Spelling suggestions: "subject:"bayesian inference"" "subject:"eayesian inference""
311 |
Modelos para proporções com superdispersão e excesso de zeros - um procedimento Bayesiano. / Models for zero-inflated and overdispersed proportion data - a bayesian approach.Adriano Ferreti Borgatto 24 June 2004 (has links)
Neste trabalho, tres modelos foram ajustados a um conjunto de dados obtido de um ensaio de controle biol´ogico para Diatraea saccharalis, uma praga comum em planta¸coes de cana-de-a¸c´ucar. Usando a distribui¸cao binomial como modelo de probabilidade, um ajuste adequado nao pode ser obtido, devido `a superdispersao gerada pela variabililidade dos dados e pelo excesso de zeros. Nesse caso, o modelo binomial inflacionado de zeros (ZIB) superdisperso ´e mais flex´ývel e eficiente para a modelagem desse tipo de dados. Entretanto, quando o interesse maior est´a sobre os valores positivos das propor¸coes, pode-se utilizar o modelo binomial truncado superdisperso. Uma abordagem alternativa eficiente que foi utilizada para a modelagem desse tipo de dados foi a Bayesiana, sendo o ajuste do modelo realizado usando as t´ecnicas de simula¸cao Monte Carlo em Cadeias de Markov, atrav´es do algoritmo Metropolis-Hastings e a sele¸cao dos modelos foi feita usando o DIC (Deviance Information Criterion) e o fator de Bayes. Os modelos foram implementados no procedimento IML (Iteractive Matrix Linear) do programa SAS (Statistical Analysis System) e no programa WinBUGS e a convergencia das estimativas foi verificada atrav´es da an´alise gr´afica dos valores gerados e usando os diagn´osticos de Raftery & Lewis e de Heidelberger & Welch, implementado no m´odulo CODA do programa R. / In general the standard binomial regression models do not fit well to proportion data from biological control assays, manly when there is excess of zeros and overdispersion. In this work a zero-inflated binomial model is applied to a data set obtained from a biological control assay for Diatraea saccharalis, a commom pest in sugar cane. A parasite (Trichogramma galloi) was put to parasitize 128 eggs of the Anagasta kuehniella, an economically suitable alternative host (Parra, 1997), with a variable number of female parasites (2, 4, 8,..., 128), each with 10 replicates in a completely randomized experiment. When interest is only in the positive proportion data, a model can be based on the truncated binomial distribution. A Bayesian procedure was formulated using a simulation technique (Metropolis Hastings) for estimation of the posterior parameters of interest. The convergence of the Markov Chain generated was monitored by visualization of the trace plot and using Raftery & Lewis and Heidelberg & Welch diagnostics presented in the module CODA of the software R.
|
312 |
Estimação de parâmetros de populações de plantas daninhas usando inferência Bayesiana / Estimation of the parameters of weeds population using Bayesian inferenceMarcel Rodrigues Lopes 20 April 2007 (has links)
O banco de sementes de plantas daninhas pode vir a ser um sério problema para a atividade agrícola por manter infestações por longos períodos. A dinâmica da população de plantas daninhas pode ser representada por modelos matemáticos que relaciona as densidades de sementes produzidas e de plântulas em áreas de cultivo. Os valores dos parâmetros dos modelos podem ser inferidos diretamente de experimentação e análise estatística. O presente trabalho tem por objetivo estimar parâmetros de populações das plantas daninhas anuais denominadas Digitaria ciliares, Panicum maximum e Euphorbia heterophylla e avaliar um modelo espacial com 2 e 3 parâmetros, a partir de um experimento conduzido em cultura de Zea mays (milho) usando inferência Bayesiana. / The seeds bank of weed could be a serious problem to the agricultural activity because it maintains infestations for long periods. The dynamics of weed populations can be described by mathematical models that relates the produced seeds and seedlings densities in areas of crop. The values of the parameters of the models can be inferred from experimentation and statistics analysis. The objective of this work is to estimate parameters of anual weed populations denoted Digitaria ciliares, Panicum maximum e Euphorbia heterophylla and evaluate a spatial model with 2 and 3 parameters from experimental data of Zea mays (corn) fields using Bayesian inference.
