• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 45
  • 23
  • 10
  • 6
  • Tagged with
  • 84
  • 38
  • 16
  • 13
  • 12
  • 12
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Einflussfaktoren auf die letale Dosis (LD₅₀) bei der Honigbiene (Apis mellifera L.) bei der Prüfung von Pflanzenschutzmitteln /

Hintzen, Reiner. January 2003 (has links)
Thesis (doctoral)--Universität Hohenheim, 2003.
32

Thermoregulation and Resource Management in the Honeybee (Apis mellifera)

Basile, Rebecca January 2009 (has links)
Würzburg, Univ., Diss., 2009.
33

[Thermoregulation im Brutbereich der Honigbiene Apis mellifera carnica]

Bujok, Brigitte. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2005--Würzburg.
34

Evolutionary diversification of protein functions from translation in prokaryotes to innate immunity in invertebrates /

Prusko, Carsten D. Unknown Date (has links) (PDF)
University, Diss., 2006--Würzburg.
35

Untersuchungen zu natürlicher und manipulierter Aufzucht von Apis mellifera Morphologie, Kognition und Verhalten /

Bock, Fiola. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2006--Würzburg. / Erscheinungsjahr an der Haupttitelstelle: 2005.
36

Occurrence and population density of wild-living honey bees in Europe and the impact of different habitat types on their foraging and overwintering success / Vorkommen und Populationsdichte von wild lebenden Honigbienen in Europa und die Auswirkungen unterschiedlicher Habitattypen auf ihr Sammelverhalten und den Überwinterungserfolg

