• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 89
  • 21
  • 13
  • 9
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 175
  • 175
  • 31
  • 28
  • 24
  • 23
  • 22
  • 19
  • 18
  • 16
  • 15
  • 15
  • 14
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Data-driven prediction of saltmarsh morphodynamics

Evans, Ben Richard January 2018 (has links)
Saltmarshes provide a diverse range of ecosystem services and are protected under a number of international designations. Nevertheless they are generally declining in extent in the United Kingdom and North West Europe. The drivers of this decline are complex and poorly understood. When considering mitigation and management for future ecosystem service provision it will be important to understand why, where, and to what extent decline is likely to occur. Few studies have attempted to forecast saltmarsh morphodynamics at a system level over decadal time scales. There is no synthesis of existing knowledge available for specific site predictions nor is there a formalised framework for individual site assessment and management. This project evaluates the extent to which machine learning model approaches (boosted regression trees, neural networks and Bayesian networks) can facilitate synthesis of information and prediction of decadal-scale morphological tendencies of saltmarshes. Importantly, data-driven predictions are independent of the assumptions underlying physically-based models, and therefore offer an additional opportunity to crossvalidate between two paradigms. Marsh margins and interiors are both considered but are treated separately since they are regarded as being sensitive to different process suites. The study therefore identifies factors likely to control morphological trajectories and develops geospatial methodologies to derive proxy measures relating to controls or processes. These metrics are developed at a high spatial density in the order of tens of metres allowing for the resolution of fine-scale behavioural differences. Conventional statistical approaches, as have been previously adopted, are applied to the dataset to assess consistency with previous findings, with some agreement being found. The data are subsequently used to train and compare three types of machine learning model. Boosted regression trees outperform the other two methods in this context. The resulting models are able to explain more than 95% of the variance in marginal changes and 91% for internal dynamics. Models are selected based on validation performance and are then queried with realistic future scenarios which represent altered input conditions that may arise as a consequence of future environmental change. Responses to these scenarios are evaluated, suggesting system sensitivity to all scenarios tested and offering a high degree of spatial detail in responses. While mechanistic interpretation of some responses is challenging, process-based justifications are offered for many of the observed behaviours, providing confidence that the results are realistic. The work demonstrates a potentially powerful alternative (and complement) to current morphodynamic models that can be applied over large areas with relative ease, compared to numerical implementations. Powerful analyses with broad scope are now available to the field of coastal geomorphology through the combination of spatial data streams and machine learning. Such methods are shown to be of great potential value in support of applied management and monitoring interventions.
172

