• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 3
  • 1
  • 1
  • Tagged with
  • 27
  • 27
  • 11
  • 8
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Análise bayesiana de densidades aleatórias simples / Bayesian analysis of simple random densities

Marques Filho, Paulo Cilas 19 December 2011 (has links)
Definimos, a partir de uma partição de um intervalo limitado da reta real formada por subintervalos, uma distribuição a priori sobre uma classe de densidades em relação à medida de Lebesgue construindo uma densidade aleatória cujas realizações são funções simples não negativas que assumem um valor constante em cada subintervalo da partição e possuem integral unitária. Utilizamos tais densidades aleatórias simples na análise bayesiana de um conjunto de observáveis absolutamente contínuos e provamos que a distribuição a priori é fechada sob amostragem. Exploramos as distribuições a priori e a posteriori via simulações estocásticas e obtemos soluções bayesianas para o problema de estimação de densidade. Os resultados das simulações exibem o comportamento assintótico da distribuição a posteriori quando crescemos o tamanho das amostras dos dados analisados. Quando a partição não é conhecida a priori, propomos um critério de escolha a partir da informação contida na amostra. Apesar de a esperança de uma densidade aleatória simples ser sempre uma densidade descontínua, obtemos estimativas suaves resolvendo um problema de decisão em que os estados da natureza são realizações da densidade aleatória simples e as ações são densidades suaves de uma classe adequada. / We define, from a known partition in subintervals of a bounded interval of the real line, a prior distribution over a class of densities with respect to Lebesgue measure constructing a random density whose realizations are nonnegative simple functions that integrate to one and have a constant value on each subinterval of the partition. These simple random densities are used in the Bayesian analysis of a set of absolutely continuous observables and the prior distribution is proved to be closed under sampling. We explore the prior and posterior distributions through stochastic simulations and find Bayesian solutions to the problem of density estimation. Simulations results show the asymptotic behavior of the posterior distribution as we increase the size of the analyzed data samples. When the partition is unknown, we propose a choice criterion based on the information contained in the sample. In spite of the fact that the expectation of a simple random density is always a discontinuous density, we get smooth estimates solving a decision problem where the states of nature are realizations of the simple random density and the actions are smooth densities of a suitable class.
12

Bayesian Nonparametric Modeling and Theory for Complex Data

Pati, Debdeep January 2012 (has links)
<p>The dissertation focuses on solving some important theoretical and methodological problems associated with Bayesian modeling of infinite dimensional `objects', popularly called nonparametric Bayes. The term `infinite dimensional object' can refer to a density, a conditional density, a regression surface or even a manifold. Although Bayesian density estimation as well as function estimation are well-justified in the existing literature, there has been little or no theory justifying the estimation of more complex objects (e.g. conditional density, manifold, etc.). Part of this dissertation focuses on exploring the structure of the spaces on which the priors for conditional densities and manifolds are supported while studying how the posterior concentrates as increasing amounts of data are collected.</p><p>With the advent of new acquisition devices, there has been a need to model complex objects associated with complex data-types e.g. millions of genes affecting a bio-marker, 2D pixelated images, a cloud of points in the 3D space, etc. A significant portion of this dissertation has been devoted to developing adaptive nonparametric Bayes approaches for learning low-dimensional structures underlying higher-dimensional objects e.g. a high-dimensional regression function supported on a lower dimensional space, closed curves representing the boundaries of shapes in 2D images and closed surfaces located on or near the point cloud data. Characterizing the distribution of these objects has a tremendous impact in several application areas ranging from tumor tracking for targeted radiation therapy, to classifying cells in the brain, to model based methods for 3D animation and so on. </p><p> </p><p> The first three chapters are devoted to Bayesian nonparametric theory and modeling in unconstrained Euclidean spaces e.g. mean regression and density regression, the next two focus on Bayesian modeling of manifolds e.g. closed curves and surfaces, and the final one on nonparametric Bayes spatial point pattern data modeling when the sampling locations are informative of the outcomes.</p> / Dissertation
13

Some Recent Advances in Non- and Semiparametric Bayesian Modeling with Copulas, Mixtures, and Latent Variables

