Spelling suggestions: "subject:"stilbestimmung"" "subject:"cystinbestimmung""
11 |
Analytical aspects of the direct potentiometric sodium ion determination in human bloodBijster, Peter, January 1983 (has links)
Thesis (doctoral)--Utrecht, 1983.
|
12 |
Modifizierte Elektroden zum elektrochemischen Nachweis bioaktiver StoffeTran, Thuy Nga 19 October 2011 (has links) (PDF)
Katecholamine (Dopamin, Adrenalin, Noradrenalin) und Serotonin sind wichtige Monoamin-Neurotransmitter im menschlichen zentralen Nervensystem, deren quantitative Bestimmung von großem medizinischen Interesse ist, weil damit Aussagen zum Verlauf von Nervenkrankheiten und zur Tumorgefährdung des sympathoadrenalen bzw. neuroendokrinen Systems möglich sind. Ascorbinsäure und Harnsäure finden sich in vielen Körperflüssigkeiten. Ihre Bestimmung ist klinisch ebenfalls bedeutend, da deren Konzentration als Indikatoren bekannter Krankheitsbilder dienen.
Etablierte Standardmethoden, wie die Hochleistungsflüssigkeitschromatographie (HPLC) und immunologische Nachweisverfahren (ELISA) werden im klinischen Bereich zur Bestimmung der Neurotransmitter genutzt. Diese sind kostenintensiv und zeitaufwändig und daher für die Anwendung in den Arztpraxen, vor allem in Entwicklungsländern nicht geeignet.
Elektrochemische Verfahren, insbesondere voltammetrische Messmethode haben den Vorteil, solche Bestimmungen in einfacher Weise zu ermöglichen. In der Literatur finden sich Angaben zu eingesetzten Elektroden auf Kohlenstoffbasis mit hoher Sensitivität für die Katecholamine. Allerdings wurden diese Elektroden meist einzeln hergestellt. Der kommerzielle Durchbruch ist deshalb bisher, hauptsächlich infolge der mangelnden Reproduzierbarkeit der Elektrodeneigenschaften und der Verfügbarkeit einfacher elektronischer Geräte ausgeblieben.
Es war daher Ziel dieser Arbeit, durch industrienahe Herstellungsverfahren Graphitelektroden mit reproduzierbaren Eigenschaften zu entwickeln und diese auf ihre Eignung für den quantitativen Nachweis bioaktiver Stoffe zu erproben. Dazu waren Verfahrensschritte zu optimieren, die es erlauben, diese siebgedruckten Graphitelektroden reproduzierbar und kostengünstig zu fertigen und sie auf verschiedene Weise, z.B. durch halbleitende Polymere und nanoskalige Metalle zu modifizieren.
Neben den Neurotransmittern enthalten Körperflüssigkeiten unter anderem Ascorbinsäure und Harnsäure in hohen Konzentrationen. Daher waren zunächst Modellanalyten unter Verwendung dieser Stoffe herzustellen. Die voltammetrischen Methoden, wie die zyklische Voltammetrie (CV), die Differentielle Puls-Voltammetrie (DPV) und die Square-Wave-Voltammetrie (SWV) sollten auf ihre Eignung zum Nachweis der bioaktiven Substanzen erprobt werden. Schließlich waren die Elektroden in realen Analyten zu testen. Insgesamt konnte in der vorliegenden Arbeit gezeigt werden, dass ausgewählte Neurotransmitter, Ascorbinsäure und Harnsäure sich mit differentiellen voltammetrischen Verfahren an industrienah hergestellten modifizierten Dickschichtelektroden bestimmen lassen. Es ist erstmalig gelungen, eine modifizierte Dickschichtelektrode zu entwickeln, mit der es möglich ist, Katecholamine unabhängig von Ascorbinsäure (3 mM) und Harnsäure (2 mM) quantitativ nachzuweisen. Damit eröffnen sich neue Wege für den Einsatz von elektrochemischen Sensoren für die einfache Bestimmung der Neurotransmitter vor Ort.