Rutschmann, Benjamin January 2023 (has links) (PDF)
The original habitat of native European honey bees (\(Apis\) \(mellifera\)) is forest, but currently there is a lack of data about the occurrence of wild honey bee populations in Europe. Prior to being kept by humans in hives, honey bees nested as wild species in hollow trees in temperate forests. However, in the 20th century, intensification of silviculture and agriculture with accompanying losses of nesting sites and depletion of food resources caused population declines in Europe. When the varroa mite (Varroa destructor), an invasive ectoparasite from Asia, was introduced in the late 1970s, wild honey bees were thought to be eradicated in Europe. Nevertheless, sporadic, mostly anecdotal, reports from ornithologists or forest ecologists indicated that honey bee colonies still occupy European forest areas. In my thesis I hypothesize that near-natural deciduous forests may provide sufficient large networks of nesting sites representing refugia for wild-living honey bees. Using two special search techniques, i.e. the tracking of flight routes of honey bee foragers (the “beelining” method) and the inspection of known cavity trees, I collected for the first time data on the occurrence and density of wild-living honey bees in forest areas in Germany (CHAPTER 3). I found wild-living honey bee colonies in the Hainich national park at low densities in two succeeding years. In another forest region, I checked known habitat trees containing black woodpecker cavities for occupation by wild-living honey bee colonies. It turned out that honey bees regularly use these cavities and occur in similar densities in both studied forest regions, independent of the applied detection method. Extrapolating these densities to all German forest areas, I estimate several thousand wild-living colonies in Germany that potentially interact in different ways with the forest environment. I conclude that honey bees regularly colonize forest areas in Germany and that networks of mapped woodpecker cavities offer unique possibilities to study the ecology of wild-living honey bees over several years. While their population status is ambiguous and the density of colonies low, the fact that honey bees can still be found in forests poses questions about food supply in forest environments. Consequently, I investigated the suitability of woodlands as a honey bee foraging habitat (CHAPTER 4). As their native habitat, forests are assumed to provide important pollen and nectar sources for honey bee colonies. However, resource supply might be spatially and temporally restricted and landscape-scale studies in European forest regions are lacking. Therefore, I set up twelve honey bee colonies in observation hives at locations with varying degree of forest cover. Capitalizing on the unique communication behaviour, the waggle dance, I examined the foraging distances and habitat preferences of honey bees over almost an entire foraging season. Moreover, by connecting this decoded dance information with colony weight recordings, I could draw conclusions about the contribution of the different habitat types to honey yield. Foraging distances generally increased with the amount of forest in the surrounding landscape. Yet, forest cover did not have an effect on colony weight. Compared to expectations based on the proportions of different habitats in the surroundings, colonies foraged more frequently in cropland and grasslands than in deciduous and coniferous forests, especially in late summer when pollen foraging in the forest is most difficult. In contrast, colonies used forests for nectar/honeydew foraging in early summer during times of colony weight gain emphasizing forests as a temporarily significant source of carbohydrates. Importantly, my study shows that the ecological and economic value of managed forest as habitat for honey bees and other wild pollinators can be significantly increased by the continuous provision of floral resources, especially for pollen foraging. The density of these wild-living honey bee colonies and their survival is driven by several factors that vary locally, making it crucial to compare results in different regions. Therefore, I investigated a wild-living honey bee population in Galicia in north-western Spain, where colonies were observed to reside in hollow electric poles (CHAPTER 5). The observed colony density only in these poles was almost twice as high as in German forest