Spelling suggestions: "subject:"bimolecular fluorescence complementation"" "subject:"bimolecular fluorescence komplementation""
11 |
Assemblage oligomérique des récepteurs couplés aux protéines G avec les RAMPsHéroux, Madeleine 03 1900 (has links)
Les récepteurs couplés aux protéines G (RCPGs) constituent la plus grande classe de récepteurs membranaires impliqués dans la transmission des signaux extracellulaires. Traditionnellement, la transmission de la signalisation par les RCPGs implique l’activation d’une protéine G hétéro-trimérique qui pourra à son tour moduler l’activité de divers effecteurs intracellulaires. Ce schéma classique de signalisation s’est complexifié au fils des années et l’on sait maintenant qu’en plus d’interagir avec les protéines G, les RCPGs s’associent avec une panoplie d’autres protéines afin de transmettre adéquatement les signaux extracellulaires. En particulier, la découverte d’une famille de protéines transmembranaires modulant la fonction des RCPGs, baptisées protéines modifiant l’activité des récepteurs (« receptor activity-modifying proteins » ; RAMPs), a changé la façon de concevoir la signalisation par certains RCPGs. Dans le cas du récepteur similaire au récepteur de la calcitonine (« calcitonin-like receptor » ; CLR), l’association avec les RAMPs permet l’acheminement à la surface cellulaire du récepteur tout en modulant ses propriétés pharmacologiques. Lorsqu’il est associé avec RAMP1, le CLR fonctionne comme un récepteur du peptide relié au gène de la calcitonine (« calcitonin gene-related peptide » ; CGRP), alors qu’il devient un récepteur de l’adrénomedulline lorsqu’il interagit avec RAMP2 ou RAMP3. D’autre part, en plus d’interagir avec des protéines accessoires transmembranaires telles les RAMPs, les RCPGs peuvent aussi s’associer entre eux pour former des oligomères de récepteurs. Dans cette thèse, nous nous sommes penchés sur les interactions entre les RCPGs et les RAMPs, et plus particulièrement sur l’interrelation entre ce type d’association RCPG/RAMP et l’assemblage en oligomères de récepteurs, en utilisant le récepteur du CGRP comme modèle d’étude.
Une première étude nous a tout d’abord permis de confirmer l’interaction entre le récepteur CLR et RAMP1, dans un contexte de cellules vivantes. Nous avons démontré que ce complexe CLR/RAMP1 active la protéine G et recrute la protéine de signalisation -arrestine suite à une stimulation par le CGRP. Ensuite, nous avons déterminé que même s’il doit obligatoirement former un hétéro-oligomère avec les RAMPs pour être actif, le CLR conserve malgré tout sa capacité à interagir avec d’autres RCPGs. En plus d’observer la présence d’homo-oligomère de CLR, nous avons constaté que tout comme les RCPGs, les RAMPs peuvent eux-aussi s’associer entre eux pour former des complexes oligomériques pouvant comprendre différents sous-types (RAMP1/RAMP2 et RAMP1/RAMP3).
Cette observation de la présence d’homo-oligomères de CLR et de RAMP1, nous a amené à nous questionner sur la stœchiométrie d’interaction du complexe CLR/RAMP1. Dans une deuxième étude ayant pour but d’établir la composition moléculaire du récepteur CGRP1 in vivo, nous avons développé une nouvelle approche permettant l’étude de l’interaction entre trois protéines dans un contexte de cellules vivantes. Cette technique baptisée BRET/BiFC, est basée sur le transfert d’énergie de résonance de bioluminescence entre un donneur luminescent, la Renilla luciférase, et un accepteur fluorescent, la protéine fluorescente jaune (YFP), reconstituée suite au ré-assemblage de ces deux fragments. En utilisant cette approche, nous avons pu déterminer que le récepteur CGRP1 est constitué d’un homo-oligomère de CLR interagissant avec un monomère de RAMP1.
En démontrant un assemblage oligomérique asymétrique pour le récepteur CGRP1 à partir d’une nouvelle approche biophysique, nous croyons que les travaux présentés dans cette thèse ont contribué à élargir nos connaissances sur le fonctionnement de la grande famille des RCPGs, et seront utile à la poursuite des recherches sur les complexes protéiques impliqués dans la signalisation. / G protein coupled receptors (GPCRs) constitute the largest family of membrane receptors involved in signal transduction. Traditionally, signal transduction by GPCRs involves the activation of a hetero-trimeric G protein which will then modulate the activity of several intracellular effectors. We can now appreciate the fact that in addition to their interaction with G proteins, GPCRs also associate with several other proteins, in order to allow proper signal transduction. In particular, the discovery of a family of proteins called receptor activity-modifying proteins (RAMPs) has challenged the traditional views of signal transduction by some GPCRs. In the case of the calcitonin-like receptor (CLR), the association with RAMPs allows the proper cell surface targeting of the receptor in addition to modulate it’s pharmacological properties. Co-expression of CLR with RAMP1 leads to a calcitonin gene-related peptide (CGRP) receptor, whereas CLR association with RAMP2 or RAMP3 promotes the formation of an adrenomedullin receptor. In addition to their interaction with transmembrane accessory proteins such as RAMPs, GPCRs can also interact with other receptors to form receptors oligomers. In this thesis, we were interested in the interactions between GPCRs and RAMPs, and particularly, in the link between these GPCR/RAMP interactions and the assembly of receptor oligomers, using CGRP1 receptor as a model.