Die beschriebenen modifizierten Dickschichtelektroden sind ohne Verlust an elektrochemischer Aktivität an der Luft oder im Grundelektrolyten monatelang lagerfähig. Die Elektroden lassen sich im Gegensatz zu den in der Literatur beschriebenen Elektroden mit Einzelfertigung kostengünstig in großer Stückzahl mit hoher Reproduzierbarkeit herstellen.
|
13 |
Varianten in der Brühtechnik bei der Gewinnung von Putenfleisch : mikrobiologische Gegenüberstellung und molekularbiologische Verlaufsuntersuchungen (PFGE) /Grabowski, Constance Maria. January 2008 (has links)
Zugl.: Berlin, Freie Universiẗat, Diss., 2008.
|
14 |
Diversität nitratreduzierender Bakteriengemeinschaften in den Sedimenten der Ostsee und Untersuchungen zur Phylogenie der respiratorischen NitratreduktasePetri, Ralf. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2000--Kiel.
|
15 |
Modifizierte Elektroden zum elektrochemischen Nachweis bioaktiver StoffeTran, Thuy Nga 30 September 2011 (has links)
Katecholamine (Dopamin, Adrenalin, Noradrenalin) und Serotonin sind wichtige Monoamin-Neurotransmitter im menschlichen zentralen Nervensystem, deren quantitative Bestimmung von großem medizinischen Interesse ist, weil damit Aussagen zum Verlauf von Nervenkrankheiten und zur Tumorgefährdung des sympathoadrenalen bzw. neuroendokrinen Systems möglich sind. Ascorbinsäure und Harnsäure finden sich in vielen Körperflüssigkeiten. Ihre Bestimmung ist klinisch ebenfalls bedeutend, da deren Konzentration als Indikatoren bekannter Krankheitsbilder dienen.
Etablierte Standardmethoden, wie die Hochleistungsflüssigkeitschromatographie (HPLC) und immunologische Nachweisverfahren (ELISA) werden im klinischen Bereich zur Bestimmung der Neurotransmitter genutzt. Diese sind kostenintensiv und zeitaufwändig und daher für die Anwendung in den Arztpraxen, vor allem in Entwicklungsländern nicht geeignet.
Elektrochemische Verfahren, insbesondere voltammetrische Messmethode haben den Vorteil, solche Bestimmungen in einfacher Weise zu ermöglichen. In der Literatur finden sich Angaben zu eingesetzten Elektroden auf Kohlenstoffbasis mit hoher Sensitivität für die Katecholamine. Allerdings wurden diese Elektroden meist einzeln hergestellt. Der kommerzielle Durchbruch ist deshalb bisher, hauptsächlich infolge der mangelnden Reproduzierbarkeit der Elektrodeneigenschaften und der Verfügbarkeit einfacher elektronischer Geräte ausgeblieben.
Es war daher Ziel dieser Arbeit, durch industrienahe Herstellungsverfahren Graphitelektroden mit reproduzierbaren Eigenschaften zu entwickeln und diese auf ihre Eignung für den quantitativen Nachweis bioaktiver Stoffe zu erproben. Dazu waren Verfahrensschritte zu optimieren, die es erlauben, diese siebgedruckten Graphitelektroden reproduzierbar und kostengünstig zu fertigen und sie auf verschiedene Weise, z.B. durch halbleitende Polymere und nanoskalige Metalle zu modifizieren.
Neben den Neurotransmittern enthalten Körperflüssigkeiten unter anderem Ascorbinsäure und Harnsäure in hohen Konzentrationen. Daher waren zunächst Modellanalyten unter Verwendung dieser Stoffe herzustellen. Die voltammetrischen Methoden, wie die zyklische Voltammetrie (CV), die Differentielle Puls-Voltammetrie (DPV) und die Square-Wave-Voltammetrie (SWV) sollten auf ihre Eignung zum Nachweis der bioaktiven Substanzen erprobt werden. Schließlich waren die Elektroden in realen Analyten zu testen. Insgesamt konnte in der vorliegenden Arbeit gezeigt werden, dass ausgewählte Neurotransmitter, Ascorbinsäure und Harnsäure sich mit differentiellen voltammetrischen Verfahren an industrienah hergestellten modifizierten Dickschichtelektroden bestimmen lassen. Es ist erstmalig gelungen, eine modifizierte Dickschichtelektrode zu entwickeln, mit der es möglich ist, Katecholamine unabhängig von Ascorbinsäure (3 mM) und Harnsäure (2 mM) quantitativ nachzuweisen. Damit eröffnen sich neue Wege für den Einsatz von elektrochemischen Sensoren für die einfache Bestimmung der Neurotransmitter vor Ort.
