• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 89
  • 21
  • 13
  • 9
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 175
  • 175
  • 31
  • 28
  • 24
  • 23
  • 22
  • 19
  • 18
  • 16
  • 15
  • 15
  • 14
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Applications de l'intelligence artificielle à la détection et l'isolation de pannes multiples dans un réseau de télécommunications / Application of artificial intelligence to the detection and isolation of multiple faults in a telecommunications network

Tembo Mouafo, Serge Romaric 23 January 2017 (has links)
Les réseaux de télécommunication doivent être fiables et robustes pour garantir la haute disponibilité des services. Les opérateurs cherchent actuellement à automatiser autant que possible les opérations complexes de gestion des réseaux, telles que le diagnostic de pannes.Dans cette thèse nous nous sommes intéressés au diagnostic automatique de pannes dans les réseaux d'accès optiques de l'opérateur Orange. L'outil de diagnostic utilisé jusqu'à présent, nommé DELC, est un système expert à base de règles de décision. Ce système est performant mais difficile à maintenir en raison, en particulier, du très grand volume d'informations à analyser. Il est également impossible de disposer d'une règle pour chaque configuration possible de panne, de sorte que certaines pannes ne sont actuellement pas diagnostiquées.Dans cette thèse nous avons proposé une nouvelle approche. Dans notre approche, le diagnostic des causes racines des anomalies et alarmes observées s'appuie sur une modélisation probabiliste, de type réseau bayésien, des relations de dépendance entre les différentes alarmes, compteurs, pannes intermédiaires et causes racines au niveau des différents équipements de réseau. Ce modèle probabiliste a été conçu de manière modulaire, de façon à pouvoir évoluer en cas de modification de l'architecture physique du réseau.Le diagnostic des causes racines des anomalies est effectué par inférence, dans le réseau bayésien, de l'état des noeuds non observés au vu des observations (compteurs, alarmes intermédiaires, etc...) récoltées sur le réseau de l'opérateur. La structure du réseau bayésien, ainsi que l'ordre de grandeur des paramètres probabilistes de ce modèle, ont été déterminés en intégrant dans le modèle les connaissances des experts spécialistes du diagnostic sur ce segment de réseau. L'analyse de milliers de cas de diagnostic de pannes a ensuite permis de calibrer finement les paramètres probabilistes du modèle grâce à un algorithme EM (Expectation Maximization).Les performances de l'outil développé, nommé PANDA, ont été évaluées sur deux mois de diagnostic de panne dans le réseau GPON-FTTH d'Orange en juillet-août 2015. Dans la plupart des cas, le nouveau système, PANDA, et le système en production, DELC, font un diagnostic identique. Cependant un certain nombre de cas sont non diagnostiqués par DELC mais ils sont correctement diagnostiqués par PANDA. Les cas pour lesquels les deux systèmes émettent des diagnostics différents ont été évalués manuellement, ce qui a permis de démontrer dans chacun de ces cas la pertinence des décisions prises par PANDA. / Telecommunication networks must be reliable and robust to ensure high availability of services. Operators are currently searching to automate as much as possible, complex network management operations such as fault diagnosis.In this thesis we are focused on self-diagnosis of failures in the optical access networks of the operator Orange. The diagnostic tool used up to now, called DELC, is an expert system based on decision rules. This system is efficient but difficult to maintain due in particular to the very large volume of information to analyze. It is also impossible to have a rule for each possible fault configuration, so that some faults are currently not diagnosed.We proposed in this thesis a new approach. In our approach, the diagnosis of the root causes of malfunctions and alarms is based on a Bayesian network probabilistic model of dependency relationships between the different alarms, counters, intermediate faults and root causes at the level of the various network component. This probabilistic model has been designed in a modular way, so as to be able to evolve in case of modification of the physical architecture of the network. Self-diagnosis of the root causes of malfunctions and alarms is made by inference in the Bayesian network model of the state of the nodes not observed in view of observations (counters, alarms, etc.) collected on the operator's network. The structure of the Bayesian network, as well as the order of magnitude of the probabilistic parameters of this model, were determined by integrating in the model the expert knowledge of the diagnostic experts on this segment of the network. The analysis of thousands of cases of fault diagnosis allowed to fine-tune the probabilistic parameters of the model thanks to an Expectation Maximization algorithm. The performance of the developed probabilistic tool, named PANDA, was evaluated over two months of fault diagnosis in Orange's GPON-FTTH network in July-August 2015. In most cases, the new system, PANDA, and the system in production, DELC, make an identical diagnosis. However, a number of cases are not diagnosed by DELC but are correctly diagnosed by PANDA. The cases for which self-diagnosis results of the two systems are different were evaluated manually, which made it possible to demonstrate in each of these cases the relevance of the decisions taken by PANDA.
162