Murray, Jared January 2013 (has links)
<p>This thesis develops flexible non- and semiparametric Bayesian models for mixed continuous, ordered and unordered categorical data. These methods have a range of possible applications; the applications considered in this thesis are drawn primarily from the social sciences, where multivariate, heterogeneous datasets with complex dependence and missing observations are the norm. </p><p>The first contribution is an extension of the Gaussian factor model to Gaussian copula factor models, which accommodate continuous and ordinal data with unspecified marginal distributions. I describe how this model is the most natural extension of the Gaussian factor model, preserving its essential dependence structure and the interpretability of factor loadings and the latent variables. I adopt an approximate likelihood for posterior inference and prove that, if the Gaussian copula model is true, the approximate posterior distribution of the copula correlation matrix asymptotically converges to the correct parameter under nearly any marginal distributions. I demonstrate with simulations that this method is both robust and efficient, and illustrate its use in an application from political science.</p><p>The second contribution is a novel nonparametric hierarchical mixture model for continuous, ordered and unordered categorical data. The model includes a hierarchical prior used to couple component indices of two separate models, which are also linked by local multivariate regressions. This structure effectively overcomes the limitations of existing mixture models for mixed data, namely the overly strong local independence assumptions. In the proposed model local independence is replaced by local conditional independence, so that the induced model is able to more readily adapt to structure in the data. I demonstrate the utility of this model as a default engine for multiple imputation of mixed data in a large repeated-sampling study using data from the Survey of Income and Participation. I show that it improves substantially on its most popular competitor, multiple imputation by chained equations (MICE), while enjoying certain theoretical properties that MICE lacks. </p><p>The third contribution is a latent variable model for density regression. Most existing density regression models are quite flexible but somewhat cumbersome to specify and fit, particularly when the regressors are a combination of continuous and categorical variables. The majority of these methods rely on extensions of infinite discrete mixture models to incorporate covariate dependence in mixture weights, atoms or both. I take a fundamentally different approach, introducing a continuous latent variable which depends on covariates through a parametric regression. In turn, the observed response depends on the latent variable through an unknown function. I demonstrate that a spline prior for the unknown function is quite effective relative to Dirichlet Process mixture models in density estimation settings (i.e., without covariates) even though these Dirichlet process mixtures have better theoretical properties asymptotically. The spline formulation enjoys a number of computational advantages over more flexible priors on functions. Finally, I demonstrate the utility of this model in regression applications using a dataset on U.S. wages from the Census Bureau, where I estimate the return to schooling as a smooth function of the quantile index.</p> / Dissertation
14

BAYESIAN SEMIPARAMETRIC GENERALIZATIONS OF LINEAR MODELS USING POLYA TREES

Schoergendorfer, Angela 01 January 2011 (has links)
In a Bayesian framework, prior distributions on a space of nonparametric continuous distributions may be defined using Polya trees. This dissertation addresses statistical problems for which the Polya tree idea can be utilized to provide efficient and practical methodological solutions. One problem considered is the estimation of risks, odds ratios, or other similar measures that are derived by specifying a threshold for an observed continuous variable. It has been previously shown that fitting a linear model to the continuous outcome under the assumption of a logistic error distribution leads to more efficient odds ratio estimates. We will show that deviations from the assumption of logistic error can result in great bias in odds ratio estimates. A one-step approximation to the Savage-Dickey ratio will be presented as a Bayesian test for distributional assumptions in the traditional logistic regression model. The approximation utilizes least-squares estimates in the place of a full Bayesian Markov Chain simulation, and the equivalence of inferences based on the two implementations will be shown. A framework for flexible, semiparametric estimation of risks in the case that the assumption of logistic error is rejected will be proposed. A second application deals with regression scenarios in which residuals are correlated and their distribution evolves over an ordinal covariate such as time. In the context of prediction, such complex error distributions need to be modeled carefully and flexibly. The proposed model introduces dependent, but separate Polya tree priors for each time point, thus pooling information across time points to model gradual changes in distributional shapes. Theoretical properties of the proposed model will be outlined, and its potential predictive advantages in simulated scenarios and real data will be demonstrated.
15

Nonparametric Bayesian Models for Joint Analysis of Imagery and Text

Li, Lingbo January 2014 (has links)
<p>It has been increasingly important to develop statistical models to manage large-scale high-dimensional image data. This thesis presents novel hierarchical nonparametric Bayesian models for joint analysis of imagery and text. This thesis consists two main parts.</p><p>The first part is based on single image processing. We first present a spatially dependent model for simultaneous image segmentation and interpretation. Given a corrupted image, by imposing spatial inter-relationships within imagery, the model not only improves reconstruction performance but also yields smooth segmentation. Then we develop online variational Bayesian algorithm for dictionary learning to process large-scale datasets, based on online stochastic optimization with a natu- ral gradient step. We show that dictionary is learned simultaneously with image reconstruction on large natural images containing tens of millions of pixels.</p><p>The second part applies dictionary learning for joint analysis of multiple image and text to infer relationship among images. We show that feature extraction and image organization with annotation (when available) can be integrated by unifying dictionary learning and hierarchical topic modeling. We present image organization in both "flat" and hierarchical constructions. Compared with traditional algorithms feature extraction is separated from model learning, our algorithms not only better fits the datasets, but also provides richer and more interpretable structures of image</p> / Dissertation
16