We first confirmed the interaction between CLR and RAMP1 in living cells. We showed that this CLR/RAMP1 complex activates G proteins and recruits the signalling protein -arrestin upon CGRP stimulation. Next, we demonstrated that even if the CLR requires hetero-oligomeric assembly with RAMPs in order to be active, this receptor can still interact with other GPCRs. In addition to CLR homo-oligomers, we observed that RAMPs can also self-associate to form oligomeric complexes which can involve different subtypes (RAMP1/RAMP2 and RAMP1/RAMP3).
This observation of the presence of CLR and RAMP1 homo-oligomers raised the question of the stoiechiometry of interaction of the CLR/RAMP1 complex. In order to establish the molecular composition of the CGRP1 receptor in vivo, we developed a novel approach allowing the detection of the interaction between three proteins in living cells. This method called BRET/BiFC is based on the bioluminescence resonance energy transfer between a luminescent energy donor, Renilla luciferase, and a fluorescent energy acceptor, the yellow fluorescent protein (YFP), reconstituted after the re-association of its two fragments. Using this approach, we showed that the CGRP1 receptor consist of a homo-oligomer of CLR interacting with a monomer of RAMP1.
By demonstrating the asymmetrical organization of the CGRP1 receptor complex using a novel biophysical approach, we believe that the results presented herein have contributed to increase our knowledge of the mechanisms of function of the large family of GPCRs and will be useful for the pursuit of research on protein complexes involved in signalling pathways.
|
12 |
Caractérisation d'une famille de récepteurs kinases impliqués dans le développement gamétophytique chez Arabidopsis thalianaHoude, Josée 02 1900 (has links)
Au cours du développement des végétaux, de l’établissement de l’identité cellulaire des premiers organes au guidage du tube pollinique, la communication cellule à cellule est d’une importance capitale. En réponse, les voies de signalisation moléculaires sont élaborées pour la perception d’un signal extérieur et la transduction en une réponse génique via une cascade intracellulaire. Les récepteurs kinases font partie des protéines perceptrices des stimuli et constituent chez les plantes une catégorie de protéines avec une occurrence considérable, mais dont très peu d’informations détaillées sont disponibles à ce jour. Une famille de récepteurs kinases chez Arabidopsis thaliana, AtORK11 (Arabidopsis thaliana Ovule Receptor Kinase 11), a été identifiée par orthologie à un récepteur spécifique aux ovaires chez une solanacéee sauvage, Solanum chacoense. La fonction présumée de cette famille de récepteurs kinases de type leucine-rich repeat, suggérée par son patron d’expression, implique les événements relatifs au développement des gamétophytes et à la reproduction. Afin de caractériser la fonction des quatre gènes de la famille (AtORK11a, AtORK11b, AtORK11c et AtORK11d) une stratégie d’analyse de mutants d’insertion de l’ADN-T et d’évaluation du mode d’action par complémentation bimoléculaire par fluorescence (BiFC) a été entreprise. Aucune fonction précise n’a pu être attribuée aux doubles mutants d’insertion, par contre la surexpression d’une construction dominante négative indique un rôle dans le développement gamétophytique. Il a aussi été démontré que les quatre récepteurs peuvent interagir par homodimérisation aussi bien que par hétérodimérisation. Une hypothèse de redondance fonctionnelle est ainsi mise à jour parmi la famille des gènes AtORK11. / Cell to cell communication is paramount during plant developmental processes, from cellular identity in early organogenesis to pollen tube guidance. In response to this requirement, molecular cell signalling is used to perceive an external signal and transduce the response by an intracellular signalling cascade leading to specific gene activation. The sensing protein is typically a receptor kinase, which will transduce the stimulus by phosphorylation of a cytoplasmic interaction partner. Although plant receptor kinases represent the largest protein kinase family, only handfuls are well characterized. By sequence identity (orthology), a family of leucine-rich repeat receptor kinases from Arabidopsis thaliana was identified as AtORK11 (Arabidopsis thaliana Ovule Receptor Kinase 11). Based upon previous results from its ortholog in Solanum chacoense, the ovary- specific ScORK11 receptor kinase, we hypothesized that members of the AtORK11 receptors would be involved in gametophyte development and reproduction. In order to characterize the role of the four family members (AtORK11a, AtORK11b, AtORK11c and AtORK11d), a T-DNA insertional mutant strategy was undertaken, as well as bimolecular fluorescence complementation assays (BiFC). No precise function could be assigned to the double mutants although a dominant negative strategy revealed an involvement in gametophytic development. It was also shown that all of the receptors could form homodimers as well as heterodimers in a heterologous system, suggesting high functional redundancy for the AtORK11 family.
|
13 |
Investigation of Structure-function and Signal Transduction of Plant Cyclic Nucleotide-gated Ion ChannelsChin, Kimberley 07 January 2014 (has links)
Cyclic nucleotide-gated channels (CNGCs) are non-selective cation channels that were first identified in vertebrate photosensory and olfactory neurons. Although the physiological roles and biophysical properties of animal CNGCs have been well studied, much less is known about these channels in plants. The Arabidopsis genome encodes twenty putative CNGC subunits that are postulated to form channel complexes that mediate various physiological processes involving abiotic and biotic stress responses, ion homeostasis and development.
