• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Batterie tout solide pour application automobile : processus de mise en forme et étude des interfaces / All solid-state battery for automotive application : shaping process and study of interfaces

Hajndl, Ognjen 15 March 2019 (has links)
Les attentes pour les prochaines générations de batteries pour le véhicule électrique sont grandes, que ce soit en termes d’autonomie, d’impact environnemental, de vitesse de charge et de coût. Les systèmes dits tout solide comprenant un électrolyte, non plus liquide, mais solide et non-inflammable pourrait répondre à ces attentes.La céramique de type grenat Li7La3Zr2O12 (LLZO) est un électrolyte solide prometteur au vue de sa bonne conductivité, stabilité chimique et électrochimique. La contrainte majeure réside dans le besoin de densifier la céramique à haute température afin de la rendre conductrice. Aucune méthode standard d’assemblage/mise en forme n’existe pour obtenir une cellule tout solide dense avec des interfaces peu résistives.Dans cette optique, les travaux de thèse ont permis d’optimiser le protocole de synthèse par voie « tout solide » de l’oxyde LLZO et sa mise en forme grâce à la technique de compression uniaxiale à chaud (CUC). Les conditions d’assemblage de cellules symétriques Li/LLZO/Li ont permis d’étudier l’interface Li-métal/LLZO et son impact sur la dissolution/redéposition du lithium. La faisabilité de densifier une « demi-cellule » (cathode composite/LLZO) en une seule étape a également été étudiée en ajustant les paramètres de température et pression du protocole de CUC. / Next generation batteries expectations for electric vehicle are significant, whether in terms of autonomy, environmental impact, charging speed and cost. The all solid-state batteries with a non-flammable solid electrolyte, rather than the conventional liquid one, could meet those criteria.Garnet-type ceramic Li7La3Zr2O12 (LLZO) is a promising solid electrolyte given its good Li-ion conductivity, chemical and electrochemical stability. The major constraint is the need to densify the ceramic at high temperature in order to make it conductive. No standard method exists to build a dense all-solid cell with low interfacial resistance.In this context, the PhD work managed to optimize the solid-state synthesis protocol of the LLZO oxide and his densification by the hot-pressing technique. The conditions of symmetrical Li/LLZO/Li cell assembly allowed to study the Li-metal/LLZO interface and its impact on lithium plating/striping behavior. Feasibility of densifying a “half-cell” (composite cathode/LLZO) in one single step was also studied by adjusting the hot-pressing temperature and pressure parameters.
2

Étude de l’interface lithium métal/polymère pour l’optimisation des batteries lithium métal tout solide

Storelli Martineau, Alexandre 11 1900 (has links)
Le gain en popularité de l’électricité dans le domaine énergétique, observable depuis plusieurs décennies, accentue l’urgence de développer des équipements de stockage efficaces et performants. Les batteries au lithium-ion (Li-ion), commercialisées depuis le début des années 1990, ont presque atteint les limites théoriques imposées par leurs composantes. La recherche s’oriente donc aujourd’hui vers les batteries tout-solide constituées d’une électrode négative de lithium métal. Ces batteries seraient en mesure d’atteindre des densités énergétiques supérieures à celles attribuables aux batteries lithium-ion utilisées et commercialisées à ce jour. Cependant, il subsiste toujours une impasse qui doit être solutionnée afin d’en assurer la viabilité : la formation de dendrites ou de mousse de lithium à la surface de l’électrode négative de lithium métal occasionne le court-circuit des batteries et en réduit l’espérance de vie. Plusieurs pistes de solutions sont proposées afin de réduire ou d’éliminer les problèmes de croissance dendritique et de mousse de lithium. Toutefois, il y a un manque d’information dans la littérature en lien avec la corrélation entre l’état de surface des électrodes négatives (anodes) de lithium métal et les performances électrochimiques de ces dernières. Ce projet de recherche visera donc, entre autres, à étudier l’impact de l’état de surface de l’électrode négative de lithium sur ses performances électrochimiques, dont son temps de vie, sa polarisation et son impédance. Une caractérisation a été effectuée sur les feuilles de lithium étudiées et sur l’interface lithium métal/électrolyte polymère. Suite à l’étude des feuilles sous leur forme native, des dépôts protecteurs d’or, d’aluminium et de fluorure de lithium ont été appliqués par déposition en phase vapeur (PVD) sur le lithium industriel de basse rugosité, afin d’évaluer si ces derniers amélioraient la performance électrochimique des cellules. La caractérisation physique a été effectuée par microscopie de force atomique à effet tunnel (Peakforce-TUNA) et microscopie électronique à balayage (MEB). Ensuite, la caractérisation chimique de chaque feuille de lithium utilisée a été caractérisée principalement par spectroscopie photoélectronique par rayons X (XPS) et par spectrométrie de masse à plasma induit (ICP-MS), permettant respectivement de connaître la composition chimique surfacique et complète des feuilles de lithium. Finalement, l’impact de l’interface lithium métal/électrolyte polymère sur la viabilité des cellules complètes a été déterminé par des cyclages galvanostatiques. Ces batteries ont enfin été observées post mortem par MEB afin d’observer l’impact du cyclage sur l’état interne des cellules. Il a été déterminé que la morphologie des feuilles de lithium et de l’interface lithium métal/électrolyte polymère ont un impact sans équivoque sur la durée de vie et sur la polarisation des cellules étudiées. Une méthode de préparation de surface électrochimique a donc été conçue, en cyclant les électrodes de lithium à basse densité de courant (0,130 mA.cm-2), améliorant ainsi la durée de vie des cellules symétriques exploitant des électrodes de lithium métal. / The increased use of electricity witnessed during the past few decades emphasizes the urgency of developing efficient and performing energy storing devices. Present on the market since the beginning of the 1990s, Lithium-ion (Li-ion) batteries have reached the theoretical limit inherent to their components. Research efforts currently aim at developing all-solid batteries composed of a negative lithium electrode. This type of electrode uses only lithium in its pure metallic state and it has the capacity to attain higher energy densities than those attributable to the lithium-ion batteries. Despite the potential of this promising technology, there is an obstacle that must be overcome in order to ensure its viability: the formation of dendrites and mossy lithium on the surface of the lithium metal negative electrode causes the batteries to short-circuit and reduces their life expectancy. Several solutions have been proposed in the literature in order to either eliminate or mitigate the issues of dendritic growth and mossy lithium. However, published studies do not specifically address the correlation between the state of the surface of the lithium metal and its electrochemical performance when used as the negative electrode (anode). This research project therefore focused on evaluating the impact of the state of the surface the lithium metal negative electrode on its electrochemical performance, such as its lifetime, polarization, and impedance. The lithium sheets and the lithium metal/polymer electrolyte interface were characterized in order to better understand the problematic processes related to the use of the lithium metal in batteries. In addition to studying the sheets in their native form, a protective gold deposit was applied by physical vapor deposition (PVD) on the lithium sheets to determine whether the deposit improved the electrochemical performance of the cells. The physical characterization was performed by using tunnelling atomic force microscopy (Peakforce-TUNA) and scanning electron microscopy (SEM). Each lithium x sheet used was then characterized by X-ray photoelectron spectroscopy (XPS) and coupled plasma mass spectrometry (ICP-MS). These chemical characterizations allowed to determine the surface and bulk chemical compositions of the lithium sheets. Finally, in order to understand the impact of the lithium metal/polymer electrolyte interface on the viability of complete cells, galvanostatic cycling, similar to true operating conditions of a battery, was performed. Cross-sections of these batteries were assessed post-mortem by SEM in order to analyze the impact of the cycling density on the internal state of the cells. It has been determined that the morphology of the lithium foils and the lithium metal/polymer electrolyte interface impacted the lifespan and the polarization of the studied cells. An electrochemical surface preparation method was therefore designed by cycling the lithium electrodes at a low current density (0.130 mA.cm-2), thus improving the life of the symmetrical cells composed of lithium metal electrodes.
3

