Spelling suggestions: "subject:"battery lack design"" "subject:"battery lack 1design""
1 |
Battery Pack Design of Cylindrical Lithium-Ion Cells and Modelling of Prismatic Lithium-Ion Battery Based on Characterization TestsChen, Ruiwen January 2022 (has links)
With increasing research on lithium batteries, the technology of electric vehicles equipped with lithium battery packs as the main energy storage system has become more and more mature, and the design and testing of lithium ion battery packs are becoming extremely important. As the battery system becomes more complex, it is necessary to optimize its structural design and to monitor its dynamic performance accurately. This research considers two related topics. The first is the design of a battery submodule made up of cylindrical lithium cells. The objective of this design is to improve its energy density and optimize the heat dissipation performance according to the installation position and space constraints in Ford Focus EV 2013, and, produce a submodule prototype based on this design; The second objective is to derive and verify an equivalent circuit model for a prismatic lithium battery cell of high energy capacity based on experimental results.
In terms of mechanical structure, the basic structure of a battery pack is determined by the desired performance as well as cell characteristics. In this research, the Samsung 35E 18650 cylindrical cells are chosen. 20 battery cells are connected in parallel to form a battery submodule, and 13 battery submodules are connected in series to form a battery pack. The battery pack design process mainly includes positioning and connection of battery cells, heat dissipation mechanism, cabling and inside the pack. The above considerations were applied to prototype battery submodule with an energy density of 216.87 Wh/kg. Some key considerations in the design of the battery pack include checking the conductivity and the welding connection.
Chemistry of lithium-ion batteries are constantly evolving with industrial demands which call for higher energy storage capacity. Therefore, this research selected a new high-capacity prismatic cell to establish an equivalent circuit model using characterization and experiments, followed by verification. A 280 Ah Lithium Iron Phosphate (LFP) prismatic battery cell was selected and characterized by testing under various operating conditions for validation, the Urban Dynamometer Driving Schedule (UDDS) was used. / Thesis / Master of Applied Science (MASc) / This thesis introduces how to design a battery pack using cylindrical battery cells, also shows how to conduct characterization tests and build a equivalent circuit battery model.
|
2 |
Outlook of EV battery pack design trends : Assessment of trend impact from a recycling perspectiveJohannisson, Arvid January 2023 (has links)
Electrification is essential to decarbonise the transport sector, which accounts for the highest share of greenhouse gas emissions by all sectors. The transition requires a large amount of batteries which bring challenges, not least when it comes to raw material supply and sustainability issues during the mineral mining. Long-term battery recycling is one way to address these challenges. To achieve an efficient recycling process the implementation of lifecycle perspectives in the EV battery pack design phase is of great importance. One of the major activities in the recycling process is the battery disassembly, which requires standardisation and design simplifications to minimize labour time and facilitate automated disassembly. Some of the most important design features is component standardisation, linear pack design and decreased number of parts, including screws, fasteners, and modules, which applies for all pack designs. In recent years new EV battery pack designs have entered the market, which has an improved performance in terms of energy density and cost per kWh. The development of these pack designs is strongly interacting with improvements in the cell design and cell chemistry. The overarching design trend is moving towards battery packs which remove modules, such as Cell-to-pack, and where the battery is integrated as a structural part in the vehicle frame, such as Cell-to-chassis. However, there are uncertainties about the impact of these design trends on the battery disassembly and recycling, which need to be investigated. Comparisons between the new trends and the traditional Module-to-pack design indicate that Cell-to-pack brings advantages to the recycling process as it usually contains less components and does not require labour to disassemble the modules. The chassis-integrated designs need more research to draw general conclusions, but the recyclability may not exceed the Cell-to-pack as the use of structural adhesives and chassis integration likely bring aggravating circumstances on the disassembly. Besides recyclability, the new pack designs also have a strategic impact on the actors in the value chain. EV battery packs with high recyclability should also be in all actors’ interest when moving towards a circular economy, as the recycling cost will be distributed along the entire value chain. / Elektrifiering är en nyckelfaktor för att minska koldioxidutsläppen inom transportsektorn, som står för den största andelen av alla sektorers utsläpp av växthusgaser. Övergången kräver en stor mängd batterier, vilket medför utmaningar, inte minst när det gäller råvarutillgången och hållbarhetsaspekter under mineralbrytningen. Återvinning av batterier är ett sätt att hantera dessa utmaningar långsiktigt. För att uppnå en effektiv återvinningsprocess är det av stor betydelse att tillämpa ett livscykelperspektiv i designfasen för batteripaket i elfordon. En av de viktigaste aktiviteterna i återvinningsprocessen är demontering av batterier, vilket kräver standardisering och förenklad konstruktion för att minimera arbetstiden och underlätta automatiserad demontering. Några av de viktigaste designegenskaperna är komponentstandardisering, linjär design och minskat antal delar, inklusive skruvar, fästelement och moduler, vilket gäller för alla packdesigner. Under de senaste åren har nya batteripackdesigner för elfordon kommit till marknaden, med förbättrad prestanda när det gäller energitäthet och kostnad per kWh. Utvecklingen av dessa batteripack interagerar tydligt med förbättringar inom celldesign och cellkemi. Den övergripande designtrenden går mot batteripack där moduler tas bort, till exempel Cell-to-pack, och där batteriet är integrerat som en strukturell del i fordonsramen, till exempel Cell-to-chassi. Det finns dock osäkerheter gällande designtrendernas påverkan på demontering och återvinning av batterierna, vilket kräver ytterligare undersökning. Jämförelser mellan de nya trenderna och den traditionella konstruktionen Module-to-pack visar att Cell-to-pack medför fördelar för återvinningsprocessen eftersom den vanligtvis innehåller färre komponenter och inte kräver arbete för att demontera modulerna. De chassiintegrerade konstruktionerna kräver mer forskning för att kunna dra några allmänna slutsatser, men återvinningsbarheten överträffar möjligen inte Cell-to-pack designen, eftersom användningen av strukturella lim och chassiintegrering sannolikt leder till försvårande omständigheter vid demonteringen. Förutom återvinningsbarheten har de nya förpackningarna också en strategisk inverkan på aktörerna i värdekedjan. Batteripaket med hög återvinningsbarhet bör även ligga i alla aktörers intresse vid implementering av en cirkulär ekonomi, eftersom återvinningskostnaderna kommer att fördelas över hela värdekedjan.
|
Page generated in 0.0526 seconds