Statistical and computational methodology for the analysis of forensic DNA mixtures with artefacts

Graversen, Therese January 2014 (has links)
This thesis proposes and discusses a statistical model for interpreting forensic DNA mixtures. We develop methods for estimation of model parameters and assessing the uncertainty of the estimated quantities. Further, we discuss how to interpret the mixture in terms of predicting the set of contributors. We emphasise the importance of challenging any interpretation of a particular mixture, and for this purpose we develop a set of diagnostic tools that can be used in assessing the adequacy of the model to the data at hand as well as in a systematic validation of the model on experimental data. An important feature of this work is that all methodology is developed entirely within the framework of the adopted model, ensuring a transparent and consistent analysis. To overcome the challenge that lies in handling the large state space for DNA profiles, we propose a representation of a genotype that exhibits a Markov structure. Further, we develop methods for efficient and exact computation in a Bayesian network. An implementation of the model and methodology is available through the R package DNAmixtures.
163

A Tool for Administration of the Company Products Portfolio / A Tool for Administration of the Company Product Portfolio

Koreň, Miroslav January 2011 (has links)
This paper concerns about key business process in the production companies, namely, the new product development. The object of this thesis has been to create a tool to estimate the risk of the new product development. To reach this goal, current tools used to deciding the risk must have been explored. As the best tool, appropriate for assessing the risk of new product development has proved the Bayesian Network. This paper explains the construction of the Bayesian network and shows the way how to generate the probabilities in the network to be accurate for the risk estimation. Based on this theoretical knowledge has been built an information system, which estimates the risk of the new products and administer the risks.
164

Modèle de confiance et ontologie probabiliste pilotés par réseaux bayésiens pour la gestion des accords de services dans l’environnement de services infonuagiques

Jules, Obed 08 1900 (has links)
No description available.
165

Observations probabilistes dans les réseaux bayésiens / Probabilistic evidence in bayesian networks

Ben Mrad, Ali 20 June 2015 (has links)
Dans un réseau bayésien, une observation sur une variable signifie en général que cette variable est instanciée. Ceci signifie que l’observateur peut affirmer avec certitude que la variable est dans l’état signalé. Cette thèse porte sur d’autres types d’observations, souvent appelées observations incertaines, qui ne peuvent pas être représentées par la simple affectation de la variable. Cette thèse clarifie et étudie les différents concepts d’observations incertaines et propose différentes applications des observations incertaines dans les réseaux bayésiens.Nous commençons par dresser un état des lieux sur les observations incertaines dans les réseaux bayésiens dans la littérature et dans les logiciels, en termes de terminologie, de définition, de spécification et de propagation. Il en ressort que le vocabulaire n'est pas clairement établi et que les définitions proposées couvrent parfois des notions différentes.Nous identifions trois types d’observations incertaines dans les réseaux bayésiens et nous proposons la terminologie suivante : observation de vraisemblance, observation probabiliste fixe et observation probabiliste non-fixe. Nous exposons ensuite la façon dont ces observations peuvent être traitées et propagées.Enfin, nous donnons plusieurs exemples d’utilisation des observations probabilistes fixes dans les réseaux bayésiens. Le premier exemple concerne la propagation d'observations sur une sous-population, appliquée aux systèmes d'information géographique. Le second exemple concerne une organisation de plusieurs agents équipés d'un réseau bayésien local et qui doivent collaborer pour résoudre un problème. Le troisième exemple concerne la prise en compte d'observations sur des variables continues dans un RB discret. Pour cela, l'algorithme BN-IPFP-1 a été implémenté et utilisé sur des données médicales de l'hôpital Bourguiba de Sfax. / In a Bayesian network, evidence on a variable usually signifies that this variable is instantiated, meaning that the observer can affirm with certainty that the variable is in the signaled state. This thesis focuses on other types of evidence, often called uncertain evidence, which cannot be represented by the simple assignment of the variables. This thesis clarifies and studies different concepts of uncertain evidence in a Bayesian network and offers various applications of uncertain evidence in Bayesian networks.Firstly, we present a review of uncertain evidence in Bayesian networks in terms of terminology, definition, specification and propagation. It shows that the vocabulary is not clear and that some terms are used to represent different concepts.We identify three types of uncertain evidence in Bayesian networks and we propose the followingterminology: likelihood evidence, fixed probabilistic evidence and not-fixed probabilistic evidence. We define them and describe updating algorithms for the propagation of uncertain evidence. Finally, we propose several examples of the use of fixed probabilistic evidence in Bayesian networks. The first example concerns evidence on a subpopulation applied in the context of a geographical information system. The second example is an organization of agent encapsulated Bayesian networks that have to collaborate together to solve a problem. The third example concerns the transformation of evidence on continuous variables into fixed probabilistic evidence. The algorithm BN-IPFP-1 has been implemented and used on medical data from CHU Habib Bourguiba in Sfax.
166