|
313 |
Modelagem de dados de eventos recorrentes via processo de Poisson com termo de fragilidade. / Modelling Recurrent Event Data Via Poisson Process With a Frailty Term.Vera Lucia Damasceno Tomazella 28 July 2003 (has links)
Nesta tese é analisado situações onde eventos de interesse podem ocorrer mais que uma vez para o mesmo indivíduo. Embora os estudos nessa área tenham recebido considerável atenção nos últimos anos, as técnicas que podem ser aplicadas a esses casos especiais ainda são pouco exploradas. Além disso, em problemas desse tipo, é razoável supor que existe dependência entre as observações. Uma das formas de incorporá-la é introduzir um efeito aleatório na modelagem da função de risco, dando origem aos modelos de fragilidade. Esses modelos, em análise de sobrevivência, visam descrever a heterogeneidade não observada entre as unidades em estudo. Os modelos estatísticos apresentados neste texto são fundamentalmente modelos de sobrevivência baseados em processos de contagem, onde é representado o problema como um processo de Poisson homogêneo e não-homogêneo com um termo de fragilidade, para o qual um indivíduo com um dado vetor de covariável x é acometido pela ocorrência de eventos repetidos. Esses modelos estão divididos em duas classes: modelos de fragilidade multiplicativos e aditivos; ambos visam responder às diferentes formas de avaliar a influência da heterogeneidade entre as unidades na função de intensidade dos processos de contagem. Até agora, a maioria dos estudos tem usado a distribuição gama para o termo de fragilidade, a qual é matematicamente conveniente. Este trabalho mostra que a distribuição gaussiana inversa tem propriedade igualmente simples à distribuição gama. Consequências das diferentes distribuições são examinadas, visando mostrar que a escolha da distribuição de fragilidade é importante. O objetivo deste trabalho é propor alguns métodos estatísticos para a análise de eventos recorrentes e verificar o efeito da introdução do termo aleatório no modelo por meio do estudo do custo, da estimação dos outros parâmetros de interesse. Também um estudo de simulação bootstrap é apresentado para fazer inferências dos parâmetros de interesse. Além disso, uma abordagem Bayesiana é proposta para os modelos de fragilidade multiplicativos e aditivos. Métodos de simulações são utilizados para avaliar as quantidades de interesse a posteriori. Por fim para ilustrar a metodologia, considera-se um conjunto de dados reais sobre um estudo dos resultados experimentais de animais cancerígenos. / In this thesis we analyse situations where events of interest may occur more than once for the same individual and it is reasonable to assume that there is dependency among the observations. A way of incorporating this dependency is to introduce a random effect in the modelling include a frailty term in the intensity function. The statistical methods presented here are intensity models based, where we represent the problem as a homogeneous and nonhomogeneous Poisson process with a frailty term for which an individual with given fixed covariate vector x has reccurent events occuring. These models are divided into two classes: multiplicative and additive models, aiming to answer the different ways of assessing the influence of heterogeneity among individuals in the intensity function of the couting processes. Until now most of the studies have used a frailty gamma distribution, due to mathematical convenience. In this work however we show that a frailty gaussian inverse distribution has equally simple proprieties when compared to a frailty gamma distribution. Methods for regression analysis are presented where we verify the effect of the frailty term in the model through of the study of the cost of estimating the other parameters of interest. We also use the simulation bootstrap method to make inference on the parameters of interest. Besides we develop a Bayesian approach for the homogeneous and nonhomogeneous Poisson process with multiplicative and additive frailty. Simulation methods are used to assess the posterior quantities of interest. In order to ilustrate our methodology we considere a real data set on results of an experimental animal carcinogenesis study.