A Bayesian Nonparametric Approach for Causal Inference with Missing Covariates

Zang, Huaiyu 09 June 2020 (has links)
No description available.
17

Bayesian Microphone Array Processing / ベイズ法によるマイクロフォンアレイ処理

Otsuka, Takuma 24 March 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(情報学) / 甲第18412号 / 情博第527号 / 新制||情||93(附属図書館) / 31270 / 京都大学大学院情報学研究科知能情報学専攻 / (主査)教授 奥乃 博, 教授 河原 達也, 准教授 CUTURI CAMETO Marco, 講師 吉井 和佳 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
18

Online Clustering with Bayesian Nonparametrics

Scherreik, Matthew D. January 2020 (has links)
No description available.
19

A Bayesian nonparametric approach for the two-sample problem / Uma abordagem bayesiana não paramétrica para o problema de duas amostras

Console, Rafael de Carvalho Ceregatti de 19 November 2018 (has links)
In this work, we discuss the so-called two-sample problem Pearson and Neyman (1930) assuming a nonparametric Bayesian approach. Considering X1; : : : ; Xn and Y1; : : : ; Ym two independent i.i.d samples generated from P1 and P2, respectively, the two-sample problem consists in deciding if P1 and P2 are equal. Assuming a nonparametric prior, we propose an evidence index for the null hypothesis H0 : P1 = P2 based on the posterior distribution of the distance d (P1; P2) between P1 and P2. This evidence index has easy computation, intuitive interpretation and can also be justified in the Bayesian decision-theoretic context. Further, in a Monte Carlo simulation study, our method presented good performance when compared with the well known Kolmogorov- Smirnov test, the Wilcoxon test as well as a recent testing procedure based on Polya tree process proposed by Holmes (HOLMES et al., 2015). Finally, we applied our method to a data set about scale measurements of three different groups of patients submitted to a questionnaire for Alzheimer\'s disease diagnostic. / Neste trabalho, discutimos o problema conhecido como problema de duas amostras Pearson and Neyman (1930) utilizando uma abordagem bayesiana não-paramétrica. Considere X1; : : : ; Xn and Y1; : : : ;Ym duas amostras independentes, geradas por P1 e P2, respectivamente, o problema de duas amostras consiste em decidir se P1 e P2 são iguais. Assumindo uma priori não-paramétrica, propomos um índice de evidência para a hipótese nula H0 : P1 = P2 baseado na distribuição a posteriori da distância d (P1; P2) entre P1 e P2. O índice de evidência é de fácil implementação, tem uma interpretação intuitiva e também pode ser justificada no contexto da teoria da decisão bayesiana. Além disso, em um estudo de simulação de Monte Carlo, nosso método apresentou bom desempenho quando comparado com o teste de Kolmogorov-Smirnov, com o teste de Wilcoxon e com o método de Holmes. Finalmente, aplicamos nosso método em um conjunto de dados sobre medidas de escala de três grupos diferentes de pacientes submetidos a um questionário para diagnóstico de doença de Alzheimer.
20

Nonparametric Bayesian Dictionary Learning and Count and Mixture Modeling

Zhou, Mingyuan January 2013 (has links)
<p>Analyzing the ever-increasing data of unprecedented scale, dimensionality, diversity, and complexity poses considerable challenges to conventional approaches of statistical modeling. Bayesian nonparametrics constitute a promising research direction, in that such techniques can fit the data with a model that can grow with complexity to match the data. In this dissertation we consider nonparametric Bayesian modeling with completely random measures, a family of pure-jump stochastic processes with nonnegative increments. In particular, we study dictionary learning for sparse image representation using the beta process and the dependent hierarchical beta process, and we present the negative binomial process, a novel nonparametric Bayesian prior that unites the seemingly disjoint problems of count and mixture modeling. We show a wide variety of successful applications of our nonparametric Bayesian latent variable models to real problems in science and engineering, including count modeling, text analysis, image processing, compressive sensing, and computer vision.</p> / Dissertation

Page generated in 0.0838 seconds