• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 39
  • 8
  • 5
  • 2
  • 1
  • 1
  • Tagged with
  • 59
  • 14
  • 13
  • 12
  • 12
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Adaptive low power receiver combining ADC resolution and digital baseband for wireless sensors networks based in IEEE 802.15.4 standard / Receptor adaptativo de baixa potencia combinando resolução de conversor analógico para digital e banda base digital para redes de sensores sem fio baseado no protocolo IEEE 802.15.4

Santos, Maico Cassel dos January 2015 (has links)
Com o aumento das aplicações e dispositivos para Internet das Coisas, muitos esforços para reduzir potência dissipada nos transceptores foram investidos. A maioria deles, entretanto, focam individualmente no rádio, nos conversores analógicos para digital e viceversa, e na arquitetura de banda base digital. Como consequência, há pouca margem para melhorias na potência dissipada nestes blocos isolados que compense o enorme esforço. Portanto, este trabalho propõe uma arquitetura adaptativa a nível de sistema focando em reduzir o consumo no conversor analógico para digital e no receptor digital. Ele utiliza um algoritmo robusto para o receptor banda base digital, um conversor analógico para digital topologia Sigma-Delta e um bloco de controle realimentado conforme a relação sinal ruído medida do pacote recebido. O sistema foi projetado para o protocolo IEEE 802.15.4. Para validação do sistema e estimar a potência consumida foi feito um modelo de sistema utilizando a ferramenta Matlab, uma descrição do hardware em linguagem Verilog e uma síntese lógica utilizando o processo da X-FAB XC018. As simulações mostram uma redução na potência consumida pelo sistema de até 13% e ainda atingindo os requisitos do protocolo. Os resultados deste trabalho foram publicados na conferência internacional em tecnologia de instrumentação e medidas de 2014 realizada na cidade de Montevidéu no Uruguai. / With the increase of Internet of Things applications and devices, many efforts to reduce power consumption in transceiver has been invested. Most of them targeted in RF frontend, converters, or in the digital baseband architecture individually. As result, there are few margins nowadays for power improvement in these blocks singly that compensates the huge hard work required. The next optimization step leads to a system level analysis seeking design space and new possibilities expansion. It is in this field that adaptive systems approaches are conquering ground recently. The solutions combines Radio Frequency (RF) and process variation techniques, Low Pass Filters (LPF) and Analog to Digital Converters (ADCs) adjustment for better performance, digital baseband bit width adaptive according to income packet SNR, configurable ADC resolution and topology, and others. In this scenario the current work proposes an adaptive system level architecture targeting ADC and digital receiver power reduction. It uses a robust algorithm for digital baseband receiver, a Sigma-Delta ADC, and suggests a feedback control block based on packet SNR measure. The system was designed for the IEEE 802.15.4 standard and required system modeling using Matlab tool, hardware description in Verilog language, and logic synthesis using X-FAB XC018 process for validation and power consumption estimation. Simulations show up to 15% of system power reduction and still meeting the standard requirements. The work results were published in the International Instrumentation and Measurement Technology Conference of 2014 occurred in Montevideo - Uruguay.
32

Bluetooth Enhanced Data Rate Baseband Modeling and Implementation

Zou, Lei January 2006 (has links)
<p>The main issue of this thesis is making the behaviour model of Bluetooth EDR (enhanced data rate) baseband signal processing. This Bluetooth baseband project is part of the soft defined radio project at electrical engineering department, Linköping University.</p><p>In this project, both the basic rate and EDR model were built and simulated. The GFSK and π/4 DQPSK digital modulation and demodulation were implemented in C code. The BER was tested to evaluate the demodulation results. Furthermore, the error correction (FEC) and the error checking (HEC,CRC) were also implemented according to the Bluetooth standards. The CRC flag was detected to test the payload demodulation results.</p><p>Especially, GFSK and π/4 DQPSK specifications have to be combined with each other at sample rate of ADC.</p><p>Finally, the basic rate and EDR model were simulated to measure the BER and CRC performance.</p><p>From the simulation results, the receiver filter, synchronization and channel condition were three key points in this Bluetooth EDR system implementation.</p><p>So we get further understanding about the Bluetooth system specification and DSP implementation methods.</p>
33