The identification of Arabidopsis autoimmune CNGC mutants, such as defense no death class (dnd1 and dnd2), and the constitutive expressor of pathogenesis related genes 22 (cpr22) implicate AtCNGC2, 4, 11 and 12 in plant immunity. Here, I present a comprehensive study of the molecular mechanisms involved in CNGC-mediated signaling pathways with emphasis on pathogen defense. Previously, a forward genetics approach aimed to identify suppressor mutants of the rare gain-of-function autoimmune mutant, cpr22, identified key residues that are important for CNGC subunit interactions and channel function.
First, I present a structure-function analysis of one of these suppressor mutants (S58) that revealed a key residue in the cyclic nucleotide binding domain involved in the stable regulation of CNGCs. Second, I present a new suppressor screen using AtCNGC2 T-DNA knockout mutants that specifically aimed to identify novel downstream components of CNGC-mediated pathogen defense signaling. In this screen, I successfully isolated and characterized the novel Arabidopsis mutant, repressor of defense no death 1 (rdd1), and expanded this study to demonstrate its involvement in AtCNGC2 and AtCNGC4-mediated signal transduction. Additionally, I demonstrated for the first time, the physical interaction of AtCNGC2 and AtCNGC4 subunits in planta.
The findings presented in this thesis broaden our current knowledge of CNGCs in plants, and provide a new foundation for future elucidation of the structure-function relationships and signal transduction mediated by these channels.
|
14 |
Investigation of Structure-function and Signal Transduction of Plant Cyclic Nucleotide-gated Ion ChannelsChin, Kimberley 07 January 2014 (has links)
Cyclic nucleotide-gated channels (CNGCs) are non-selective cation channels that were first identified in vertebrate photosensory and olfactory neurons. Although the physiological roles and biophysical properties of animal CNGCs have been well studied, much less is known about these channels in plants. The Arabidopsis genome encodes twenty putative CNGC subunits that are postulated to form channel complexes that mediate various physiological processes involving abiotic and biotic stress responses, ion homeostasis and development.
The identification of Arabidopsis autoimmune CNGC mutants, such as defense no death class (dnd1 and dnd2), and the constitutive expressor of pathogenesis related genes 22 (cpr22) implicate AtCNGC2, 4, 11 and 12 in plant immunity. Here, I present a comprehensive study of the molecular mechanisms involved in CNGC-mediated signaling pathways with emphasis on pathogen defense. Previously, a forward genetics approach aimed to identify suppressor mutants of the rare gain-of-function autoimmune mutant, cpr22, identified key residues that are important for CNGC subunit interactions and channel function.
First, I present a structure-function analysis of one of these suppressor mutants (S58) that revealed a key residue in the cyclic nucleotide binding domain involved in the stable regulation of CNGCs. Second, I present a new suppressor screen using AtCNGC2 T-DNA knockout mutants that specifically aimed to identify novel downstream components of CNGC-mediated pathogen defense signaling. In this screen, I successfully isolated and characterized the novel Arabidopsis mutant, repressor of defense no death 1 (rdd1), and expanded this study to demonstrate its involvement in AtCNGC2 and AtCNGC4-mediated signal transduction. Additionally, I demonstrated for the first time, the physical interaction of AtCNGC2 and AtCNGC4 subunits in planta.
The findings presented in this thesis broaden our current knowledge of CNGCs in plants, and provide a new foundation for future elucidation of the structure-function relationships and signal transduction mediated by these channels.
|
15 |
Assemblage oligomérique des récepteurs couplés aux protéines G avec les RAMPsHéroux, Madeleine 03 1900 (has links)
Les récepteurs couplés aux protéines G (RCPGs) constituent la plus grande classe de récepteurs membranaires impliqués dans la transmission des signaux extracellulaires. Traditionnellement, la transmission de la signalisation par les RCPGs implique l’activation d’une protéine G hétéro-trimérique qui pourra à son tour moduler l’activité de divers effecteurs intracellulaires. Ce schéma classique de signalisation s’est complexifié au fils des années et l’on sait maintenant qu’en plus d’interagir avec les protéines G, les RCPGs s’associent avec une panoplie d’autres protéines afin de transmettre adéquatement les signaux extracellulaires. En particulier, la découverte d’une famille de protéines transmembranaires modulant la fonction des RCPGs, baptisées protéines modifiant l’activité des récepteurs (« receptor activity-modifying proteins » ; RAMPs), a changé la façon de concevoir la signalisation par certains RCPGs. Dans le cas du récepteur similaire au récepteur de la calcitonine (« calcitonin-like receptor » ; CLR), l’association avec les RAMPs permet l’acheminement à la surface cellulaire du récepteur tout en modulant ses propriétés pharmacologiques. Lorsqu’il est associé avec RAMP1, le CLR fonctionne comme un récepteur du peptide relié au gène de la calcitonine (« calcitonin gene-related peptide » ; CGRP), alors qu’il devient un récepteur de l’adrénomedulline lorsqu’il interagit avec RAMP2 ou RAMP3. D’autre part, en plus d’interagir avec des protéines accessoires transmembranaires telles les RAMPs, les RCPGs peuvent aussi s’associer entre eux pour former des oligomères de récepteurs. Dans cette thèse, nous nous sommes penchés sur les interactions entre les RCPGs et les RAMPs, et plus particulièrement sur l’interrelation entre ce type d’association RCPG/RAMP et l’assemblage en oligomères de récepteurs, en utilisant le récepteur du CGRP comme modèle d’étude.