Die beschriebenen modifizierten Dickschichtelektroden sind ohne Verlust an elektrochemischer Aktivität an der Luft oder im Grundelektrolyten monatelang lagerfähig. Die Elektroden lassen sich im Gegensatz zu den in der Literatur beschriebenen Elektroden mit Einzelfertigung kostengünstig in großer Stückzahl mit hoher Reproduzierbarkeit herstellen.:Inhaltsverzeichnis I
Abkürzungen V
1 Einleitung und Zielsetzung der Arbeit 1
2 Theoretischer Teil 5
2.1 Elektrochemische Verfahren in der Analytik 5
Klassifizierung elektroanalytischer Methoden 5
2.1.1 Voltammetrie 5
Cyclovoltammetrie (CV) 6
Differential-Puls-Voltammetrie (DPV) 9
Square-Wave-Voltammetrie (SWV) 10
2.1.2 Chronocoulometrie (ChrC) 11
2.1.3 Impedanzmessung (EIS) 12
2.1.4 Elektrochemische Quarzmikrowaage (EQCM) 14
2.2 Poly-3,4-Ethylendioxythiophen, ein leitfähiges Polymer 19
2.2.1 Leitfähige Polymere 19
2.2.2 Das Poly-3,4-ethylendioxythiophen 20
Elektrochemische Synthese und Dotierung 20
2.3 Bioaktive Stoffe 24
2.3.1 Katecholamine 24
Dopamin 25
Noradrenalin und Adrenalin 25
Abnorme Konzentration der Katecholamine 25
2.3.2 Serotonin 26
2.3.3 Interaktion von Katecholaminen und Serotonin 26
2.3.4 Ascorbinsäure und Harnsäure 27
2.3.5 Elektrochemisches Verhalten der bioaktiven Stoffe 28
Katecholamine 28
Serotonin 30
Ascorbinsäure 30
Harnsäure 30
3 Experimenteller Teil 32
3.1 Chemikalien 32
3.2 Lösungen 33
3.2.1 Ausgangslösungen 33
Grundelektrolyte 33
Lösungen der bioaktiven Stoffe 33
3.2.2 Lösungen für Elektrodenmodifizierungen 33
EDOT-haltige Lösungen 33
Neurotransmitter-Lösungen 34
HAuCl4-Lösungen 34
Goldkolloide 34
Eisenhexacyanoferrat(II)-Goldsäurehaltige Lösung 35
3.3 Elektrochemische Messmethoden 35
3.3.1 Voltammetrie, Chronocoulometrie und Impedanz 35
3.3.2 Elektrochemische Quarzmikrowaage 38
3.4 Elektroden und Präparation der Elektroden 39
3.4.1 Untersuchte Elektroden, deren Aktivierung und Konditionierung 39
3.4.3 Modifizierungen der Elektroden 41
Poly-3,4-Ethylendioxythiophen (PEDOT) 41
Goldnanopartikel 41
Komposite aus Goldnanopartikeln und Preußisch Blau (Au/PB) 42
Polymerfilme aus Monoamin-Neurotransmittern 42
3.5 Präparation der UP für Untersuchungen in realen Medien 43
3.6 Spektroskopische Methoden 43
4 Ergebnisse und Diskussion 45
4.1 Unmodifizierte Elektrodenoberflächen 45
4.1.1 Einfluss der Aktivierung der Elektrodenoberflächen auf das Messverhalten 45
4.1.2 Bestimmung bioaktiver Stoffe an unmodifizierten Elektroden 48
Ermittlung des Peakpotenzials 48
Messeffekte an Gold- und Graphitelektroden in Neurotransmitter-Lösungen hoher Konzentrationen 50
Bestimmung bioaktiver Stoffe im Gemisch 52
4.2 Au- und Au/PB-modifizierte Elektroden 54
4.2.1 Abscheidung 54
4.2.2 Untersuchungen bioaktiver Stoffe an Au-modifizierten Elektroden 56
4.3 PEDOT-modifizierte Elektroden 58
4.3.1 Abscheidungen der PEDOT-Schichten 58
CV-Abscheidungen der PEDOT-Schichten 59
ChrC-Abscheidungen der PEDOT-Schichten 62
4.3.2 Voruntersuchungen an PEDOT-modifizierten Elektroden 66
Ermittlung des optimalen Potenzialbereiches für voltammetrische Messungen an PEDOT-modifizierten Elektroden 66
Ermittlung der optimale PEDOT-Schichten für die Bestimmung bioaktiver Stoffe 68