areas, suggesting generally more suitable resource conditions for the bees in Galicia. Based on morphometric analyses of their wing venation patterns, I assigned the colonies to the native evolutionary lineage (M-lineage) where the particularly threatened subspecies \(Apis\) \(mellifera\) \(iberiensis\) also belongs to. Averaged over two consecutive years, almost half of the colonies survived winter (23 out of 52). Interestingly, semi-natural areas both increased abundance and subsequent colony survival. Colonies surrounded by more semi-natural habitat (and therefore less intensive cropland) had an elevated overwintering probability, indicating that colonies need a certain amount of semi-natural habitat in the landscape to survive. Due to their ease of access these power poles in Galicia are, ideally suited to assess the population demography of wild-living Galician honey bee colonies through a long-term monitoring. In a nutshell, my thesis indicates that honey bees in Europe always existed in the wild. I performed the first survey of wild-living bee density yet done in Germany and Spain. My thesis identifies the landscape as a major factor that compromises winter survival and reports the first data on overwintering rates of wild-living honey bees in Europe. Besides, I established methods to efficiently detect wild-living honey bees in different habitat. While colonies can be found all over Europe, their survival and viability depend on unpolluted, flower rich habitats. The protection of near-natural habitat and of nesting sites is of paramount importance for the conservation of wild-living honey bees in Europe. / Das ursprüngliche Habitat der Westlichen Honigbiene (\(Apis\) \(mellifera\)) ist der Wald, doch derzeit fehlt es an Daten über das Vorkommen von wilden Honigbienenpopulationen in Europa. Bevor die Honigbiene von Menschen in künstlichen Behausungen gehalten wurde, nistete sie in den gemäßigten Breiten in hohlen Bäumen als wild lebende Art. Doch die Intensivierung der Forst- und Landwirtschaft, der damit einhergehende Verlust von Nistplätzen und die Verschlechterung der Nahrungsressourcen führten zu einem Rückgang der Honigbienenpopulationen im 20. Jahrhundert. Nachdem die Varroa-Milbe (Varroa destructor), ein invasiver Ektoparasit, in den späten 1970er-Jahren aus Asien eingeschleppt wurde, nahm man an, dass wilde Honigbienen in Europa ausgestorben seien. Nichtsdestotrotz gaben sporadische, hauptsächlich anekdotische Berichte von Ornithologen oder Waldökologen Anlass zur Vermutung, dass Honigbienenvölker immer noch in europäischen Wäldern zu finden seien. In meiner vorliegenden Dissertation stelle ich die Hypothese auf, dass naturnahe Laubwälder ein ausreichend großes Netz von Nistplätzen bieten und als Zufluchtsorte für wild lebende Honigbienen fungieren können. Mit Hilfe zweier spezieller Suchtechniken – dem Nachverfolgen der Flugrouten von Honigbienen-Sammlerinnen (die ‚Bee-Lining‘-Methode) und der Inspektion bekannter Baumhöhlen – habe ich erstmalig Daten über das Vorkommen und die Populationsdichte von wild lebenden Honigbienen in deutschen Waldgebieten gesammelt (CHAPTER 3). In zwei aufeinanderfolgenden Jahren habe ich wild lebende Honigbienenvölker im Hainich Nationalpark entdeckt, wobei die Populationsdichten gering waren. In einem anderen Waldgebiet habe ich kartierte Habitatbäume mit Höhlen des Schwarzspechts auf ihre Besiedlung mit Honigbienenvölker hin überprüft. Es stellte sich heraus, dass Honigbienen diese Schwarzspechthöhlen regelmäßig nutzen und in ähnlich niedrigen Dichten in beiden untersuchten Waldgebieten vorkommen. Mittels Extrapolation schätze ich die Zahl der wild lebenden Bienenvölker in allen deutschen Waldgebieten auf mehrere Tausend, die auf vielfältige Weise mit der Waldumgebung interagieren können. Zusammenfassend zeigte sich, dass Honigbienen regelmäßig deutsche Waldgebiete bewohnen und dass Daten über kartierte Spechthöhlen eine einmalige Möglichkeit bieten, die Ökologie der Honigbienen als Wildtier mittels eines Langzeitmonitorings zu untersuchen. Auch wenn der Populationsstatus noch ungeklärt und die Populationsdichte gering ist, wirft die Existenz wild lebender Honigbienen Fragen bezüglich der Nahrungsversorgung im Wald auf. Folglich habe ich untersucht, ob eine ausreichende Futterversorgung für Honigbienen in Wäldern gegeben ist (CHAPTER 4). Wälder gelten als der ursprüngliche Lebensraum der Westlichen Honigbiene und man nimmt an, dass sie wichtige Pollen- und