|
314 |
Métodos alternativos de previsão de safras agrícolas / Alternative Crop Prediction MethodsDaniel Lima Miquelluti 23 January 2015 (has links)
O setor agrícola é, historicamente, um dos pilares da economia brasileira, e apesar de ter sua importância diminuída com o desenvolvimento do setor industrial e de serviços ainda é responsável por dar dinamismo econômico ao país, bem como garantir a segurança alimentar, auxiliar no controle da inflação e na formação de reservas monetárias. Neste contexto as safras agrícolas exercem grande influência no comportamento do setor e equilíbrio no mercado agrícola. Foram desenvolvidas diversas metodologias de previsão de safra, sendo em sua maioria modelos de simulação de crescimento. Entretanto, recentemente os modelos estatísticos vem sendo utilizados mais comumente devido às suas predições mais rápidas em períodos anteriores à colheita. No presente trabalho foram avaliadas duas destas metodologias, os modelos ARIMA e os Modelos Lineares Dinâmicos (MLD), sendo utilizada tanto a inferência clássica quanto a bayesiana. A avaliação das metodologias deu-se por meio da análise das previsões dos modelos, bem como da facilidade de implementação e poder computacional necessário. As metodologias foram aplicadas a dados de produção de soja para o município de Mamborê-PR, no período de 1980 a 2013, sendo área plantada (ha) e precipitação acumulada (mm) variáveis auxiliares nos modelos de regressão dinâmica. Observou-se que o modelo ARIMA (2,1,0) reparametrizado na forma de um MLD e estimado por meio de máxima verossimilhança, gerou melhores previsões do que aquelas obtidas com o modelo ARIMA(2,1,0) não reparametrizado. / The agriculture is, historically, one of Brazil\'s economic pillars, and despite having it\'s importance diminished with the development of the industry and services it still is responsible for giving dynamism to the country inland\'s economy, ensuring food security, controlling inflation and assisting in the formation of monetary reserves. In this context the agricultural crops exercise great influence in the behaviour of the sector and agricultural market balance. Diverse crop forecast methods were developed, most of them being growth simulation models, however, recently the statistical models are being used due to its capability of forecasting early when compared to the other models. In the present thesis two of these methologies were evaluated, ARIMA and Dynamic Linear Models, utilizing both classical and bayesian inference. The forecast accuracy, difficulties in the implementation and computational power were some of the caracteristics utilized to assess model efficiency. The methodologies were applied to Soy production data of Mamborê-PR, in the 1980-2013 period, also noting that planted area (ha) and cumulative precipitation (mm) were auxiliary variables in the dynamic regression. The ARIMA(2,1,0) reparametrized in the DLM form and adjusted through maximum likelihood generated the best forecasts, folowed by the ARIMA(2,1,0) without reparametrization.
|
315 |
Bayesian analysis of regression models for proportional data in the presence of zeros and ones = Análise bayesiana de modelos de regressão para dados de proporções na presença de zeros e uns / Análise bayesiana de modelos de regressão para dados de proporções na presença de zeros e unsGalvis Soto, Diana Milena, 1978- 26 August 2018 (has links)
Orientador: Víctor Hugo Lachos Dávila / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-26T02:34:17Z (GMT). No. of bitstreams: 1
GalvisSoto_DianaMilena_D.pdf: 1208980 bytes, checksum: edbc193912a2a800da4936526ed79fa3 (MD5)
Previous issue date: 2014 / Resumo: Dados no intervalo (0,1) geralmente representam proporções, taxas ou índices. Porém, é possível observar situações práticas onde as proporções sejam zero e/ou um, representando ausência ou presença total da característica de interesse. Nesses casos, os modelos que analisam o efeito de covariáveis, tais como a regressão beta, beta retangular e simplex não são convenientes. Com o intuito de abordar este tipo de situações, considera-se como alternativa aumentar os valores zero e/ou um ao suporte das distribuições previamente mencionadas. Nesta tese, são propostos modelos de regressão de efeitos mistos para dados de proporções aumentados de zeros e uns, os quais permitem analisar o efeito de covariáveis