Peakpotenziale bioaktiver Stoffe 71
Einfluss des pH-Wertes des Elektrolyten und der Scangeschwindigkeit auf voltammetrische Messsignale bioaktiver Stoffe 72
Einfluss der Messmethoden auf die Messsignale bioaktiver Stoffe an PEDOT-modifizierten Elektroden 74
4.3.3 Bestimmung bioaktiver Stoffe an PEDOT-modifizierten Elektroden 78
Bestimmung der Neurotransmitter (Dopamin, Adrenalin, Noradrenalin und Serotonin) 78
Bestimmung von Ascorbinsäure und Harnsäure 81
Bestimmung der Neurotransmitter mit Zusatz von Ascorbinsäure und Harnsäure 82
Stabiltität der PEDOT-modifizierten Elektroden 83
Vergleich der Ergebnisse an PEDOT-Elektroden mit Literaturangaben 84
4.3.4 Spektroskopische Untersuchungen der PEDOT-Oberflächen 85
4.3.5 Zusammenfassung der Ergebnisse an PEDOT-Elektroden 87
4.4 Au-PEDOT-modifizierte Elektroden 88
4.4.1 Abscheidungen der Goldnanopartikel auf PEDOT-Oberflächen 88
Abscheidung der Goldnanopartikel durch Adsorption aus Goldkolloiden 88
Abscheidung der Goldnanopartikel auf PEDOT-modifizierten Elektroden mittels Cyclovoltammetrie 92
4.4.2 Bestimmung bioaktiver Stoffe an Au-PEDOT-Elektroden 94
Peakpotenziale bioaktiver Stoffe an Au-PEDOT-Elektroden 94
Bestimmung von Neurotransmittern in 0,1 M Phosphatpufferlösungen 96
Bestimmung von Neurotransmittern mit Zusatz von Ascorbinsäure und Harnsäure 98
Bestimmung von Ascorbinsäure und Harnsäure 99
Stabilität der Sensitivitäten und Reproduzierbarkeit der Elektrodenherstellung 102
Vergleich der Ergebnisse an Au-PEDOT-Elektroden mit Literaturangaben 102
4.4.3 Zusammenfassung der Ergebnisse an Au-PEDOT-Elektroden 104
4.5 Polymonoamin-modifizierte Elektroden bzw. PEDOT-Elektroden 105
4.5.1 Abscheidungen der Polymerschichten aus Monoaminen an Graphitelektroden 106
4.5.2 Abscheidungen der Polymerschichten aus Monoaminen an PEDOT-Elektroden 106
CV-Abscheidung 106
SWV-Abscheidung 108
4.5.3 Bestimmung bioaktiver Stoffe an Polyserotonin-modifizierte PEDOT-Elektroden 111
Peakpotenziale bioaktiver Stoffe 111
Bestimmung der Neurotransmitter 112
Bestimmung von Ascorbinsäure und Harnsäure 114
Bestimmung der Neurotransmitter mit Zusatz von AS und HS 114
Bestimmung von Harnsäure in Gegenwart von Dopamin 116
4.5.4 Möglicher Einsatz der 5-HT-PEDOT-Elektroden als pH-Elektroden 117
4.5.5 Zusammenfassung der Ergebnisse an Polyserotonin-PEDOT-Elektroden 118
4.6 Bestimmung bioaktiver Stoffe in UM 119
4.6.1 Bestimmung von Harnsäure 119
Bestimmung von Harnsäure im Modellanalyten 119
Bestimmung von Harnsäure in präparierten UP 119
4.6.2 Bestimmung von Dopamin 120
DA-Bestimmung im Modellanalyten 120
Bestimmung von Dopamin in präparierten UP 121
5 Zusammenfassung und Ausblick 123
Zusammenfassung 123
Ausblick 126
Tabellenverzeichnis 127
Abbildungsverzeichnis 130
Anhang 138
Literaturverzeichnis 152
VERSICHERUNG 157
|
16 |
Studies on the Crystallographic Phasing of Proteins: Substructure Validation and MAD-phased Electron Density Maps at Atomic Resolution / Studien zur kristallographischen Phasierung von Proteinen: Substruktur-Validierung und MAD-phasierte Elektronendichtekarten bei atomarer AuflösungDall'Antonia, Fabio 06 November 2003 (has links)
No description available.