Nektarquellen für Honigbienenvölker liefern. Das Nahrungsangebot könnte jedoch räumlich und zeitlich begrenzt sein, wobei hierzu bislang Studien in europäischen Waldregionen fehlen. Daher habe ich zwölf Honigbienenvölker in Beobachtungsstöcken, jeweils an Orten mit unterschiedlichem Waldanteil, aufgestellt. Indem ich mir das einzigartige Kommunikationsverhalten – den Schwänzeltanz – zu Nutzen machte, untersuchte ich Sammeldistanzen und Habitatpräferenzen von Honigbienen über fast eine ganze Bienensaison hinweg. Darüber hinaus konnte ich durch die Verknüpfung der entschlüsselten Tanzinformationen mit Gewichtsaufzeichnungen der Bienenvölker Rückschlüsse auf den Beitrag der verschiedenen Habitattypen zum Honigertrag der Völker ziehen. Die Entfernungen bei der Nahrungssuche nahmen grundsätzlich mit dem Waldanteil in der umgebenden Landschaft zu. Obwohl Bienenvölker, die tiefer im Wald stationiert waren, weiter fliegen mussten, war ihre Gewichtszunahme nicht reduziert. Im Vergleich zu den Erwartungen, die sich aus den flächenmäßigen Anteilen der verschiedenen Habitate in der Umgebung ergeben, sammelten die Völker häufiger in Acker- und Grasland als in Laub- und Nadelwald, wobei der Spätsommer die schwierigste Zeit für die Pollenversorgung im Wald war. Auf die Phase im Frühsommer von Mitte Mai bis Mitte Juli bezogen, in der die Völker an Gewicht zunahmen, wurde der Wald zum Sammeln für Nektar/Honigtau beinahe erwartungsgemäß genutzt. Das unterstreicht die Bedeutung des Waldes als wichtige Quelle für Kohlenhydrate während eines kurzen Zeitraums im Jahr. Meine Untersuchungen zeigen, dass der ökologische und ökonomische Wert von Wirtschaftswald als Lebensraum für Honigbienen und andere Bestäuber durch die kontinuierliche Versorgung von Blütenressourcen, insbesondere in Bezug auf Pollen, erheblich gesteigert werden kann. Die Dichte wild lebender Honigbienenvölker und deren Überleben ist durch mehrere Faktoren bestimmt die lokal variieren, weshalb es äußerst wichtig ist, die Ergebnisse hinsichtlich verschiedener Regionen zu vergleichen. Im Zuge dieser Arbeit habe ich daher zusätzlich noch eine wild lebende Honigbienenpopulation in Galicien im Nordwesten Spaniens untersucht, wo die Bienenvölker in hohlen Strommasten nisteten (CHAPTER 5). Die beobachtete Völkerdichte war allein in diesen Strommasten fast doppelt so hoch wie in deutschen Waldgebieten, was auf grundsätzlich geeignetere Bedingungen für Bienen in Galicien schließen lässt. Anhand morphometrischer Analysen der Flügeläderung habe ich die Bienenvölker der einheimischen Evolutionslinie (M-Linie) zugeordnet, zu der auch die besonders bedrohte Unterart \(Apis\) \(mellifera\) \(iberiensis\) gehört. In zwei aufeinander folgenden Jahren überlebte im Durchschnitt fast die Hälfte der Bienenvölker den Winter (23 von 52). Interessanterweise waren in naturnahen Gebieten sowohl die Häufigkeit als auch das Überleben der Bienenvölker höher. Kolonien, die von mehr naturnahen Lebensräumen (und damit weniger intensiv genutzten Ackerflächen) umgeben waren, wiesen eine höhere Überwinterungswahrscheinlichkeit auf, was darauf hindeutet, dass die Kolonien einen gewissen Anteil an naturnahem Lebensraum in der Landschaft zum Überleben benötigen. Diese Strommasten in Galicien sind aufgrund ihrer leichten Zugänglichkeit ideal geeignet, um die Populationsdemografie der dortigen wild lebenden Honigbienen durch ein Langzeit-Monitoring zu untersuchen. Zusammenfassend lässt sich sagen, dass Honigbienen wohl ununterbrochen als wild lebende Spezies in Europa existierten. Im Zuge meiner Doktorarbeit habe ich die erste quantitative Untersuchung wild lebender Honigbienen in Deutschland und Spanien durchgeführt. Meinen Ergebnissen zufolge ist die Landschaft ein entscheidender Faktor, der das Winterüberleben beeinflusst. Zudem beinhaltet meine Arbeit die ersten Daten über Überwinterungsraten von wild lebenden Honigbienen in Europa. Weiters habe ich Methoden entwickelt, um wild lebende Honigbienen in verschiedenen Lebensräumen zuverlässig und schnell zu finden. Alle drei Studien meiner Dissertation betonen, wie wichtig es ist, naturnahe Gebiete für den Schutz von wild lebenden Honigbienen zu erhalten. Zwar sind wild lebende Bienenvölker überall in Europa zu finden, doch ihre Überlebensfähigkeit hängt von blütenreichen, nicht mit Pestiziden belasteten Lebensräumen ab. Der Schutz von Lebensräumen und Nistplätzen ist für die Erhaltung der wild lebenden Honigbienen in Europa von größter Bedeutung.
37