sobre a probabilidade de observar ausência ou presença total da característica de interesse, assim como avaliar modelos com respostas correlacionadas. A estimação dos parâmetros de interesse pode ser via máxima verossimilhança ou métodos Monte Carlo via Cadeias de Markov (MCMC). Nesta tese, será adotado o enfoque Bayesiano, o qual apresenta algumas vantagens em relação à inferência clássica, pois não depende da teoria assintótica e os códigos são de fácil implementação, através de softwares como openBUGS e winBUGS. Baseados na distribuição marginal, é possível calcular critérios de seleção de modelos e medidas Bayesianas de divergência q, utilizadas para detectar observações discrepantes / Abstract: Continuous data in the unit interval (0,1) represent, generally, proportions, rates or indices. However, zeros and/or ones values can be observed, representing absence or total presence of a carachteristic of interest. In that case, regression models that analyze the effect of covariates such as beta, beta rectangular or simplex are not appropiate. In order to deal with this type of situations, an alternative is to add the zero and/or one values to the support of these models. In this thesis and based on these models, we propose the mixed regression models for proportional data augmented by zero and one, which allow analyze the effect of covariates into the probabilities of observing absence or total presence of the interest characteristic, besides of being possivel to deal with correlated responses. Estimation of parameters can follow via maximum likelihood or through MCMC algorithms. We follow the Bayesian approach, which presents some advantages when it is compared with classical inference because it allows to estimate the parameters even in small size sample. In addition, in this approach, the implementation is straightforward and can be done using software as openBUGS or winBUGS. Based on the marginal likelihood it is possible to calculate selection model criteria as well as q-divergence measures used to detect outlier observations / Doutorado / Estatistica / Doutora em Estatística
|
316 |
Inferência bayesiana em modelos de regressão beta e beta inflacionados / Bayesian inference in beta and inflated beta regression modelsNogarotto, Danilo Covaes, 1987- 07 April 2013 (has links)
Orientador: Caio Lucidius Naberezny Azevedo / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-23T07:11:52Z (GMT). No. of bitstreams: 1
Nogarotto_DaniloCovaes_M.pdf: 12817108 bytes, checksum: 0e5e0de542d707f4023f5ef62dc40a82 (MD5)
Previous issue date: 2013 / Resumo: No presente trabalho desenvolvemos ferramentas de inferência bayesiana para modelos de regressão beta e beta inflacionados, em relação à estimação paramétrica e diagnóstico. Trabalhamos com modelos de regressão beta não inflacionados, inflacionados em zero ou um e inflacionados em zero e um. Devido à impossibilidade de obtenção analítica das posteriores de interesse, tais ferramentas foram desenvolvidas através de algoritmos MCMC. Para os parâmetros da estrutura de regressão e para o parâmetro de precisão exploramos a utilização de prioris comumente empregadas em modelos de regressão, bem como prioris de Jeffreys e de Jeffreys sob independência. Para os parâmetros das componentes discretas, consideramos prioris conjugadas. Realizamos diversos estudos de simulação considerando algumas situações de interesse prático com o intuito de comparar as estimativas bayesianas com as frequentistas e também de estudar a sensibilidade dos modelos _a escolha de prioris. Um conjunto de dados da área psicométrica foi analisado para ilustrar o potencial do ferramental desenvolvido. Os resultados indicaram que há ganho ao se considerar modelos que contemplam as observações inflacionadas ao invés de transformá-las a fim de utilizar modelos não inflacionados / Abstract: In the present work we developed Bayesian tools, concerning parameter estimation and diagnostics, for noninflated, zero inflated, one inflated and zero-one inflated beta regression models. Due to the impossibility of obtaining the posterior distributions of interest, analytically, all these tools were developed through MCMC algorithms. For the regression and precision parameters we exploited the using of prior distributions commonly considered in regression models as well as Jeffreys and independence Jeffreys