Une première étude nous a tout d’abord permis de confirmer l’interaction entre le récepteur CLR et RAMP1, dans un contexte de cellules vivantes. Nous avons démontré que ce complexe CLR/RAMP1 active la protéine G et recrute la protéine de signalisation -arrestine suite à une stimulation par le CGRP. Ensuite, nous avons déterminé que même s’il doit obligatoirement former un hétéro-oligomère avec les RAMPs pour être actif, le CLR conserve malgré tout sa capacité à interagir avec d’autres RCPGs. En plus d’observer la présence d’homo-oligomère de CLR, nous avons constaté que tout comme les RCPGs, les RAMPs peuvent eux-aussi s’associer entre eux pour former des complexes oligomériques pouvant comprendre différents sous-types (RAMP1/RAMP2 et RAMP1/RAMP3).
Cette observation de la présence d’homo-oligomères de CLR et de RAMP1, nous a amené à nous questionner sur la stœchiométrie d’interaction du complexe CLR/RAMP1. Dans une deuxième étude ayant pour but d’établir la composition moléculaire du récepteur CGRP1 in vivo, nous avons développé une nouvelle approche permettant l’étude de l’interaction entre trois protéines dans un contexte de cellules vivantes. Cette technique baptisée BRET/BiFC, est basée sur le transfert d’énergie de résonance de bioluminescence entre un donneur luminescent, la Renilla luciférase, et un accepteur fluorescent, la protéine fluorescente jaune (YFP), reconstituée suite au ré-assemblage de ces deux fragments. En utilisant cette approche, nous avons pu déterminer que le récepteur CGRP1 est constitué d’un homo-oligomère de CLR interagissant avec un monomère de RAMP1.
En démontrant un assemblage oligomérique asymétrique pour le récepteur CGRP1 à partir d’une nouvelle approche biophysique, nous croyons que les travaux présentés dans cette thèse ont contribué à élargir nos connaissances sur le fonctionnement de la grande famille des RCPGs, et seront utile à la poursuite des recherches sur les complexes protéiques impliqués dans la signalisation. / G protein coupled receptors (GPCRs) constitute the largest family of membrane receptors involved in signal transduction. Traditionally, signal transduction by GPCRs involves the activation of a hetero-trimeric G protein which will then modulate the activity of several intracellular effectors. We can now appreciate the fact that in addition to their interaction with G proteins, GPCRs also associate with several other proteins, in order to allow proper signal transduction. In particular, the discovery of a family of proteins called receptor activity-modifying proteins (RAMPs) has challenged the traditional views of signal transduction by some GPCRs. In the case of the calcitonin-like receptor (CLR), the association with RAMPs allows the proper cell surface targeting of the receptor in addition to modulate it’s pharmacological properties. Co-expression of CLR with RAMP1 leads to a calcitonin gene-related peptide (CGRP) receptor, whereas CLR association with RAMP2 or RAMP3 promotes the formation of an adrenomedullin receptor. In addition to their interaction with transmembrane accessory proteins such as RAMPs, GPCRs can also interact with other receptors to form receptors oligomers. In this thesis, we were interested in the interactions between GPCRs and RAMPs, and particularly, in the link between these GPCR/RAMP interactions and the assembly of receptor oligomers, using CGRP1 receptor as a model.
We first confirmed the interaction between CLR and RAMP1 in living cells. We showed that this CLR/RAMP1 complex activates G proteins and recruits the signalling protein -arrestin upon CGRP stimulation. Next, we demonstrated that even if the CLR requires hetero-oligomeric assembly with RAMPs in order to be active, this receptor can still interact with other GPCRs. In addition to CLR homo-oligomers, we observed that RAMPs can also self-associate to form oligomeric complexes which can involve different subtypes (RAMP1/RAMP2 and RAMP1/RAMP3).
This observation of the presence of CLR and RAMP1 homo-oligomers raised the question of the stoiechiometry of interaction of the CLR/RAMP1 complex. In order to establish the molecular composition of the CGRP1 receptor in vivo, we developed a novel approach allowing the detection of the interaction between three proteins in living cells. This method called BRET/BiFC is based on the bioluminescence resonance energy transfer between a luminescent energy donor, Renilla luciferase, and a fluorescent energy acceptor, the yellow fluorescent protein (YFP), reconstituted after the re-association of its two fragments. Using this approach, we showed that the CGRP1 receptor consist of a homo-oligomer of CLR interacting with a monomer of RAMP1.