Processing of behaviorally relevant stimuli at different levels in the bee brain / Die Verarbeitung verhaltensrelevanter Stimuli auf unterschiedlichen Ebenen im Bienengehirn

Schmalz, Fabian Dominik January 2023 (has links) (PDF)
The behavior of honeybees and bumblebees relies on a constant sensory integration of abiotic or biotic stimuli. As eusocial insects, a sophisticated intraspecific communication as well as the processing of multisensory cues during foraging is of utter importance. To tackle the arising challenges, both honeybees and bumblebees have evolved a sophisticated olfactory and visual processing system. In both organisms, olfactory reception starts at the antennae, where olfactory sensilla cover the antennal surface in a sex-specific manner. These sensilla house olfactory receptor neurons (ORN) that express olfactory receptors. ORNs send their axons via four tracts to the antennal lobe (AL), the prime olfactory processing center in the bee brain. Here, ORNs specifically innervate spheroidal structures, so-called glomeruli, in which they form synapses with local interneurons and projection neurons (PN). PNs subsequently project the olfactory information via two distinct tracts, the medial and the lateral antennal-lobe tract, to the mushroom body (MB), the main center of sensory integration and memory formation. In the honeybee calyx, the sensory input region of the MB, PNs synapse on Kenyon cells (KC), the principal neuron type of the MB. Olfactory PNs mainly innervate the lip and basal ring layer of the calyx. In addition, the basal ring receives input from visual PNs, making it the first site of integration of visual and olfactory information. Visual PNs, carrying sensory information from the optic lobes, send their terminals not only to the to the basal ring compartment but also to the collar of the calyx. Receiving olfactory or visual input, KCs send their axons along the MB peduncle and terminate in the main output regions of the MB, the medial and the vertical lobe (VL) in a layer-specific manner. In the MB lobes, KCs synapse onto mushroom body output neurons (MBON). In so far barely understood processes, multimodal information is integrated by the MBONs and then relayed further into the protocerebral lobes, the contralateral brain hemisphere, or the central brain among others. This dissertation comprises a dichotomous structure that (i) aims to gain more insight into the olfactory processing in bumblebees and (ii) sets out to broaden our understanding of visual processing in honeybee MBONs. The first manuscript examines the olfactory processing of Bombus terrestris and specifically investigates sex-specific differences. We used behavioral (absolute conditioning) and electrophysiological approaches to elaborate the processing of ecologically relevant odors (components of plant odors and pheromones) at three distinct levels, in the periphery, in the AL and during olfactory conditioning. We found both sexes to form robust memories after absolute conditioning and to generalize towards the carbon chain length of the presented odors. On the contrary, electroantennographic (EAG) activity showed distinct stimulus and sex-specific activity, e.g. reduced activity towards citronellol in drones. Interestingly, extracellular multi-unit recordings in the AL confirmed stimulus and sex-specific differences in olfactory processing, but did not reflect the differences previously found in the EAG. Here, farnesol and 2,3-dihydrofarnesol, components of sex-specific pheromones, show a distinct representation, especially in workers, corroborating the results of a previous study. This explicitly different representation suggests that the peripheral stimulus representation is an imperfect indication for neuronal representation in high-order neuropils and ecological importance of a specific odor. The second manuscript investigates MBONs in honeybees to gain more insights into visual processing in the VL. Honeybee MBONs can be categorized into visually responsive, olfactory responsive and multimodal. To clarify which visual features are represented at this high-order integration center, we used extracellular multi-unit recordings in combination with visual and olfactory stimulation. We show for the first time that information about brightness and wavelength is preserved in the VL. Furthermore, we defined three specific