|
17 |
50 Jahre Nukleare Analytik in Rossendorf – interdisziplinäre Forschung und Dienstleistungen / 50 Years Radioanalytical Chemistry in Rossendorf – Interdisciplinary Research and ServiceNiese, Siegfried 01 October 2013 (has links) (PDF)
Die Nukleare Analytik begann in Rossendorf im Jahr 1957 mit der Anwendung der Indikatormethode für Verteilungsuntersuchungen im Zusammenhang mit der Verarbeitung bestrahlter Kernbrennstoffe. Nach Inbetriebnahme des Forschungsreaktors stand die Entwicklung und Anwendung der Aktivierungsanalyse zur Untersuchung von Halbleitermaterialen sowie geologischer und medizinischer Proben im Mittelpunkt. Zur Verbesserung der Nachweisgrenze von Radionukliden wurden Koinzidenzverfahren entwickelt und eine unterirdische Messkammer eingerichtet. Nach Stilllegung des Forschungsreaktors wurde die Radioaktivität in der Umgebung des ehemaligen Uranbergbaues, in Materialien aus dem Rückbau von Reaktoren und anderen Kernanlagen und anderen natürlichen und technischen Proben bestimmt. / In 1957 the work in radioanalytical chemistry has been started in Rossendorf with the application of the tracer method for investigation of the distribution of nuclides in reprocessing of nuclear fuels. After put into operation of the research reactor the development and application of activation analysis became the main topic. For improvement of the detection limits of radionuclides coincidence methods has been developed and an underground counting room was build. After shut down of the research reactor the radioactivity in the environment of the former uranium mining, and in materials from the decommissioning of reactors and other nuclear equipments and further natural and industrial samples.
|
18 |
50 Jahre Nukleare Analytik in Rossendorf – interdisziplinäre Forschung und DienstleistungenNiese, Siegfried 01 October 2013 (has links)
Die Nukleare Analytik begann in Rossendorf im Jahr 1957 mit der Anwendung der Indikatormethode für Verteilungsuntersuchungen im Zusammenhang mit der Verarbeitung bestrahlter Kernbrennstoffe. Nach Inbetriebnahme des Forschungsreaktors stand die Entwicklung und Anwendung der Aktivierungsanalyse zur Untersuchung von Halbleitermaterialen sowie geologischer und medizinischer Proben im Mittelpunkt. Zur Verbesserung der Nachweisgrenze von Radionukliden wurden Koinzidenzverfahren entwickelt und eine unterirdische Messkammer eingerichtet. Nach Stilllegung des Forschungsreaktors wurde die Radioaktivität in der Umgebung des ehemaligen Uranbergbaues, in Materialien aus dem Rückbau von Reaktoren und anderen Kernanlagen und anderen natürlichen und technischen Proben bestimmt. / In 1957 the work in radioanalytical chemistry has been started in Rossendorf with the application of the tracer method for investigation of the distribution of nuclides in reprocessing of nuclear fuels. After put into operation of the research reactor the development and application of activation analysis became the main topic. For improvement of the detection limits of radionuclides coincidence methods has been developed and an underground counting room was build. After shut down of the research reactor the radioactivity in the environment of the former uranium mining, and in materials from the decommissioning of reactors and other nuclear equipments and further natural and industrial samples.