The Baseband Signal Processing and Circuit Design for IEEE 802.12.4a-2007 Impulse Radio Ultra-Wideband System

Wu, Jia-Hao 13 August 2012 (has links)
In recent years, the requirement of application such as wireless sensor networks and short-range wireless controllers caused the growing of ZigBee technology. ZigBee is a communication technology developed specifically for short-range, low rate, low-cost wireless transmission.There are some characteristic such as short-range, low rate, low cost, and low power. The ZigBee Aliance group developed the specifications of software, and IEEE 802.15.4 group developed the specifications of hardware. IEEE 802.15.4a impulse radio UWB physical layer is one of the ZigBee physical layers. In our study, we designed a baseband signal processing algorithm meeting the specifications of IEEE 802.15.4a. The data processing flow in transmitter followed the specifications. In receiver, we designed baseband algorithms based-on the non-coherent energy detection scheme. Our algorithm including packet detection, synchronization and demodulation, and considering the implementation of algorithm, reducing the complexity of hardware as possible and improving the efficiency. Finally, the system performance is 3.9dB better than the receiver sensitivity.
34

System Prototyping of the IEEE 802.11a Wireless LAN Physical Layer Baseband Transceiver

Chang, Jia-Jue 07 September 2004 (has links)
In the high-speed indoor wireless applications, IEEE 802.11 series is the most dominating LAN standard in the current markets. In this thesis, the design issues of the IEEE 802.11a physical layer baseband system are addressed. Various key modules including Viterbi codec, FFT/IFFT module, OFDM synchronous circuit have been integrated with several other modules to constitute the entire baseband system. This system has been implemented by Verilog HDL and verified against with the C-based behavior model. In addition, it will also be prototyped and optimized on the Altera DSP FPGA Development Board. The transmission of the I, Q channel for the time domain singal is emulated by using the 10-bits AD/DA modules on the FPGA board. The experimental results shows that the gate counts of the transmitter and the receiver are 81,190 and 413,461 respectively.
35

Adaptive low power receiver combining ADC resolution and digital baseband for wireless sensors networks based in IEEE 802.15.4 standard / Receptor adaptativo de baixa potencia combinando resolução de conversor analógico para digital e banda base digital para redes de sensores sem fio baseado no protocolo IEEE 802.15.4

Santos, Maico Cassel dos January 2015 (has links)
Com o aumento das aplicações e dispositivos para Internet das Coisas, muitos esforços para reduzir potência dissipada nos transceptores foram investidos. A maioria deles, entretanto, focam individualmente no rádio, nos conversores analógicos para digital e viceversa, e na arquitetura de banda base digital. Como consequência, há pouca margem para melhorias na potência dissipada nestes blocos isolados que compense o enorme esforço. Portanto, este trabalho propõe uma arquitetura adaptativa a nível de sistema focando em reduzir o consumo no conversor analógico para digital e no receptor digital. Ele utiliza um algoritmo robusto para o receptor banda base digital, um conversor analógico para digital topologia Sigma-Delta e um bloco de controle realimentado conforme a relação sinal ruído medida do pacote recebido. O sistema foi projetado para o protocolo IEEE 802.15.4. Para validação do sistema e estimar a potência consumida foi feito um modelo de sistema utilizando a ferramenta Matlab, uma descrição do hardware em linguagem Verilog e uma síntese lógica utilizando o processo da X-FAB XC018. As simulações mostram uma redução na potência consumida pelo sistema de até 13% e ainda atingindo os requisitos do protocolo. Os resultados deste trabalho foram publicados na conferência internacional em tecnologia de instrumentação e medidas de 2014 realizada na cidade de Montevidéu no Uruguai. / With the increase of Internet of Things applications and devices, many efforts to reduce power consumption in transceiver has been invested. Most of them targeted in RF frontend, converters, or in the digital baseband architecture individually. As result, there are few margins nowadays for power improvement in these blocks singly that compensates the huge hard work required. The next optimization step leads to a system level analysis seeking design space and new possibilities expansion. It is in this field that adaptive systems approaches are conquering ground recently. The solutions combines Radio Frequency (RF) and process variation techniques, Low Pass Filters (LPF) and Analog to Digital Converters (ADCs) adjustment for better performance, digital baseband bit width adaptive according to income packet SNR, configurable ADC resolution and topology, and others. In this scenario the current work proposes an adaptive system level architecture targeting ADC and digital receiver power reduction. It uses a robust algorithm for digital baseband receiver, a Sigma-Delta ADC, and suggests a feedback control block based on packet SNR measure. The system was designed for the IEEE 802.15.4 standard and required system modeling using Matlab tool, hardware description in Verilog language, and logic synthesis using X-FAB XC018 process for validation and power consumption estimation. Simulations show up to 15% of system power reduction and still meeting the standard requirements. The work results were published in the International Instrumentation and Measurement Technology Conference of 2014 occurred in Montevideo - Uruguay.
36