priors. For the parameters related to the discrete components, we considered conjugate prior distributions. We performed simulation studies, considering some situations of practical interest, in order to compare the Bayesian and frequentist estimates as well as to evaluate the sensitivity of the models to the prior choice. A psychometric real data set was analyzed to illustrate the performance of the developed tools. The results indicated that there is an overall improvement in using models that consider the inflated observations compared to transforming these observations in order to use noninflated models / Mestrado / Estatistica / Mestre em Estatística
|
317 |
The best are never normal: exploring the distribution of firm performanceBuchbinder, Felipe 08 June 2011 (has links)
Submitted by Estagiário SPT BMHS (spt@fgv.br) on 2013-07-30T12:35:47Z
No. of bitstreams: 1
Dissertation Felipe Buchbinder.pdf: 1585162 bytes, checksum: b566d391b5cfffdea11553af4c3fcd3e (MD5) / Approved for entry into archive by Estagiário SPT BMHS (spt@fgv.br) on 2013-07-30T12:36:04Z (GMT) No. of bitstreams: 1
Dissertation Felipe Buchbinder.pdf: 1585162 bytes, checksum: b566d391b5cfffdea11553af4c3fcd3e (MD5) / Approved for entry into archive by Estagiário SPT BMHS (spt@fgv.br) on 2013-07-30T12:36:22Z (GMT) No. of bitstreams: 1
Dissertation Felipe Buchbinder.pdf: 1585162 bytes, checksum: b566d391b5cfffdea11553af4c3fcd3e (MD5) / Made available in DSpace on 2013-07-30T12:36:46Z (GMT). No. of bitstreams: 1
Dissertation Felipe Buchbinder.pdf: 1585162 bytes, checksum: b566d391b5cfffdea11553af4c3fcd3e (MD5)
Previous issue date: 2011-06-08 / Competitive Strategy literature predicts three different mechanisms of performance generation, thus distinguishing between firms that have competitive advantage, firms that have competitive disadvantage or firms that have neither. Nonetheless, previous works in the field have fitted a single normal distribution to model firm performance. Here, we develop a new approach that distinguishes among performance generating mechanisms and allows the identification of firms with competitive advantage or disadvantage. Theorizing on the positive feedback loops by which firms with competitive advantage have facilitated access to acquire new resources, we proposed a distribution we believe data on firm performance should follow. We illustrate our model by assessing its fit to data on firm performance, addressing its theoretical implications and comparing it to previous works.
|
318 |
Bayesian Inference in the Multinomial Logit ModelFrühwirth-Schnatter, Sylvia, Frühwirth, Rudolf January 2012 (has links) (PDF)
The multinomial logit model (MNL) possesses a latent variable
representation in terms of random variables following a multivariate logistic distribution. Based on multivariate finite mixture approximations of the multivariate
logistic distribution, various data-augmented Metropolis-Hastings algorithms are developed for a Bayesian inference of the MNL model.
|
319 |
Modelos de regressão Birnbaum-Saunders baseados na distribuição normal assimétrica centrada / Birnbaum-Saunders regression models based on skew-normal centered distributionChaves, Nathalia Lima, 1989- 26 August 2018 (has links)
Orientadores: Caio Lucidius Naberezny Azevedo, Filidor Edilfonso Vilca Labra / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-26T22:33:37Z (GMT). No. of bitstreams: 1
Chaves_NathaliaLima_M.pdf: 3044792 bytes, checksum: 8fea3cd9d074997b605026a7a4526c35 (MD5)
Previous issue date: 2015 / Resumo: A classe de modelos Birnbaum-Saunders (BS) foi desenvolvida a partir de problemas que surgiram na área de confiabilidade de materiais. Tais problemas, em geral, são ligados ao estudo de fadiga de materiais. No entanto, nos últimos tempos, essa classe de modelos tem sido aplicada em áreas fora do referido contexto como, por exemplo, em ciências da saúde, ambiental, florestal, demográficas, atuariais, financeira, entre outras, devido à sua grande versatilidade. Neste trabalho desenvolvemos a distribuição Birnbaum-Saunders (BS) baseada na normal assimétrica padrão sob a parametrização centrada (BSNAC) que, além de representar uma extensão da distribuição BS usual, apresenta diversas vantagens em relação à distribuição BS baseada na distribuição normal assimétrica sob a parametrização usual. Desenvolvemos também um modelo de regressão linear