By demonstrating the asymmetrical organization of the CGRP1 receptor complex using a novel biophysical approach, we believe that the results presented herein have contributed to increase our knowledge of the mechanisms of function of the large family of GPCRs and will be useful for the pursuit of research on protein complexes involved in signalling pathways.
|
16 |
Caractérisation d'une famille de récepteurs kinases impliqués dans le développement gamétophytique chez Arabidopsis thalianaHoude, Josée 02 1900 (has links)
Au cours du développement des végétaux, de l’établissement de l’identité cellulaire des premiers organes au guidage du tube pollinique, la communication cellule à cellule est d’une importance capitale. En réponse, les voies de signalisation moléculaires sont élaborées pour la perception d’un signal extérieur et la transduction en une réponse génique via une cascade intracellulaire. Les récepteurs kinases font partie des protéines perceptrices des stimuli et constituent chez les plantes une catégorie de protéines avec une occurrence considérable, mais dont très peu d’informations détaillées sont disponibles à ce jour. Une famille de récepteurs kinases chez Arabidopsis thaliana, AtORK11 (Arabidopsis thaliana Ovule Receptor Kinase 11), a été identifiée par orthologie à un récepteur spécifique aux ovaires chez une solanacéee sauvage, Solanum chacoense. La fonction présumée de cette famille de récepteurs kinases de type leucine-rich repeat, suggérée par son patron d’expression, implique les événements relatifs au développement des gamétophytes et à la reproduction. Afin de caractériser la fonction des quatre gènes de la famille (AtORK11a, AtORK11b, AtORK11c et AtORK11d) une stratégie d’analyse de mutants d’insertion de l’ADN-T et d’évaluation du mode d’action par complémentation bimoléculaire par fluorescence (BiFC) a été entreprise. Aucune fonction précise n’a pu être attribuée aux doubles mutants d’insertion, par contre la surexpression d’une construction dominante négative indique un rôle dans le développement gamétophytique. Il a aussi été démontré que les quatre récepteurs peuvent interagir par homodimérisation aussi bien que par hétérodimérisation. Une hypothèse de redondance fonctionnelle est ainsi mise à jour parmi la famille des gènes AtORK11. / Cell to cell communication is paramount during plant developmental processes, from cellular identity in early organogenesis to pollen tube guidance. In response to this requirement, molecular cell signalling is used to perceive an external signal and transduce the response by an intracellular signalling cascade leading to specific gene activation. The sensing protein is typically a receptor kinase, which will transduce the stimulus by phosphorylation of a cytoplasmic interaction partner. Although plant receptor kinases represent the largest protein kinase family, only handfuls are well characterized. By sequence identity (orthology), a family of leucine-rich repeat receptor kinases from Arabidopsis thaliana was identified as AtORK11 (Arabidopsis thaliana Ovule Receptor Kinase 11). Based upon previous results from its ortholog in Solanum chacoense, the ovary- specific ScORK11 receptor kinase, we hypothesized that members of the AtORK11 receptors would be involved in gametophyte development and reproduction. In order to characterize the role of the four family members (AtORK11a, AtORK11b, AtORK11c and AtORK11d), a T-DNA insertional mutant strategy was undertaken, as well as bimolecular fluorescence complementation assays (BiFC). No precise function could be assigned to the double mutants although a dominant negative strategy revealed an involvement in gametophytic development. It was also shown that all of the receptors could form homodimers as well as heterodimers in a heterologous system, suggesting high functional redundancy for the AtORK11 family.
|
17 |
Proteínas de movimiento de la familia 30K:interacción con membranas biológicas y factores proteicos y su implicación en el transporte viralPeiró Morell, Ana 30 March 2015 (has links)
Tesis por compendio / Para que el proceso infeccioso de un virus de plantas tenga éxito la progenie
viral tiene que propagarse desde las primeras células infectadas al resto de la planta;
inicialmente se moverá célula a célula a través de los plasmodesmos (PDs) hasta
alcanzar el sistema vascular, lo cual le permitirá invadir las partes distales de la planta.
En este proceso, las proteínas de movimiento (MPs), junto con la colaboración de otros
actores secundarios, desempeñan un papel relevante. El conocimiento de la posible
asociación de las MPs con estructuras u orgánulos celulares así como de la interacción
con factores del huésped es de vital importancia para poder desarrollar estrategias
antivirales que permitan una mejora en la producción de los cultivos. Además, este tipo
de estudios no sólo han posibilitado un mayor conocimiento de las respuestas al estrés
en plantas sino que han sido pioneros en desentrañar los mecanismos de translocación
intercelular de factores celulares implicados en los procesos de desarrollo de las
plantas.
Las MPs virales se clasifican en familias/grupos en función de su grado de
similitud. Los virus, cuyas MPs pertenecen a la Superfamilia 30K, expresan una única MP
encargada de orquestar el movimiento intra- e intercelular de genoma viral. En el
Capítulo 1 de la presente Tesis se ha caracterizado la asociación de la MP del Virus del
mosaico del tabaco (TMV), miembro tipo de la familia 30K, al sistema de
endomembranas. Mediante el uso de aproximaciones in vivo se ha estudiado la
eficiencia de inserción de sus regiones hidrofóbicas (HRs) en la membrana del retículo
endoplasmático (ER). Nuestros resultados demuestran que ninguna de las dos HRs de la
MP es capaz de atravesar las membranas biológicas y que la alteración de la
hidrofobicidad de la primera HR es suficiente para modificar su asociación a la
membrana. En base a los resultados obtenidos, proponemos un modelo topológico en
el cual la MP del TMV se encontraría fuertemente asociada a la cara citosólica de la
membrana del ER, sin llegar a atravesarla. La observación de que i), el modelo
propuesto es compatible con otros motivos, previamente caracterizados, de la MP de
TMV y ii), concuerda con la topología descrita para otras MPs de la familia 30K, permite
cuestionar el modelo establecido desde el año 2000 para la MP de TMV así como
predecir, en base a la conservada estructura secundaria de las MPs de esta familia, una
topología similar para todos sus componentes.