Adaptive low power receiver combining ADC resolution and digital baseband for wireless sensors networks based in IEEE 802.15.4 standard / Receptor adaptativo de baixa potencia combinando resolução de conversor analógico para digital e banda base digital para redes de sensores sem fio baseado no protocolo IEEE 802.15.4

Santos, Maico Cassel dos January 2015 (has links)
Com o aumento das aplicações e dispositivos para Internet das Coisas, muitos esforços para reduzir potência dissipada nos transceptores foram investidos. A maioria deles, entretanto, focam individualmente no rádio, nos conversores analógicos para digital e viceversa, e na arquitetura de banda base digital. Como consequência, há pouca margem para melhorias na potência dissipada nestes blocos isolados que compense o enorme esforço. Portanto, este trabalho propõe uma arquitetura adaptativa a nível de sistema focando em reduzir o consumo no conversor analógico para digital e no receptor digital. Ele utiliza um algoritmo robusto para o receptor banda base digital, um conversor analógico para digital topologia Sigma-Delta e um bloco de controle realimentado conforme a relação sinal ruído medida do pacote recebido. O sistema foi projetado para o protocolo IEEE 802.15.4. Para validação do sistema e estimar a potência consumida foi feito um modelo de sistema utilizando a ferramenta Matlab, uma descrição do hardware em linguagem Verilog e uma síntese lógica utilizando o processo da X-FAB XC018. As simulações mostram uma redução na potência consumida pelo sistema de até 13% e ainda atingindo os requisitos do protocolo. Os resultados deste trabalho foram publicados na conferência internacional em tecnologia de instrumentação e medidas de 2014 realizada na cidade de Montevidéu no Uruguai. / With the increase of Internet of Things applications and devices, many efforts to reduce power consumption in transceiver has been invested. Most of them targeted in RF frontend, converters, or in the digital baseband architecture individually. As result, there are few margins nowadays for power improvement in these blocks singly that compensates the huge hard work required. The next optimization step leads to a system level analysis seeking design space and new possibilities expansion. It is in this field that adaptive systems approaches are conquering ground recently. The solutions combines Radio Frequency (RF) and process variation techniques, Low Pass Filters (LPF) and Analog to Digital Converters (ADCs) adjustment for better performance, digital baseband bit width adaptive according to income packet SNR, configurable ADC resolution and topology, and others. In this scenario the current work proposes an adaptive system level architecture targeting ADC and digital receiver power reduction. It uses a robust algorithm for digital baseband receiver, a Sigma-Delta ADC, and suggests a feedback control block based on packet SNR measure. The system was designed for the IEEE 802.15.4 standard and required system modeling using Matlab tool, hardware description in Verilog language, and logic synthesis using X-FAB XC018 process for validation and power consumption estimation. Simulations show up to 15% of system power reduction and still meeting the standard requirements. The work results were published in the International Instrumentation and Measurement Technology Conference of 2014 occurred in Montevideo - Uruguay.
37