A Bayesian Network methodology for railway risk, safety and decision support

Mahboob, Qamar 14 February 2014 (has links)
For railways, risk analysis is carried out to identify hazardous situations and their consequences. Until recently, classical methods such as Fault Tree Analysis (FTA) and Event Tree Analysis (ETA) were applied in modelling the linear and logically deterministic aspects of railway risks, safety and reliability. However, it has been proven that modern railway systems are rather complex, involving multi-dependencies between system variables and uncertainties about these dependencies. For train derailment accidents, for instance, high train speed is a common cause of failure; slip and failure of brake applications are disjoint events; failure dependency exists between the train protection and warning system and driver errors; driver errors are time dependent and there is functional uncertainty in derailment conditions. Failing to incorporate these aspects of a complex system leads to wrong estimations of the risks and safety, and, consequently, to wrong management decisions. Furthermore, a complex railway system integrates various technologies and is operated in an environment where the behaviour and failure modes of the system are difficult to model using probabilistic techniques. Modelling and quantification of the railway risk and safety problems that involve dependencies and uncertainties such as mentioned above are complex tasks. Importance measures are useful in the ranking of components, which are significant with respect to the risk, safety and reliability of a railway system. The computation of importance measures using FTA has limitation for complex railways. ALARP (As Low as Reasonably Possible) risk acceptance criteria are widely accepted as ’\'best practice’’ in the railways. According to the ALARP approach, a tolerable region exists between the regions of intolerable and negligible risks. In the tolerable region, risk is undertaken only if a benefit is desired. In this case, one needs to have additional criteria to identify the socio-economic benefits of adopting a safety measure for railway facilities. The Life Quality Index (LQI) is a rational way of establishing a relation between the financial resources utilized to improve the safety of an engineering system and the potential fatalities that can be avoided by safety improvement. This thesis shows the application of the LQI approach to quantifying the social benefits of a number of safety management plans for a railway facility. We apply Bayesian Networks and influence diagrams, which are extensions of Bayesian Networks, to model and assess the life safety risks associated with railways. Bayesian Networks are directed acyclic probabilistic graphical models that handle the joint distribution of random variables in a compact and flexible way. In influence diagrams, problems of probabilistic inference and decision making – based on utility functions – can be combined and optimized, especially, for systems with many dependencies and uncertainties. The optimal decision, which maximizes the total benefits to society, is obtained. In this thesis, the application of Bayesian Networks to the railway industry is investigated for the purpose of improving modelling and the analysis of risk, safety and reliability in railways. One example application and two real world applications are presented to show the usefulness and suitability of the Bayesian Networks for the quantitative risk assessment and risk-based decision support in reference to railways.:ACKNOWLEDGEMENTS IV ABSTRACT VI ZUSAMMENFASSUNG VIII LIST OF FIGURES XIV LIST OF TABLES XVI CHAPTER 1: Introduction 1 1.1 Need to model and quantify the causes and consequences of hazards on railways 1 1.2 State-of-the art techniques in the railway 2 1.3 Goals and scope of work 4 