classes of visual MBONs that distinctly encode the intensity, identity or simply the onset of a stimulus. The identity-subgroup exhibits a specific tuning towards UV light. These results support the view of the MB as the center of multimodal integration that categorizes sensory input and subsequently channels this information into specific MBON populations. Finally, I discuss differences between the peripheral representations of stimuli and their distinct processing in high-order neuropils. The unique activity of farnesol in manuscript 1 or the representation of UV light in manuscript 2 suggest that the peripheral representation of a stimulus is insufficient as a sole indicator for its neural activity in subsequent neuropils or its putative behavioral importance. In addition, I discuss the influence of hard-wired concepts or plasticity induced changes in the sensory pathways on the processing of such key stimuli in the peripheral reception as well as in high-order centers like the AL or the MB. The MB as the center of multisensory integration has been broadly examined for its olfactory processing capabilities and receives increasing interest about its visual coding properties. To further unravel its role of sensory integration and to include neglected modalities, future studies need to combine additional approaches and gain more insights on the multimodal aspects in both the input and output region. / Honigbienen und Hummeln sind aufgrund ihrer Lebensweise auf die ständige Verarbeitung sensorischer Eindrücke abiotischen und biotischen Ursprungs angewiesen. Als eusoziale Insekten ist hierbei für beide Arten die Wahrnehmung innerartlicher Kommunikation wie auch die Verarbeitung multisensorischer Einflüsse während der Nahrungssuche von essenzieller Bedeutung. Um die daraus resultierenden vielfältigen Herausforderungen erfolgreich bewältigen zu können, verfügen Honigbienen und Hummeln über eine fortschrittliche Verarbeitung olfaktorischer und visueller Reize. In beiden Arten beginnt die Geruchsrezeption an den Antennen, welche geschlechtsspezifisch von zahlreichen olfaktorischen Sensillen besetzt sind. Diese beinhalten olfaktorische Rezeptorneurone (ORN), in welchen die Expression der Geruchsrezeptoren stattfindet. Axone der ORNs laufen dabei gebündelt über vier verschiedene Trakte in den Antennallobus (AL), das erste olfaktorische Verarbeitungszentrum im Bienengehirn. Im AL verschalten ORNs mit lokalen Interneuronen und Projektionsneuronen (PN) in kugelförmigen Strukturen, den sogenannten Glomeruli. PNs leiten die olfaktorische Information daraufhin über zwei charakteristische Trakte, den medialen und lateralen Antennallobustrakt, in den Pilzkörper (MB), das Verarbeitungszentrum für die Integration sensorischer Eindrücke und Gedächtnisbildung. Im Calyx der Honigbiene, der sensorischen Eingangsregion des MB, bilden die Endköpfchen der PNs synaptische Verbindungen mit Kenyonzellen (KC), den primären Nervenzellen im MB. Die Innervation des Calyx durch die PNs ist dabei spezifisch in drei verschiedenen Zonen organisiert, nämlich in Lippe, Hals und basalen Ring. Während die Lippe vornehmlich olfaktorische Information von PNs aus dem AL erhält, wird der basale Ring zusätzlich auch von visuellen PNs, welche Informationen aus dem optischen Lobus einbringen, angesteuert. Der basale Ring der Honigbiene wird dabei Ort der ersten räumlichen Integration visuellen und olfaktorischen Eingangs. Wiederum ähnlich zum unimodalen Eingang der Lippe, bezieht auch der Hals des Calyx grundsätzlich nur sensorischen Eingang einer Modalität, nämlich visuelle Information von PNs aus dem optischen Lobus. KCs verschalten im weiteren Verlauf die olfaktorischen und visuellen Informationen an Pilzkörperausgangsneurone (MBON). In einem bisher kaum erforschten Vorgang wird diese multimodale Information dabei verarbeitet und dann mithilfe der MBONs in verschiedene Bereiche des Gehirns geleitet, z.B. in die protocerebralen Loben, die kontralaterale Gehirnhemisphäre oder das Zentralgehirn. Diese Dissertation ist zweigeteilt und behandelt zuerst (i) die geschlechtsspezifische Verarbeitung olfaktorischer Reize in Hummeln und bespricht im zweiten Teil (ii) neue Einblicke in die neuronale Weiterverarbeitung visueller Reize durch MBONs in der Honigbiene. Manuskript 1 untersucht die Abläufe der Geruchsverarbeitung von Bombus terrestris und beschreibt geschlechtsspezifische