. Tout d'abord on introduit une nouvelle notion de champ de profondeurs directionnelles baptisée champ d'altitude. Ensuite, on définit une notion de distance entre lois de probabilité, basée sur la comparaison des deux collections de surfaces quantile du type Gini-Lorrentz. La convergence avec vitesse des mesures empiriques pour cette distance quantile, permet de construire différents tests en contrôlant leurs niveaux et leurs puissances. Enfin, on donne une version des résultats dans le cas où une information auxiliaire est disponible sur une ou plusieurs coordonnées sous la forme de la connaissance exacte de la loi sur une partition finie. / The main issue of the thesis is the development of spatial generalizations on $\R^d$ of the usual real quantile. Facing the usual fact that $\R^d$ is not naturally ordered, our idea is to simply admit subjectivity and thus to define a local viewpoint rather than a global one, anchored at some point of reference $O$ and arbitrary shape $\phi$ with the motivation of crossing information gathered by changing viewpoint $O$, shape $\phi$ and $\alpha$-th order of quantile. In Chapter 2, we study the spatial quantile points seen from an observer $O$ in a direction $u \in \Sd$ of level $\alpha$ through the class of the half-spaces orthogonal to the direction $u$. This choice implies that the convergence theorems do not depend on the choice of $O$. Under minimal regularity assumptions, the set of all quantile points seen from $O$ is a closed surface. Under minimal assumptions, we establish for the associated empirical quantile surfaces the convergence theorems uniformly on the quantile level and the observation direction with the asymptotic speed and non-asymptotic bounds of approximation. Mainly, we establish the ULLN, the ULIL, the UCLT, the uniform strong invariance principle and finally the Bahadur-Kiefer type embedding, with the approximation speed rate. In Chapter 3, all the results of the previous chapter are extended to the case where the shapes $ \phi $ are taken in a class more general (functions, surfaces, geodesic projections, etc) than orthogonal projections (half-spaces). In this general setting, the results depend strongly on the choice of $ O $. It is this dependence which permit to draw statistical interpretations: modes detection, mass localization, etc. In Chapter 4, some methodological consequences in inferential statistics are drawn. First we introduce a new concept of directional depth fields called altitude fields. In a second application is defined a new distances between probability distributions, based on the comparison of two collections of quantile surfaces, which are indexes of the type Gini-Lorrentz. The convergence with speed of the empirical quantile measures for these distances, can build different tests with control of their level and their power. A third use of the quantile surfaces is for the case where $ \alpha = 1/2$. Finally, we give a version of our theorems in the case where auxiliary information is available on one or more coordinates of the random variable. By assuming known the probability of the elements of a finite partition, the asymptotic variance of the limiting process decreases and the simulations with few points clearly shows the reframe of the estimated surfaces to the real ones.
|
6 |
Value at risk et expected shortfall pour des données faiblement dépendantes : estimations non-paramétriques et théorèmes de convergencesKabui, Ali 19 September 2012 (has links) (PDF)
Quantifier et mesurer le risque dans un environnement partiellement ou totalement incertain est probablement l'un des enjeux majeurs de la recherche appliquée en mathématiques financières. Cela concerne l'économie, la finance, mais d'autres domaines comme la santé via les assurances par exemple. L'une des difficultés fondamentales de ce processus de gestion des risques est de modéliser les actifs sous-jacents, puis d'approcher le risque à partir des observations ou des simulations. Comme dans ce domaine, l'aléa ou l'incertitude joue un rôle fondamental dans l'évolution des actifs, le recours aux processus stochastiques et aux méthodes statistiques devient crucial. Dans la pratique l'approche paramétrique est largement utilisée. Elle consiste à choisir le modèle dans une famille paramétrique, de quantifier le risque en fonction des paramètres, et d'estimer le risque en remplaçant les paramètres par leurs estimations. Cette approche présente un risque majeur, celui de mal spécifier le modèle, et donc de sous-estimer ou sur-estimer le risque. Partant de ce constat et dans une perspective de minimiser le risque de modèle, nous avons choisi d'aborder la question de la quantification du risque avec une approche non-paramétrique qui s'applique à des modèles aussi généraux que possible. Nous nous sommes concentrés sur deux mesures de risque largement utilisées dans la pratique et qui sont parfois imposées par les réglementations nationales ou internationales. Il s'agit de la Value at Risk (VaR) qui quantifie le niveau de perte maximum avec un niveau de confiance élevé (95% ou 99%). La seconde mesure est l'Expected Shortfall (ES) qui nous renseigne sur la perte moyenne au delà de la VaR.