log-Birnbaum-Saunders. Apresentamos, tanto para a distribuição BSNAC quanto para o respectivo modelo de regressão, diversas propriedades. Desenvolvemos procedimentos de estimação sob os enfoques frenquentista e bayesiano, bem como ferramentas de diagnóstico para os modelos propostos, contemplando análise residual e medidas de influência. Realizamos estudos de simulação, considerando diferentes cenários, com o intuito de comparar as estimativas frequentistas e bayesianas, bem como avaliar o desempenho das medidas de diagnóstico. A metodologia aqui proposta foi ilustrada tanto com dados provenientes de estudos de simulação, quanto com conjuntos de dados reais / Abstract: The class of Birnbaum-Saunders (BS) models was developed from problems that arose in the field of material reliability. These problems generally are related to the study of material fatigue. However, in the last years, this class of models has been applied in areas outside that context, such as in health sciences, environmental, forestry, demographic, actuarial, financial, among others, due to its great versatility. In this work, we developed the skew-normal Birnbaum-Saunders distribution under the centered parameterization (BSNAC), which also represents an extension of the usual BS distribution and presents several advantages over the BS distribution based on the skew-normal distribution under the usual parameterization. We also developed a log-Birnbaum-Saunders linear regression model. We present several properties of both BSNAC distribution and the related regression model. We develop estimation procedures under the frequentist and Bayesian approaches, as well as diagnostic tools for the proposed models, contemplating residual analysis and measures of influence. We conducted simulation studies considering different scenarios, in order to compare the frequentist and Bayesian estimates and evaluate the performance of diagnostic measures. The methodology proposed here is illustrated with data sets from both simulation studies and real data sets / Mestrado / Estatistica / Mestra em Estatística
|
320 |
Modelagem de volatilidade via modelos GARCH com erros assimétricos: abordagem Bayesiana / Volatility modeling through GARCH models with asymetric errors: Bayesian approachJosé Augusto Fioruci 12 June 2012 (has links)
A modelagem da volatilidade desempenha um papel fundamental em Econometria. Nesta dissertação são estudados a generalização dos modelos autorregressivos condicionalmente heterocedásticos conhecidos como GARCH e sua principal generalização multivariada, os modelos DCC-GARCH (Dynamic Condicional Correlation GARCH). Para os erros desses modelos são consideradas distribuições de probabilidade possivelmente assimétricas e leptocúrticas, sendo essas parametrizadas em função da assimetria e do peso nas caudas, necessitando assim de estimar esses parâmetros adicionais aos modelos. A estimação dos parâmetros dos modelos é feita sob a abordagem Bayesiana e devido às complexidades destes modelos, métodos computacionais baseados em simulações de Monte Carlo via Cadeias de Markov (MCMC) são utilizados. Para obter maior eficiência computacional os algoritmos de simulação da distribuição a posteriori dos parâmetros são implementados em linguagem de baixo nível. Por fim, a proposta de modelagem e estimação é exemplificada com dois conjuntos de dados reais / The modeling of volatility plays a fundamental role in Econometrics. In this dissertation are studied the generalization of known autoregressive conditionally heteroscedastic (GARCH) models and its main principal multivariate generalization, the DCCGARCH (Dynamic Conditional Correlation GARCH) models. For the errors of these models are considered distribution of probability possibility asymmetric and leptokurtic, these being parameterized as a function of asymmetry and the weight on the tails, thus requiring estimate the models additional parameters. The estimation of parameters is made under the Bayesian approach and due to the complexities of these models, methods computer-based simulations Monte Carlo Markov Chain (MCMC) are used. For more computational efficiency of simulation algorithms of posterior distribution of the parameters are implemented in low-level language. Finally, the proposed modeling and estimation is illustrated with two real data sets
|
Page generated in 0.0873 seconds