1.4 Existing work 6 1.5 Outline of the thesis 7 CHAPTER 2: Methods for safety and risk analysis 10 2.1 Introduction 10 2.1.1 Simplified risk analysis 12 2.1.2 Standard risk analysis 12 2.1.3 Model-based risk analysis 12 2.2 Risk Matrix 14 2.2.1 Determine the possible consequences 14 2.2.2 Likelihood of occurrence 15 2.2.3 Risk scoring matrix 15 2.3 Failure Modes & Effect Analysis – FMEA 16 2.3.1 Example application of FMEA 17 2.4 Fault Tree Analysis – FTA 19 2.5 Reliability Block Diagram – RBD 22 2.6 Event Tree Analysis – ETA 24 2.7 Safety Risk Model – SRM 25 2.8 Markov Model – MM 27 2.9 Quantification of expected values 31 2.9.1 Bayesian Analysis – BA 35 2.9.2 Hazard Function – HF 39 2.9.3 Monte Carlo (MC) Simulation 42 2.10 Summary 46 CHAPTER 3: Introduction to Bayesian Networks 48 3.1 Terminology in Bayesian Networks 48 3.2 Construction of Bayesian Networks 49 3.3 Conditional independence in Bayesian Networks 51 3.4 Joint probability distribution in Bayesian Networks 52 3.5 Probabilistic Inference in Bayesian Networks 53 3.6 Probabilistic inference by enumeration 54 3.7 Probabilistic inference by variable elimination 55 3.8 Approximate inference for Bayesian Networks 57 3.9 Dynamic Bayesian Networks 58 3.10 Influence diagrams (IDs) 60 CHAPTER 4: Risk acceptance criteria and safety targets 62 4.1 Introduction 62 4.2 ALARP (As Low As Reasonably Possible) criteria 62 4.3 MEM (Minimum Endogenous Mortality) criterion 63 4.4 MGS (Mindestens Gleiche Sicherheit) criteria 64 4.5 Safety Integrity Levels (SILs) 65 4.6 Importance Measures (IMs) 66 4.7 Life Quality Index (LQI) 68 4.8 Summary 72 CHAPTER 5: Application of Bayesian Networks to complex railways: A study on derailment accidents 73 5.1 Introduction 73 5.2 Fault Tree Analysis for train derailment due to SPAD 74 5.2.1 Computation of importance measures using FTA 75 5.3 Event Tree Analysis (ETA) 78 5.4 Mapping Fault Tree and Event Tree based risk model to Bayesian Networks 79 5.4.1 Computation of importance measures using Bayesian Networks 81 5.5 Risk quantification 82 5.6 Advanced aspects of example application 83 5.6.1 Advanced aspect 1: Common cause failures 83 5.6.2 Advanced aspect 2: Disjoint events 84 5.6.3 Advanced aspect 3: Multistate system and components 84 5.6.4 Advanced aspect 4: Failure dependency 85 5.6.5 Advanced aspect 5: Time dependencies 85 5.6.6 Advanced aspect 6: Functional uncertainty and factual knowledge 85 5.6.7 Advanced aspect 7: Uncertainty in expert knowledge 86 5.6.8 Advanced aspect 8: Simplifications and dependencies in Event Tree Analysis 86 5.7 Implementation of the advanced aspects of the train derailment model using Bayesian Networks. 88 5.8 Results and discussions 92 5.9 Summary 93 CHAPTER 6: Bayesian Networks for risk-informed safety requirements for platform screen doors in railways 94 6.1 Introduction 94 6.2 Components of the risk-informed safety requirement process for Platform Screen Door system in a mega city 97 6.2.1 Define objective and methodology 97 6.2.2 Familiarization of system and information gathering 97 6.2.3 Hazard identification and hazard classification 97 6.2.4 Hazard scenario analysis 98 6.2.5 Probability of occurrence and failure data 99 6.2.6 Quantification of the risks 105 6.2.6.1. Tolerable risks 105 6.2.6.2. Risk exposure 105 6.2.6.3. Risk assessment 106 6.3 Summary 107 CHAPTER 7: Influence diagrams based decision support for railway level crossings 108 7.1 Introduction 108 7.2 Level crossing accidents in railways 109 7.3 A case study of railway level crossing 110 7.4 Characteristics of the railway level crossing under investigation 111 7.5 Life quality index applied to railway level crossing risk problem 115 7.6 Summary 119 CHAPTER 8: Conclusions and outlook 120 8.1 Summary and important contributions 120 8.2 Originality of the work 122 8.3 Outlook 122 BIBLIOGRAPHY 124 APPENDIX 1 131
173