Etude des phases Li10MP2S12 (M=Sn, Si) comme électrolyte pour batteries tout-solide massives / Study of Li10MP2S12 (M=Sn, Si) phases as electrolyte for solid state batteries

Tarhouchi, Ilyas 07 December 2015 (has links)
En remplaçant l’électrolyte liquide par un solide, les batteries tout-solide massivessont souvent considérées comme une solution aux problèmes de sécurité desbatteries Li-ion actuelles. La récente découverte du matériau Li10GeP2S12 destructure dite LGPS présentant une conductivité ionique équivalente à celles desélectrolytes liquides a réactivé ce domaine de recherche.Dans cette optique, nous avons étudié les matériaux Li10MP2S12 (M=Sn, Si) destructure LGPS, au moyen de diverses caractérisations structurales (DRX,RMN du 31P, spectroscopie Mössbauer …), de propriétés de mobilité/conductionionique (RMN du 7Li, spectroscopie d’impédance) et de propriétés électrochimiques(voltammétrie cyclique, cyclage galvanostatique).Les échantillons commerciaux de Li10SnP2S12 contiennent des impuretés et uneincertitude subsiste sur la composition de la phase de structure LGPS. Lamodélisation des déplacements de RMN du 31P a notamment permis de mettre enévidence l’influence des lithium en site octaédrique adjacents. Les mesuresd’impédance suggèrent une réactivité avec le Li métallique et la voltammétrieconfirme que cette phase est très instable à bas potentiel, excluant son utilisation entant que simple électrolyte dans une batterie tout-solide. Nous proposons qu’il puisseêtre utilisé à la fois comme électrolyte et comme matériau de négative.L’étude préliminaire des matériaux au silicium souligne la difficulté d’obtention dematériau pur de structure LGPS, et conduit à la mise en cause du modèle structuraldit thio-LiSICON. Par ailleurs, elle montre là encore l’instabilité de ces matériauxface au lithium métal. / By replacing the liquid electrolyte by a solid one, solid state batteries are oftenconsidered as a solution to safety issues in current Li-ion batteries. The recentdiscovery of Li10GeP2S12 with so-called LGPS structure, which exhibits an ionicconductivity equivalent to that of liquid electrolytes, has boosted related researchactivities.In this perspective, we studied the Li10MP2S12 (M=Sn, Si) materials with LGPSstructure, using various methods to characterize the structure (XRD, 31P NMR,Mössbauer spectroscopy …), the ionic mobility/conductivity (7Li NMR, Impedancespectroscopy), and the electrochemical properties (cycling voltammetry,galvanostatic cycling) of the material.Commercially available Li10SnP2S12 batches contain impurities and there remains anambiguity in the actual composition of the LGPS type phase. Modelling of the 31PNMR shifts reveals the effect of lithium in neighboring octahedral sites. Impedencemeasurements suggest reactivity with Li metal, and cyclic voltammetry confirms thatthe material is highly unstable at low potential, which excludes its use as a simpleelectrolyte in solid state batteries. We propose that it might be used both as anelectrolyte and as a negative electrode.The preliminary study on silicon based materials highlights difficulties in obtaining apure LGPS-type compound and questions the real nature of the so-calledthio-LiSICON structural model. Besides, it also shows the instability of thesematerials versus lithium metal.

Page generated in 0.0925 seconds