Symbolische Interpretation Technischer Zeichnungen

Bringmann, Oliver 08 August 2002 (has links)
Gescannte und vektorisierte technische Zeichnungen werden automatisch unter Nutzung eines Netzes von Modellen in eine hochwertige Datenstruktur migriert. Die Modelle beschreiben die Inhalte der Zeichnungen hierarchisch und deklarativ. Modelle für einzelne Bestandteile der Zeichnungen können paarweise unabhängig entwickelt werden. Dadurch werden auch sehr komplexe Zeichnungsklassen wie Elektroleitungsnetze oder Gebäudepläne zugänglich. Die Modelle verwendet der neue, sogenannte Y-Algorithmus: Hypothesen über die Deutung lokaler Zeichnungsinhalte werden hierarchisch generiert. Treten bei der Nutzung konkurrierender Modelle Konflikte auf, werden diese protokolliert. Mittels des Konfliktbegriffes können konsistente Interpretationen einer kompletten Zeichnung abstrakt definiert und während der Analyse einer konkreten Zeichnung bestimmt werden. Ein wahrscheinlichkeitsbasiertes Gütemaß bewertet jede dieser alternativen, globalen Interpretationen. Das Suchen einer bzgl. dieses Maßes optimalen Interpretation ist ein NP-hartes Problem. Ein Branch and Bound-Algorithmus stellt die adäquate Lösung dar.
167

Vehicle Collision Risk Prediction Using a Dynamic Bayesian Network / Förutsägelse av kollisionsrisk för fordon med ett dynamiskt Bayesianskt nätverk

Lindberg, Jonas, Wolfert Källman, Isak January 2020 (has links)
This thesis tackles the problem of predicting the collision risk for vehicles driving in complex traffic scenes for a few seconds into the future. The method is based on previous research using dynamic Bayesian networks to represent the state of the system. Common risk prediction methods are often categorized into three different groups depending on their abstraction level. The most complex of these are interaction-aware models which take driver interactions into account. These models often suffer from high computational complexity which is a key limitation in practical use. The model studied in this work takes interactions between drivers into account by considering driver intentions and the traffic rules in the scene. The state of the traffic scene used in the model contains the physical state of vehicles, the intentions of drivers and the expected behaviour of drivers according to the traffic rules. To allow for real-time risk assessment, an approximate inference of the state given the noisy sensor measurements is done using sequential importance resampling. Two different measures of risk are studied. The first is based on driver intentions not matching the expected maneuver, which in turn could lead to a dangerous situation. The second measure is based on a trajectory prediction step and uses the two measures time to collision (TTC) and time to critical collision probability (TTCCP). The implemented model can be applied in complex traffic scenarios with numerous participants. In this work, we focus on intersection and roundabout scenarios. The model is tested on simulated and real data from these scenarios. %Simulations of these scenarios is used to test the model. In these qualitative tests, the model was able to correctly identify collisions a few seconds before they occur and is also able to avoid false positives by detecting the vehicles that will give way. / Detta arbete behandlar problemet att förutsäga kollisionsrisken för fordon som kör i komplexa trafikscenarier för några sekunder i framtiden. Metoden är baserad på tidigare forskning där dynamiska Bayesianska nätverk används för att representera systemets tillstånd. Vanliga riskprognosmetoder kategoriseras ofta i tre olika grupper beroende på deras abstraktionsnivå. De mest komplexa av dessa är interaktionsmedvetna modeller som tar hänsyn till förarnas interaktioner. Dessa modeller lider ofta av hög beräkningskomplexitet, vilket är en svår begränsning när det kommer till praktisk användning. Modellen som studeras i detta arbete tar hänsyn till interaktioner mellan förare genom att beakta förarnas avsikter och trafikreglerna i scenen. Tillståndet i trafikscenen som används i modellen innehåller fordonets fysiska tillstånd, förarnas avsikter och förarnas förväntade beteende enligt trafikreglerna. För att möjliggöra riskbedömning i realtid görs en approximativ inferens av tillståndet givet den brusiga sensordatan med hjälp av sekventiell vägd simulering. Två olika mått på risk studeras. Det första är baserat på förarnas avsikter, närmare bestämt att ta reda på om de inte överensstämmer med den förväntade manövern, vilket då skulle kunna leda till en farlig situation. Det andra riskmåttet är baserat på ett prediktionssteg som använder sig av time to collision (TTC) och time to critical collision probability (TTCCP). Den implementerade modellen kan tillämpas i komplexa trafikscenarier med många fordon. I detta arbete fokuserar vi på scerarier i korsningar och rondeller. Modellen testas på simulerad och verklig data från dessa scenarier. I dessa kvalitativa tester kunde modellen korrekt identifiera kollisioner några få sekunder innan de inträffade. Den kunde också undvika falsklarm genom att lista ut vilka fordon som kommer att lämna företräde.
168