Structure learning of Bayesian networks via data perturbation / Aprendizagem estrutural de Redes Bayesianas via perturbação de dados

Gross, Tadeu Junior 29 November 2018 (has links)
Structure learning of Bayesian Networks (BNs) is an NP-hard problem, and the use of sub-optimal strategies is essential in domains involving many variables. One of them is to generate multiple approximate structures and then to reduce the ensemble to a representative structure. It is possible to use the occurrence frequency (on the structures ensemble) as the criteria for accepting a dominant directed edge between two nodes and thus obtaining the single structure. In this doctoral research, it was made an analogy with an adapted one-dimensional random-walk for analytically deducing an appropriate decision threshold to such occurrence frequency. The obtained closed-form expression has been validated across benchmark datasets applying the Matthews Correlation Coefficient as the performance metric. In the experiments using a recent medical dataset, the BN resulting from the analytical cutoff-frequency captured the expected associations among nodes and also achieved better prediction performance than the BNs learned with neighbours thresholds to the computed. In literature, the feature accounted along of the perturbed structures has been the edges and not the directed edges (arcs) as in this thesis. That modified strategy still was applied to an elderly dataset to identify potential relationships between variables of medical interest but using an increased threshold instead of the predict by the proposed formula - such prudence is due to the possible social implications of the finding. The motivation behind such an application is that in spite of the proportion of elderly individuals in the population has increased substantially in the last few decades, the risk factors that should be managed in advance to ensure a natural process of mental decline due to ageing remain unknown. In the learned structural model, it was graphically investigated the probabilistic dependence mechanism between two variables of medical interest: the suspected risk factor known as Metabolic Syndrome and the indicator of mental decline referred to as Cognitive Impairment. In this investigation, the concept known in the context of BNs as D-separation has been employed. Results of the carried out study revealed that the dependence between Metabolic Syndrome and Cognitive Variables indeed exists and depends on both Body Mass Index and age. / O aprendizado da estrutura de uma Rede Bayesiana (BN) é um problema NP-difícil, e o uso de estratégias sub-ótimas é essencial em domínios que envolvem muitas variáveis. Uma delas consiste em gerar várias estruturas aproximadas e depois reduzir o conjunto a uma estrutura representativa. É possível usar a frequência de ocorrência (no conjunto de estruturas) como critério para aceitar um arco dominante entre dois nós e assim obter essa estrutura única. Nesta pesquisa de doutorado, foi feita uma analogia com um passeio aleatório unidimensional adaptado para deduzir analiticamente um limiar de decisão apropriado para essa frequência de ocorrência. A expressão de forma fechada obtida foi validada usando bases de dados de referência e aplicando o Coeficiente de Correlação de Matthews como métrica de desempenho. Nos experimentos utilizando dados médicos recentes, a BN resultante da frequência de corte analítica capturou as associações esperadas entre os nós e também obteve melhor desempenho de predição do que as BNs aprendidas com limiares vizinhos ao calculado. Na literatura, a característica contabilizada ao longo das estruturas perturbadas tem sido as arestas e não as arestas direcionadas (arcos) como nesta tese. Essa estratégia modificada ainda foi aplicada a um conjunto de dados de idosos para identificar potenciais relações entre variáveis de interesse médico, mas usando um limiar aumentado em vez do previsto pela fórmula proposta - essa cautela deve-se às possíveis implicações sociais do achado. A motivação por trás dessa aplicação é que, apesar da proporção de idosos na população ter aumentado substancialmente nas últimas décadas, os fatores de risco que devem ser controlados com antecedência para garantir um processo natural de declínio mental devido ao envelhecimento permanecem desconhecidos. No modelo estrutural aprendido, investigou-se graficamente o mecanismo de dependência probabilística entre duas variáveis de interesse médico: o fator de risco suspeito conhecido como Síndrome Metabólica e o indicador de declínio mental denominado Comprometimento Cognitivo. Nessa investigação, empregou-se o conceito conhecido no contexto de BNs como D-separação. Esse estudo revelou que a dependência entre Síndrome Metabólica e Variáveis Cognitivas de fato existe e depende tanto do Índice de Massa Corporal quanto da idade.
174

Structure learning of Bayesian networks via data perturbation / Aprendizagem estrutural de Redes Bayesianas via perturbação de dados