Para el transporte intercelular de los virus de plantas se han descrito tres
modelos en base a la capacidad de transportar complejos ribonucloeprotéicos, a través
de PD modificados, formados por el RNA viral y la MP (ej. MP de TMV) más la proteína
de cubierta (ej. MP del virus del mosaico del pepino, CMV) o la capacidad de transportar
viriones a través estructuras tubulares formadas por la MP (ej. MP del Virus del mosaico
del caupí, CPMV). A pesar de las diferencias observadas entre los tres modelos, las MPs
representativas de cada uno de ellos pertenecen a la misma familia 30K y son
funcionalmente intercambiables (MPs de TMV, CMV, CPMV, Virus del mosaico del
Bromo -BMV- o Virus de los anillos necróticos de los prunus -PNRSV-) por la MP del Virus
del mosaico de la alfalfa (AMV), para el transporte a corta distancia. Con el objeto de
comprender la versatilidad que presentan las MPs en cuanto al movimiento viral,
hemos analizado la capacidad de estas MPs heterólogas de transportar sistémicamente
el genoma quimérico del AMV. El estudio ha revelado que todas las MPs analizadas
permiten el transporte del genoma quimera a las partes distales de la planta,
independientemente del modelo descrito para el transporte a corta distancia, aunque
requieren la extensión de los 44 aminoácidos C-terminales de la MP del AMV. Además,
para todas las ellas, excepto para la MP del TMV, se ha establecido una relación entre la
capacidad de movimiento local y la presencia del virus en las hojas no inoculadas de la
planta, indicando la existencia de un umbral de transporte célula a célula, por debajo
del cual, el virus es incapaz de invadir sistémicamente la planta.
Durante el proceso de infección viral, las MPs interaccionan tanto con otras
proteínas de origen viral como de la planta huésped. La interacción entre las MPs y
dichos factores de la planta afectan a la patogénesis viral, facilitando u obstaculizando
el movimiento intra- o intercelular del virus. En el Capítulo 3 del presente trabajo hemos
demostrado la interacción entre la MP del AMV y dos miembros de la familia de
Patellinas de arabidopsis, Patellin 3 (atPATL3) y Patellin 6 (atPATL6), mediante el
sistema de los dos híbridos de levadura y ensayos de reconstitución bimolecular de la
fluorescencia. Nuestros resultados, en general, demuestran que la interacción entre la
MP-PATLs obstaculizaría un correcto direccionamiento de la MP al PD, dando lugar a un
movimiento intracelular menos eficiente de los complejos virales, que forma la MP, y
disminuyendo el movimiento célula a célula del virus. Podríamos estar hablando de un
posible mecanismo de defensa de la planta, dirigido a evitar la invasión sistémica del
huésped. En este sentido, las MPs virales pueden ser buenos candidatos para el
desarrollo de estrategias antivirales dado que cualquier respuesta de defensa de la
planta que, a priori, reduzca el transporte célula a célula del virus, puede representar la
diferencia entre una infección local o sistémica, como hemos observado en el Capítulo 2
del presente trabajo. Los virus, a su vez, también son capaces de evolucionar hacia
variantes más eficaces, que permitan superar las diferentes barreras defensivas de la
planta huésped. En este contexto hemos identificado a la MP del Virus del bronceado
del tomate (TSWV) como determinante de avirulencia en la resistencia mediada por el
gen Sw-5. Del mismo modo, comprobamos que el cambio de 1-2 residuos de amino
ácidos de la MP de TSWV fue suficiente para superar la resistencia pero que a la vez, y
posiblemente debido a las altas restricciones que conlleva el reducido genoma de un
virus, afectaron a la eficiencia de la MP. / Peiró Morell, A. (2014). Proteínas de movimiento de la familia 30K:interacción con membranas biológicas y factores proteicos y su implicación en el transporte viral [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/48471 / Compendio
|
18 |
IDENTIFICATION OF TARGETS AND AUXILIARY PROTEINS OF PYR/PYL/RCAR ABA RECEPTORS: PROTEIN PHOSPHATASES TYPE 2C (PP2Cs) AND C2-DOMAIN ABA-RELATED PROTEINS (CARs)Rodríguez Solovey, Leisa Natacha 16 December 2015 (has links)
[EN] ABSTRACT
Abscisic acid (ABA) signaling plays a critical role in regulating root growth and root system architecture. ABA-mediated growth promotion and root tropic response under water stress are key responses for plant survival under limiting water conditions. In this work, we have explored the role of Arabidopsis (Arabidopsis thaliana) PYR/PYL/RCAR receptors (PYRABACTIN RESISTANCE1 (PYR1)/PYR1 LIKE (PYL)/REGULATORY COMPONENTS OF ABA RECEPTORS) for root ABA signaling. As a result, we discovered that PYL8 plays a nonredundant role for the regulation of root ABA sensitivity. Unexpectedly, given the multigenic nature and partial functional redundancy observed in the PYR/PYL family, the single pyl8 mutant showed reduced sensitivity to ABA-mediated root growth inhibition. This effect was due to the lack of PYL8-mediated inhibition of several clade A phosphatases type 2C (PP2Cs), since PYL8 interacted in vivo with at least five PP2Cs, namely HYPERSENSITIVE TO ABA1 (HAB1), HAB2, ABAINSENSITIVE1 (ABI1), ABI2, and PP2CA/ABA-HYPERSENSITIVE GERMINATION3 as revealed by tandem affinity purification and mass spectrometry proteomic approaches.