Quantifying Trust in Wearable Medical Devices

Thomas, Mini January 2024 (has links)
This thesis explores a methodology to quantify trust in wearable medical devices (WMD) by addressing two main challenges: identifying key factors influencing trust and developing a formal framework for precise trust quantification under uncertainty. The work empirically validates trust factors and uses a Bayesian network to quantify trust. The thesis further employs a data-driven approach to estimate Bayesian parameters, facilitating query-based inference and validating the trust model with real and synthetic datasets, culminating in a customizable parameterized trust evaluation prototype for WMD. / Advances in sensor and digital communication technologies have revolutionized the capabilities of wearable medical device (WMD) to monitor patients’ health remotely, raising growing concerns about trust in these devices. There is a need to quantify trust in WMD for their continued acceptance and adoption by different users. Quantifying trust in WMD poses two significant challenges due to their subjective and stochastic nature. The first challenge is identifying the factors that influence trust in WMD, and the second is developing a formal framework for precise quantification of trust while taking into account the uncertainty and variability of trust factors. This thesis proposes a methodology to quantify trust in WMD, addressing these challenges. In this thesis, first, we devise a method to empirically validate dominant factors that influence the trustworthiness of WMD from the perspective of device users. We identified the users’ awareness of trust factors reported in the literature and additional user concerns influencing their trust. These factors are stepping stones for defining the specifications and quantification of trust in WMD. Second, we develop a probabilistic graph using Bayesian network to quantify trust in WMD. Using the Bayesian network, the stochastic nature of trust is viewed in terms of probabilities as subjective degrees of belief by a set of random variables in the domain. We define each random variable in the network by the trust factors that are identified from the literature and validated by our empirical study. We construct the trust structure as an acyclic-directed graph to represent the relationship between the variables compactly and transparently. We set the inter-node relationships, using the goal refinement technique, by refining a high-level goal of trustworthiness to lower-level goals that can be objectively implemented as measurable factors. Third, to learn and estimate the parameters of the Bayesian network, we need access to the probabilities of all nodes, as assuming a uniform Gaussian distribution or using values based on expert opinions may not fully represent the complexities of the factors influencing trust. We propose a data-driven approach to generate priors and estimate Bayesian parameters, in which we use data collected from WMD for all the measurable factors (nodes) to generate priors. We use non-functional requirement engineering techniques to quantify the impacts between the node relationships in the Bayesian network. We design propagation rules to aggregate the quantified relationships within the nodes of the network. This approach facilitates the computation of conditional probability distributions and enables query-based inference on any node, including the high-level trust node, based on the given evidence. The results of this thesis are evaluated through several experimental validations. The factors influencing trust in WMD are empirically validated by an extensive survey of 187 potential users. The learnability, and generalizability of the proposed trust network are validated with a real dataset collected from three users of WMD in two conditions, performing predefined activities and performing regular daily activities. To extend the variability of conditions, we generated an extensive and representative synthetic dataset and validated the trust network accordingly. Finally, to test the practicality of our approach, we implemented a user-configurable, parameterized prototype that allows users of WMD to construct a customizable trust network and effectively compare the trustworthiness of different devices. The prototype enables the healthcare industry to adapt and adopt this method to evaluate the trustworthiness of WMD for their own specific use cases. / Thesis / Doctor of Philosophy (PhD) / In this thesis, two challenges in quantifying trust in wearable medical devices, are addressed. The first challenge is the identification of factors influencing trust which are inherently subjective and vary widely among users. To address this challenge, we conducted an extensive survey to identify and validate the trust factors. These factors are stepping stones for defining the specifications and quantifying trust in wearable medical devices. The second challenge is to develop a precise method for quantification of trust while taking into account the uncertainty and variability of trust factors. We constructed a Bayesian network, that captures the complexities of trust as probabilities of the trust factors (identified from the survey) and developed a data-driven approach to estimate the parameters of the Bayesian network to compute the measure of trust. The findings of this thesis are empirically and experimentally validated across multiple use cases, incorporating real and synthetic data, various testing conditions, and diverse Bayesian network configurations. Additionally, we developed a customizable, parameterized prototype that empowers users and healthcare providers to effectively assess and compare the trustworthiness of different wearable medical devices.
169