Tadeu Junior Gross 29 November 2018 (has links)
Structure learning of Bayesian Networks (BNs) is an NP-hard problem, and the use of sub-optimal strategies is essential in domains involving many variables. One of them is to generate multiple approximate structures and then to reduce the ensemble to a representative structure. It is possible to use the occurrence frequency (on the structures ensemble) as the criteria for accepting a dominant directed edge between two nodes and thus obtaining the single structure. In this doctoral research, it was made an analogy with an adapted one-dimensional random-walk for analytically deducing an appropriate decision threshold to such occurrence frequency. The obtained closed-form expression has been validated across benchmark datasets applying the Matthews Correlation Coefficient as the performance metric. In the experiments using a recent medical dataset, the BN resulting from the analytical cutoff-frequency captured the expected associations among nodes and also achieved better prediction performance than the BNs learned with neighbours thresholds to the computed. In literature, the feature accounted along of the perturbed structures has been the edges and not the directed edges (arcs) as in this thesis. That modified strategy still was applied to an elderly dataset to identify potential relationships between variables of medical interest but using an increased threshold instead of the predict by the proposed formula - such prudence is due to the possible social implications of the finding. The motivation behind such an application is that in spite of the proportion of elderly individuals in the population has increased substantially in the last few decades, the risk factors that should be managed in advance to ensure a natural process of mental decline due to ageing remain unknown. In the learned structural model, it was graphically investigated the probabilistic dependence mechanism between two variables of medical interest: the suspected risk factor known as Metabolic Syndrome and the indicator of mental decline referred to as Cognitive Impairment. In this investigation, the concept known in the context of BNs as D-separation has been employed. Results of the carried out study revealed that the dependence between Metabolic Syndrome and Cognitive Variables indeed exists and depends on both Body Mass Index and age. / O aprendizado da estrutura de uma Rede Bayesiana (BN) é um problema NP-difícil, e o uso de estratégias sub-ótimas é essencial em domínios que envolvem muitas variáveis. Uma delas consiste em gerar várias estruturas aproximadas e depois reduzir o conjunto a uma estrutura representativa. É possível usar a frequência de ocorrência (no conjunto de estruturas) como critério para aceitar um arco dominante entre dois nós e assim obter essa estrutura única. Nesta pesquisa de doutorado, foi feita uma analogia com um passeio aleatório unidimensional adaptado para deduzir analiticamente um limiar de decisão apropriado para essa frequência de ocorrência. A expressão de forma fechada obtida foi validada usando bases de dados de referência e aplicando o Coeficiente de Correlação de Matthews como métrica de desempenho. Nos experimentos utilizando dados médicos recentes, a BN resultante da frequência de corte analítica capturou as associações esperadas entre os nós e também obteve melhor desempenho de predição do que as BNs aprendidas com limiares vizinhos ao calculado. Na literatura, a característica contabilizada ao longo das estruturas perturbadas tem sido as arestas e não as arestas direcionadas (arcos) como nesta tese. Essa estratégia modificada ainda foi aplicada a um conjunto de dados de idosos para identificar potenciais relações entre variáveis de interesse médico, mas usando um limiar aumentado em vez do previsto pela fórmula proposta - essa cautela deve-se às possíveis implicações sociais do achado. A motivação por trás dessa aplicação é que, apesar da proporção de idosos na população ter aumentado substancialmente nas últimas décadas, os fatores de risco que devem ser controlados com antecedência para garantir um processo natural de declínio mental devido ao envelhecimento permanecem desconhecidos. No modelo estrutural aprendido, investigou-se graficamente o mecanismo de dependência probabilística entre duas variáveis de interesse médico: o fator de risco suspeito conhecido como Síndrome Metabólica e o indicador de declínio mental denominado Comprometimento Cognitivo. Nessa investigação, empregou-se o conceito conhecido no contexto de BNs como D-separação. Esse estudo revelou que a dependência entre Síndrome Metabólica e Variáveis Cognitivas de fato existe e depende tanto do Índice de Massa Corporal quanto da idade.
175

New Heuristics for Planning with Action Costs

Keyder, Emil Ragip 17 December 2010 (has links)
Classical planning is the problem of nding a sequence of actions that take an agent from an initial state to a desired goal situation, assuming deter- ministic outcomes for actions and perfect information. Satis cing planning seeks to quickly nd low-cost solutions with no guarantees of optimality. The most e ective approach for satis cing planning has proved to be heuristic search using non-admissible heuristics. In this thesis, we introduce several such heuristics that are able to take into account costs on actions, and there- fore try to minimize the more general metric of cost, rather than length, of plans, and investigate their properties and performance. In addition, we show how the problem of planning with soft goals can be compiled into a classical planning problem with costs, a setting in which cost-sensitive heuristics such as those presented here are essential. / La plani caci on cl asica es el problema que consiste en hallar una secuencia de acciones que lleven a un agente desde un estado inicial a un objetivo, asum- iendo resultados determin sticos e informaci on completa. La plani caci on \satis cing" busca encontrar una soluci on de bajo coste, sin garant as de op- timalidad. La b usqueda heur stica guiada por heur sticas no admisibles es el enfoque que ha tenido mas exito. Esta tesis presenta varias heur sticas de ese g enero que consideran costes en las acciones, y por lo tanto encuentran soluciones que minimizan el coste, en lugar de la longitud del plan. Adem as, demostramos que el problema de plani caci on con \soft goals", u objetivos opcionales, se puede reducir a un problema de plani caci on clasica con costes en las acciones, escenario en el que heur sticas sensibles a costes, tal como las aqu presentadas, son esenciales.

Page generated in 0.0587 seconds