|
19 |
Film the Film: A new method to measure oxygen diffusion in polymer films using light.Kantelberg, Richard, Achenbach, Tim, Kirch, Anton, Reineke, Sebastian 30 May 2023 (has links)
Organic materials such as polymer films surround us in many everyday applications ranging from food packaging and smartphone displays to medical purposes. One of their main usage scenarios is the thin, lightweight, and easy processable encapsulation to protect a particular target from molecular oxygen. Hence, the oxygen diffusion properties in these polymer films represent a key parameter.
This work demonstrates a new method to determine and model the oxygen distribution in thin polymer films using light. It provides a significant advantage over many common methods since no vacuum machinery is needed. The working principle is based on the phosphorescent emission of an organic dopant which is quenched in the vicinity of molecular oxygen at room temperature.
The model system used in this study consists of a polystyrene layer, which is doped with PtOEP (Platin(II)-2,3,7,8,12,13,17,18-octaethyl-21H,23H-porphyrin) and covered with a barrier layer of Ex-cevalTM. The oxygen concentration in the doped polystyrene film can be locally depleted under excitation with 365 nm UV light. To determine the oxygen diffusion coefficient, a concentration gradient is created and the time evolution of the luminescent pattern is recorded with a CCD-camera. The recorded data is reconverted to oxygen concentration equivalents and the impact of photoconsumption during the recording process is eliminated, before fitting it with a diffusion simulation. The result reveals a significant dependency on the processing conditions of the film, i.e. D = (1.49 ± 0.08) × 10−7 cm^2/s for unannealed and D = (0.71 ± 0.09) × 10−7 cm^2/s for an-nealed samples. The values lie well in the range reported in the literature.:Problem
Goal
Conception
The physics behind the phenomenon
Results
More
|
20 |
UPNS4D+ – Neue Ansätze für die Kluftflächen- und HaufwerksanalyseDonner, Ralf, Geier, Andreas, John, André 28 September 2017 (has links)
Der Zugang zu wirtschaftsstrategischen Bodenschätzen ist für moderne Industriegesellschaften von essenzieller Bedeutung. Für Deutschland besteht für die Versorgung mit nichtenergetischen Rohstoffen wie Stahlveredlern und Seltenen-Erden eine weitgehende Importabhängigkeit. Vorhandene heimische Lagerstätten weisen eine komplexe geologische Struktur mit geringen Abbaumächtigkeiten in großen Teufen auf. Um diese Lagerstätten nutzen zu können, soll ein untertagetaugliches Positionierungs- und Navigationssystem, UPNS4D+, für die Erkundung der Lagerstätte entwickelt und als Demonstrationssystem gebaut werden. Das Institut für Markscheidewesen und Geodäsie der TU Bergakademie ist Teil des Entwicklerkonsortiums. Es ist zuständig für die markscheiderische und bergmännische Nutzbarkeit der mit dem Erkundungssystem gewonnen Daten. Entsprechend dem aktuellen Arbeitsfortschritt werden im vorliegenden Beitrag die Lösungen für die Kluftflächen- und die Haufwerksanalyse vorgestellt. Die teilautomatisierte Haufwerksanalyse dient der Detektion großer Partikel und deren Lagebestimmung in einem relativen Koordinatensystem. / Access to strategic mineral resources is essential for modern industrial societies. Germany is largely dependent on imports of non-energy raw materials such as steel refiners and rare earth elements. Existing indigenous deposits have a complex geological structure with low extraction thickness in large depths. In order to use these deposits, an underground positioning and navigation system, namely UPNS4D+, as a demonstration system has to be developed for deposit exploration. As part of the developer consortium, the Institute for Mining Surveying and Geodesy of the TU Bergakademie Freiberg is responsible for the utilization of the acquired data in the field of mining. According to the current work status, in this paper the solutions for rock fracture analysis and grain size analysis are presented. The partly automated grain size analysis is used for the detection of large particles and their position in a relative coordinate system.
|
Page generated in 0.0537 seconds