• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 36
  • 36
  • 36
  • 30
  • 17
  • 16
  • 15
  • 12
  • 8
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Models for thermo-mechanical eliability trade-offs for ball grid array and flip chip packages in extreme environments

Hariharan, Ganesh, Lall, Pradeep. January 2007 (has links) (PDF)
Thesis(M.S.)--Auburn University, 2007. / Abstract. Vita. Includes bibliographic references.
12

Thermal performance of ball grid arrays and thin interface materials

Elkady, Yasser Ahmed, Suhling, J. C. Knight, Roy Ward. January 2005 (has links) (PDF)
Dissertation (Ph.D.)--Auburn University, 2005. / Abstract. Vita. Includes bibliographic references.
13

Study of Sn-Ag-Cu reliability through material microstructure evolution and laser moire interferometry

Tunga, Krishna Rajaram. January 2008 (has links)
Thesis (Ph.D.)--Mechanical Engineering, Georgia Institute of Technology, 2009. / Committee Chair: Sitaraman, Suresh.
14

Thermo-mechanical reliability models for life prediction of ball grid arrays on Cu-core PCBs in extreme environments

Drake, Jonathan Luke, Lall, Pradeep. January 2007 (has links)
Thesis--Auburn University, 2007. / Abstract. Vita. Includes bibliographic references (p.181-188).
15

Computational stress analysis for ball grid array reliability and passive component reliability in board level assemblies /

Lau, Chung Yin. January 2005 (has links)
Thesis (M.Phil.)--Hong Kong University of Science and Technology, 2005. / Includes bibliographical references (leaves 85-90). Also available in electronic version.
16

Experimental and Theoretical Assessment of PBGA Reliability in Conjunction with Field-Use Conditions

Tunga, Krishna Rajaram 09 April 2004 (has links)
With the dramatic advances that have taken place in microelectronics over the past three decades, ball-grid array (BGA) packages are increasingly being used in microsystems applications. BGA packages with area-array configuration have several advantages: smaller footprint, faster signal transmission, testability, reworkability, handling easiness, etc. Although ceramic ball grid array (CBGA) packages have been used extensively in the microsystems industry, the use of plastic ball grid array (PBGA) packages is relatively new, especially for automotive and aerospace applications where harsh thermal conditions prevail. This thesis work has developed an experimental and a theoretical modeling program to study the reliability of two PBGA packages. The physics-based theoretical models take into consideration the time-dependent creep behavior through power law creep and time-independent plastic behavior through multi-linear kinematic hardening. In addition, unified viscoplastic constitutive models are also taken into consideration. The models employ two damage-metrics, namely inelastic strain and inelastic strain energy density, to predict the solder joint fatigue life. The theoretical predictions have been validated through air-to-air in-house thermal cycling tests carried out between 55 and #61616;C and 125 and #61616;C. In addition, laser-moir interferometry has been used to determine the displacement contours in a cross-section of the package at various temperatures. These contours measured through moir interferometry have also been used to validate the thermally-induced displacement contours, predicted by the models. Excellent agreement is seen between the experimental data and the theoretical predictions. In addition to life prediction, the models have been extended to map the field-use conditions with the accelerated thermal cycling conditions. Both linear and non-linear mapping techniques have been developed employing inelastic strain and strain energy density as the damage metric. It is shown through this research that the symmetric MIL-STD accelerated thermal cycles, currently in practice in industry, have to be modified to account for the higher percentage of creep deformation experienced by the solder joints in the field-use conditions. Design guidelines have been developed for such modifications in the accelerated thermal cycles.
17

Reliability of Solder Joints in Embedded Packages Using Finite Element Methods

Yunusa, Valeri Aisha 26 July 2018 (has links)
Solder joints serve as both mechanical and electrical connections between elements in a package. They are subjected to shear strains generated as a result of the different behaviors of the elements in the package (tension and compression) due to the differences in coefficients of thermal expansion during service conditions. Some of the causes of solder joint failures are due to the following: Vibration: small rapid displacements of parts of the assembly. This is not necessarily an issue with electronic components but larger parts like automobiles. Humidity: the package being exposed to water or ionic species can undergo corrosion if an electrical bias exists resulting in electrical opens or electrical shorts if the corrosion products are electrically conductive. Thermal Aging: this occurs during the lifetime of the solder interconnects, the package can be exposed to high ambient temperature or high dissipated heat during use. The micro-structure of the solder joint becomes more coarse and brittle. Mechanical Shock: the package undergoes shock during a short term exposure to high loads. Thermo-mechanical fatigue: this type of failure arises as a result of the solder joints going through cyclic strains, due to different coefficients of thermal expansion of individual components in the package during service. The most prevalent long-term reliability issues that can cause interconnect failure are thermal aging and thermo-mechanical fatigue. This study aims to evaluate the reliability of solder joints using finite element method, considering solder joint failure due to thermo-mechanical fatigue. Three variations of the BGA (Ball Grid Array) package are evaluated using the finite element analysis. The SAC305 series lead (pb) free alloy of 96.5% tin, 3% silver, and 0.5% copper is employed for this study.
18

BGA footprints modeling and physics based via models validation for power and signal integrity applications

Selli, Giuseppe, January 2007 (has links) (PDF)
Thesis (Ph. D.)--University of Missouri--Rolla, 2007. / Vita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed December 7, 2007). Includes bibliographical references.
19

Development of microwave and millimeter-wave pin grid array and ball grid array packages

Liang, Hongwei 12 1900 (has links)
No description available.
20

Damage prediction of lead free ball grid array packages under shock and drop environment

Panchagade, Dhananjay R., January 2007 (has links) (PDF)
Thesis (Ph.D.)--Auburn University, 2007. / Abstract. Vita. Includes bibliographic references (ℓ. 175-)

Page generated in 0.2204 seconds