Unterstützung der Entscheidungsfindung bezüglich der Therapie mit Immuncheckpointinhibitoren bei rekurrenten/metastasierten(R/M) Kopf-Hals-Karzinomen durch Bayes’sche Netze

Hühn, Marius 05 November 2024 (has links)
New diagnostic methods and novel therapeutic agents spawn additional and heterogeneous in-formation, leading to an increasingly complex decision-making process for optimal treatment of cancer. A great amount of information is collected in organ-specific multidisciplinary tumor boards (MDTBs). By considering the patient’s tumor properties, molecular pathological test re-sults, and comorbidities, the MDTB has to consent an evidence-based treatment decision. Im-munotherapies are increasingly important in today’s cancer treatment, resulting in detailed in-formation that influences the decision-making process. Clinical decision support systems can fa-cilitate a better understanding via processing of multiple datasets of oncological cases and mo-lecular genetic information, potentially fostering transparency and comprehensibility of available information, eventually leading to an optimum treatment decision for the individual patient. We constructed a digital patient model based on Bayesian networks to combine the relevant pa-tient-specific and molecular data with depended probabilities derived from pertinent studies and clinical guidelines to calculate treatment decisions in head and neck squamous cell carcinoma (HNSCC). In a validation analysis, the model can provide guidance within the growing subject of immunotherapy in HNSCC and, based on its ability to calculate reliable probabilities, facilitates estimation of suitable therapy options. We compared actual treatment decisions of 25 patients with the calculated recommendations of our model and found significant concordance (Cohen’s κ=0.505, p=0.009) and 84% accuracy.
170

Spatial analysis of invasive alien plant distribution patterns and processes using Bayesian network-based data mining techniques

Dlamini, Wisdom Mdumiseni Dabulizwe 03 1900 (has links)
Invasive alien plants have widespread ecological and socioeconomic impacts throughout many parts of the world, including Swaziland where the government declared them a national disaster. Control of these species requires knowledge on the invasion ecology of each species including how they interact with the invaded environment. Species distribution models are vital for providing solutions to such problems including the prediction of their niche and distribution. Various modelling approaches are used for species distribution modelling albeit with limitations resulting from statistical assumptions, implementation and interpretation of outputs. This study explores the usefulness of Bayesian networks (BNs) due their ability to model stochastic, nonlinear inter-causal relationships and uncertainty. Data-driven BNs were used to explore patterns and processes influencing the spatial distribution of 16 priority invasive alien plants in Swaziland. Various BN structure learning algorithms were applied within the Weka software to build models from a set of 170 variables incorporating climatic, anthropogenic, topo-edaphic and landscape factors. While all the BN models produced accurate predictions of alien plant invasion, the globally scored networks, particularly the hill climbing algorithms, performed relatively well. However, when considering the probabilistic outputs, the constraint-based Inferred Causation algorithm which attempts to generate a causal BN structure, performed relatively better. The learned BNs reveal that the main pathways of alien plants into new areas are ruderal areas such as road verges and riverbanks whilst humans and human activity are key driving factors and the main dispersal mechanism. However, the distribution of most of the species is constrained by climate particularly tolerance to very low temperatures and precipitation seasonality. Biotic interactions and/or associations among the species are also prevalent. The findings suggest that most of the species will proliferate by extending their range resulting in the whole country being at risk of further invasion. The ability of BNs to express uncertain, rather complex conditional and probabilistic dependencies and to combine multisource data makes them an attractive technique for species distribution modeling, especially as joint invasive species distribution models (JiSDM). Suggestions for further research are provided including the need for rigorous invasive species monitoring, data stewardship and testing more BN learning algorithms. / Environmental Sciences / D. Phil. (Environmental Science)

Page generated in 0.0582 seconds