|
7 |
Value at risk et expected shortfall pour des données faiblement dépendantes : estimations non-paramétriques et théorèmes de convergences / Value at risk and expected shortfall for weak dependent random variables : nonparametric estimations and limit theoremsKabui, Ali 19 September 2012 (has links)
Quantifier et mesurer le risque dans un environnement partiellement ou totalement incertain est probablement l'un des enjeux majeurs de la recherche appliquée en mathématiques financières. Cela concerne l'économie, la finance, mais d'autres domaines comme la santé via les assurances par exemple. L'une des difficultés fondamentales de ce processus de gestion des risques est de modéliser les actifs sous-jacents, puis d'approcher le risque à partir des observations ou des simulations. Comme dans ce domaine, l'aléa ou l'incertitude joue un rôle fondamental dans l'évolution des actifs, le recours aux processus stochastiques et aux méthodes statistiques devient crucial. Dans la pratique l'approche paramétrique est largement utilisée. Elle consiste à choisir le modèle dans une famille paramétrique, de quantifier le risque en fonction des paramètres, et d'estimer le risque en remplaçant les paramètres par leurs estimations. Cette approche présente un risque majeur, celui de mal spécifier le modèle, et donc de sous-estimer ou sur-estimer le risque. Partant de ce constat et dans une perspective de minimiser le risque de modèle, nous avons choisi d'aborder la question de la quantification du risque avec une approche non-paramétrique qui s'applique à des modèles aussi généraux que possible. Nous nous sommes concentrés sur deux mesures de risque largement utilisées dans la pratique et qui sont parfois imposées par les réglementations nationales ou internationales. Il s'agit de la Value at Risk (VaR) qui quantifie le niveau de perte maximum avec un niveau de confiance élevé (95% ou 99%). La seconde mesure est l'Expected Shortfall (ES) qui nous renseigne sur la perte moyenne au delà de la VaR. / To quantify and measure the risk in an environment partially or completely uncertain is probably one of the major issues of the applied research in financial mathematics. That relates to the economy, finance, but many other fields like health via the insurances for example. One of the fundamental difficulties of this process of management of risks is to model the under lying credits, then approach the risk from observations or simulations. As in this field, the risk or uncertainty plays a fundamental role in the evolution of the credits; the recourse to the stochastic processes and with the statistical methods becomes crucial. In practice the parametric approach is largely used.It consists in choosing the model in a parametric family, to quantify the risk according to the parameters, and to estimate its risk by replacing the parameters by their estimates. This approach presents a main risk, that badly to specify the model, and thus to underestimate or over-estimate the risk. Based within and with a view to minimizing the risk model, we choose to tackle the question of the quantification of the risk with a nonparametric approach which applies to models as general as possible. We concentrate to two measures of risk largely used in practice and which are sometimes imposed by the national or international regulations. They are the Value at Risk (VaR) which quantifies the maximum level of loss with a high degree of confidence (95% or 99%). The second measure is the Expected Shortfall (ES) which informs about the average loss beyond the VaR.
|
8 |
Utilisation des Divergences entre Mesures en Statistique InférentielleKeziou, Amor 17 November 2003 (has links) (PDF)
Dans cette thèse, nous proposons de nouvelles méthodes d'estimation et de test par optimisation des Divergences entre mesures pour des modèles paramétriques discrets ou continus, pour des modèles à rapport de densités semi-paramétriques et pour des modèles non paramétriques restreints par des contraintes linéaires. Les méthodes proposées sont basées sur une nouvelle représentation des Divergences entre mesures. Nous montrons que les méthodes du maximum de vraisemblance paramétrique et du maximum de vraisemblance empirique sont des cas particuliers correspondant au choix de la Divergence de Kullback-Leibler modifiée, et que le choix d'autres types de Divergences mène à des estimateurs ayant des propriétés similaires voire meilleurs dans certains cas. De nombreuses perspectives concernant le problème du choix de la Divergence sont notées.
|
Page generated in 0.0367 seconds