Capacity profiling modeling for baseband applications

Boström, Rikard, Moilanen, Lars-Olof January 2009 (has links)
Real-time systems are systems which must produce a result within a given time frame. A result given outside of this time frame is as useless as not delivering any result at all. It is therefore essential to verify that real-time systems fulfill their timing requirements. A model of the system can facilitate the verification process. This thesis investigates two possible methods for modeling a real-time system with respect to CPU-utilization and latency of the different components in the system. The two methods are evaluated and one method is chosen for implementation.The studied system is the decoder of a WCDMA system which utilizes a real-time operating called system OSEck. The methodology of analyzing the system and different ways of obtaining measurements to base the model upon will be described. The model was implemented using the simulation library VirtualTime, which contains a model of the previously mentioned operating system. Much work was spent acquiring input for the model, since the quality of the model depends largely on the quality of the analysis work. The model created contains two of the studied systems main components.This thesis identifies thorough system knowledge and efficient profiling methods as the key success factors when creating models of real-time systems.
38

Bluetooth Enhanced Data Rate Baseband Modeling and Implementation

Zou, Lei January 2006 (has links)
The main issue of this thesis is making the behaviour model of Bluetooth EDR (enhanced data rate) baseband signal processing. This Bluetooth baseband project is part of the soft defined radio project at electrical engineering department, Linköping University. In this project, both the basic rate and EDR model were built and simulated. The GFSK and π/4 DQPSK digital modulation and demodulation were implemented in C code. The BER was tested to evaluate the demodulation results. Furthermore, the error correction (FEC) and the error checking (HEC,CRC) were also implemented according to the Bluetooth standards. The CRC flag was detected to test the payload demodulation results. Especially, GFSK and π/4 DQPSK specifications have to be combined with each other at sample rate of ADC. Finally, the basic rate and EDR model were simulated to measure the BER and CRC performance. From the simulation results, the receiver filter, synchronization and channel condition were three key points in this Bluetooth EDR system implementation. So we get further understanding about the Bluetooth system specification and DSP implementation methods.
39

Číslicové předzkreslovače pro linearizaci zesilovačů / Digital predistorters for amplifier linearization

Kroužil, Miroslav January 2008 (has links)
In this work I describe digital predistortion in baseband used for amplifier linearization. Non-linearity is one of the worst disadvantages of Power amplifiers and decreasing of its is useful from many reasons. Work examines system which contains: Data source, which is represented by QPSK or OFDM modulator, predistorter, Power amplifier (model of non-linearity) and unit used to update coeficients for predistorter adaptation. System is simulated in MATLAB and Xilinx (simulation by ModelSim). Results are compared, described and commented.
40

Transformation of Directed Acyclic Graphs into Kubernetes Deployments with Optimized Latency / Transformation av riktade acykliska grafer till Kubernetes-distributioner med optimerad latens

Almgren, Robert, Lidekrans, Robin January 2022 (has links)
In telecommunications, there is currently a lot of work being done to migrate to the cloud, and a lot of specialized hardware is being exchanged for virtualized solutions. One important part of telecommunication networks that is yet to be moved to the cloud is known as the base-band unit, which sits between the antennas and the core network. The base-band unit has very strict latency requirements, making it unsuitable for out-of-the-box cloud solutions. Ericsson is therefore investigating if cloud solutions can be customized in such a way that base-band unit functionality can be virtualized as well. One such customization is to describe the functionality of a base-band unit using a directed acyclic graph (DAG), and deploy it to a cloud environment using Kubernetes. This thesis sets out to take applications represented using a DAG and deploy it using Kubernetes in such a way that the network latency is reduced when compared to the deployment generated by the default Kubernetes scheduler. The problem of placing the applications onto the available hardware resources was formulated as an integer linear programming problem. The problem was then implemented using Pyomo and solved with the open-source solver GLPK to obtain an optimized placement. This placement was then used to generate a configuration file that could be used to deploy the applications using Kubernetes. A mock application was developed in order to evaluate the optimized placement. The evaluation carried out in this thesis shows that the optimized placement obtained from the solution could improve the average round-trip latency of applications represented using a DAG by up to 30% when compared to the default Kubernetes scheduler.

Page generated in 0.0529 seconds