Membrane-delimited abscisic acid (ABA) signal transduction plays a critical role in early ABA signaling, but the molecular mechanisms linking core signaling components to the plasma membrane are unclear. We show that transient calciumdependent interactions of PYR/PYL/RCAR ABA receptors with membranes are mediated through a 10-member family of C2-domain ABA-related (CAR) proteins in Arabidopsis thaliana. Specifically, we found that PYL4 interacted in an ABA-independent manner with CAR1 in both the plasma membrane and nucleus of plant cells. CAR1 belongs to a plant-specific gene family encoding CAR1 to CAR10 proteins, and bimolecular fluorescence complementation and coimmunoprecipitation assays showed that PYL4-CAR1 as well as other PYR/PYL-CAR pairs interacted in plant cells. The crystal structure of CAR4 was solved, which revealed that, in addition to a classical calcium-dependent lipid binding C2 domain, a specific CAR signature is likely responsible for the interaction with PYR/PYL/RCAR receptors and their recruitment to phospholipid vesicles. This interaction is relevant for PYR/PYL/RCAR function and ABA signaling, since different car triple mutants affected in CAR1, CAR4, CAR5, and CAR9 genes showed reduced sensitivity to ABA in seedling establishment and root growth assays. In summary, we identified PYR/PYL/RCAR-interacting partners that mediate a transient Ca2+-dependent interaction with phospholipid vesicles, which affects PYR/PYL/RCAR subcellular localization and positively regulates ABA signaling. / [ES] RESUMEN
La señalización por la hormona vegetal ácido abscísico (ABA) desempeña un papel crítico en la regulación del crecimiento de la raíz y en la arquitectura del sistema radical. La promoción de crecimiento de la raíz en condiciones de estrés hídrico mediada por ABA es clave para la supervivencia de las plantas bajo condiciones limitantes de agua. En este trabajo, hemos explorado el papel de los receptores PYR/PYL/RCAR (PYRABACTIN RESISTANCE1 (PYR1)/PYR1 LIKE (PYL)/ REGULATORY COMPONENTS OF ABA RECEPTORS) de Arabidopsis (Arabidopsis thaliana) en la ruta de señalización de ABA en raíz. Así, hemos descubierto que el receptor de ABA PYL8 juega un papel no redundante en la regulación de la percepción de ABA en raíz. Inesperadamente, dada la naturaleza multigénica y la redundancia funcional parcial observada en la familia PYR/PYL/RCAR, el mutante pyl8 fue el único mutante sencillo de pérdida de función de los receptores PYR/PYL/RCAR que mostraba una sensibilidad reducida a la inhibición del crecimiento mediada por ABA en raíz. Este efecto se debe a la falta de inhibición mediada por PYL8 de varias fosfatasas del grupo A tipo 2C (PP2Cs), ya que PYL8 es capaz de interactuar in vivo con al menos cinco PP2Cs, denominadas HYPERSENSITIVE TO ABA1 (HAB1), HAB2, ABAINSENSITIVE1 (ABI1), ABI2, and PP2CA/ABA-HYPERSENSITIVE GERMINATION3 según lo han revelado la purificación por afinidad en tándem (TAP por sus siglas en inglés) y estudios proteómicos de espectrometría de masas.
La transducción de la señal del ABA localizada en la membrana plasmática celular
juega un papel crucial en los pasos iniciales de la señalización de la fitohormona, pero los mecanismos moleculares que unen los componentes básicos de la señalización y la membrana plasmática no están claros. Estudiando las interacciones de los receptores del ABA PYR/PYL/RCAR con la membrana plasmática hemos encontrado que éstos pueden interaccionar transitoriamente con ella de forma dependiente de calcio gracias a una familia de proteínas con dominios C2 relacionadas con la ruta de señalización de ABA (denominadas C2-domain ABA-related (CAR) proteins). Específicamente, se encontró que PYL4 interacciona de manera independiente de ABA con CAR1 tanto en la membrana plasmática como en el núcleo de las células vegetales. La proteína CAR1 pertenece a una familia multigénica constituida por 10 miembros en Arabidopsis thaliana, desde CAR1 hasta CAR10, y que solo se encuentra en plantas. Los ensayos de complementación bi-molecular de fluorescencia y de co-immunoprecipitación confirmaron la interacción en células vegetales tanto de PYL4-CAR1 como de otras parejas de PYR/PYL-CAR. La cristalización de la proteína CAR4 reveló que, además de un dominio C2 clásico de unión a lípidos dependiente de calcio, las proteínas de la familia CAR presentan un dominio específico que probablemente es responsable de la interacción con los receptores PYR/PYL/RCAR y de su posterior reclutamiento a las vesículas de fosfolípidos. Esta interacción es relevante para la función de los receptores PYR/PYL/RCAR en la señalización del ABA, ya que diferentes mutantes triples car de pérdida de función, que tienen afectados los genes CAR1, CAR4, CAR5, y CAR9, demostraron una reducción de la sensibilidad al ABA en ensayos de establecimiento de plántula y crecimiento de la raíz. En resumen, hemos identificado nueva familia de proteínas que son capaces mediar las interacciones transitorias dependientes de Ca2+ con vesículas de fosfolípidos, lo que a su vez afecta localización de PYR/PYL/RCAR y regula positivamente la señalización de ABA. / [CA] RESUM
La senyalització per l'hormona vegetal àcid abcíssic (ABA) exerceix un paper crític en la regulació del creixement de l'arrel i també en l'arquitectura del sistema radical. La promoció del creixement de l'arrel en condicions d'estrés hídric, regulada per ABA és clau per la supervivència de les plantes sota condicions limitants d'aigua. Amb aquest treball, hem investigat el paper dels receptors PYR/PYL/RCAR (PYRABACTIN RESISTANCE1 (PYR1)/PYR1 LIKE (PYL)/ REGULATORY COMPONENTS OF ABA RECEPTORS) d'Arabidopsis (Arabidopsis thaliana) en el camí de senyalització d'ABA en arrel. Així, hem descobert que el receptor d'ABA PYL8 exerceix un paper no redundant en la regulació de la percepció d'ABA en arrel. Inesperadament, donada la naturalesa multigènica i la redundància funcional parcial que s'observa en la família PYR/PYL/RCAR, el mutant pyl8 va ser l'únic mutant senzill de pèrdua de funció dels receptors PYR/PYL/RCAR que mostrava una sensibilitat reduïda a la inhibició del creixement mitjançada per l'ABA en l'arrel. Doncs aquest efecte es deu a la falta d'inhibició regulada per PYL8 de diverses fosfatases del grup A tipus 2C (PP2Cs), ja que PYL8 té la capacitat d'interactuar in vivo almenys amb cinc PP2Cs, anomenades HYPERSENSITIVE TO ABA1 (HAB1), HAB2, ABAINSENSITIVE1 (ABI1), ABI2, and PP2CA/ABAHYPERSENSITIVE GERMINATION3 segons ho han revelat per una banda la purificació per afinitat en tàndem (TAP són les seues sigles en anglés) i per altra banda, estudis proteòmics d'espectrometria de masses.
Pel que fa a la transducció del senyal del l'ABA, la qual es localitza en la membrana plasmàtica cel¿lular, juga un paper molt important en els primers instants de la senyalització de la fitohormona, no obstant això els mecanismes moleculars que uneixen els components bàsics d'aquesta senyalització amb la membrana plasmàtica, no es troben del tot clars. Per tant, s'han estudiat les interaccions que tenen els receptors del ABA PYR/PYL/RCAR amb la membrana plasmàtica, i hem trobat que aquests tenen la capacitat d'interaccionar transitòriament amb la membrana de forma dependent al calci, gràcies a una família de proteïnes amb domini C2, les quals es troben relacionades amb la ruta de senyalització d'ABA(anomenades C2domain ABArelated (CAR) proteins).Específicament, es va trobar que PYL4 interacciona d'una manera independent al ABA amb CAR1, tant en la membrana plasmàtica, com en el nucli de les cèl¿lules vegetals. La proteïna CAR1 pertany a la família multigènica constituïda per 10 components en Arabidopsis thaliana, des de CAR1 fins CAR10, que tan sols es troba en plantes. Els assajos de complementació bimolecular de fluorescència i de co-immunoprecipitació, van confirmar la interacció en cèl¿lules vegetals, tant de PYL4CAR1 com d'altres parelles de PYR/PYL-CAR. La cristal¿lització de la proteïna CAR4 va revelar que, a més d'un domini C2 clàssic de unió a lípids dependent del calci, les proteïnes de la família CAR presenten un domini PYR/PYL/RCAR, i del seu posterior reclutament a les vesícules fosfolipídiques. Doncs, aquesta interacció és rellevant en la funció dels receptors PYR/PYL/RCAR, ja que participa en la senyalització del l'ABA. Aquesta interacció es clau per a la funció dels receptors, ja que diferents mutants triples car de pèrdua de funció, els quals posseïxen afectats els gens CAR1, CAR4, CAR5 i CAR9, van mostrar una reducció de la sensibilitat a l'ABA en assajos d'establiment de plàntula i creixement de l'arrel. En conclusió, hem identificat una nova família de proteïnes amb la capacitat d'organitzar les interaccions transitòries dependents del calci amb vesícules de fosfolípids, fet que al seu torn afecta la localització de PYR/PYL/RCAR i regula positivament la senyalització d'ABA. / Rodríguez Solovey, LN. (2015). IDENTIFICATION OF TARGETS AND AUXILIARY PROTEINS OF PYR/PYL/RCAR ABA RECEPTORS: PROTEIN PHOSPHATASES TYPE 2C (PP2Cs) AND C2-DOMAIN ABA-RELATED PROTEINS (CARs) [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/58862
|
Page generated in 0.15 seconds