Unterschiede. Hierbei wurden sowohl verhaltensbasierte als auch elektrophysiologische Methoden genutzt um die Wahrnehmung ökologisch relevanter Duftstoffe (Komponenten unterschiedlicher Pflanzendüfte oder Pheromone) auf drei verschiedene Weisen zu untersuchen, nämlich in der Peripherie, im AL und mittels olfaktorischer Konditionierung. Wir fanden in beiden Geschlechtern eine robuste Gedächtnisbildung nach absoluter Konditionierung und eine ausgeprägte Generalisierung anhand der Kohlenstoffkettenlänge der präsentierten Duftstoffe. Anders stellten sich die Ergebnisse der elektroantennographischen (EAG) Untersuchungen dar. Hier zeigten sowohl Drohnen als auch Arbeiterinnen neuronale Aktivität mit spezifischen Unterschieden zwischen den Stimuli, aber auch zwischen den Geschlechtern auf, z.B. löste die Applikation von Citronellol eine deutliche verringerte Reaktion in der EAG Aktivität der Drohnen aus. Interessanterweise zeigten auch extrazelluläre Ableitungen im AL stimulus- und geschlechtsspezifische Unterschiede, jedoch in unterschiedlicher Konstellation als in den EAG-Experimenten. Besonders Farnesol und 2,3-Dihydrofarnesol wiesen vor allem bei Arbeiterinnen eine deutliche Repräsentation in der neuronalen Aktivität auf; ein Alleinstellungsmerkmal welches für Farnesol bereits in einer früheren Studie beschrieben wurde. Diese explizit unterschiedliche neuronale Darstellung von Farnesol und 2,3-Dihydrofarnesol in der Peripherie und im AL führt zu der Annahme, dass die rezeptive Darstellung eines Stimulus in der Peripherie keine zuverlässigen Rückschlüsse über die neuronale Repräsentation in höheren Zentren oder die ökologische Relevanz zulässt. Im zweiten Manuskript stehen MBONs der Honigbiene im Fokus, um mehr Einblicke in die visuelle Verarbeitung im VL zu erlangen. Bisher können MBONs in folgende Klassen unterteilt werden: Visuelle, olfaktorische und multimodale MBONs, welche sensitiv für beide Modalitäten sind. Kern dieser Arbeit ist, mittels extrazellulärer Ableitungen festzustellen, welche zusätzlichen Aspekte eines visuellen Stimulus in diesem zentralen Verarbeitungszentrum repräsentiert sind. Dabei konnte zum ersten Mal gezeigt werden, dass Informationen über die Wellenlänge und die Intensität des Lichtstimulus im VL erhalten sind. Im weiteren Verlauf konnte eine Spezifizierung der bisherigen Kategorisierung visueller und multimodaler MBONs in drei weitere Untergruppen vollzogen werden: MBONs die spezifisch die Intensität, die Identität und dein Eingang eines Stimulus kodieren. Des Weiteren zeigte vor allem die Gruppe der Identitäts-MBONs eine bemerkenswerte Kategorisierung von UV-Licht. Diese neuen Erkenntnisse bestätigen die Ansicht, dass der MB, als Zentrum für sensorische Integration, eine Kategorisierung der verarbeiteten Eindrücke vornimmt und diese daraufhin auf die MBONs verschalten wird. Abschließend diskutiere ich Unterschiede in der peripheren Repräsentation von Stimuli und ihrer späteren neuronalen Verarbeitung. Hier zeige ich, die Aktivität von Farnesol in MS1 und UV-Licht MS2 als Beispiel nehmend, dass die periphere Repräsentation eines Stimulus keine sicheren Schlussfolgerungen über die nachfolgend induzierte neurale Aktivität oder die verhaltensrelevante Bedeutung zulässt. Im weiteren Verlauf werden dabei die Einflüsse konservierter Strukturen und plastischer Änderungen auf die Abläufe der sensorischen Peripherie oder der höheren Verarbeitungszentren, wie dem AL oder dem MB gezeigt. Obwohl der MB, das Zentrum für multimodale Integration und Gedächtnis, hinsichtlich seiner Rolle in der Geruchswahrnehmung ausgiebig erforscht ist, gibt es bezüglich der visuellen Verarbeitung oder dem Einfluss anderer Modalitäten noch ungeklärte Abläufe und Fragen. Wenngleich auch hier die Kenntnis speziell über die visuelle Verarbeitung im MB stetig zunimmt, sollten zukünftige Arbeiten mithilfe weiterer Methoden den MB Eingang und Ausgang explizit auf den Einfluss weiterer Modalitäten untersuchen, um so ein umfassenderes Bild über die Abläufe multimodaler Integration zu erhalten.
38

Regulation of the nurse-forager transition in honeybees (\(Apis\) \(mellifera\)) / Regulation des Ammen–Sammlerinnen-Übergangs in Honigbienen (\(Apis\) \(mellifera\))

Schilcher, Felix January 2023 (has links) (PDF)
Honeybees are among the few animals that rely on eusociality to survive. While the task of queen and drones is only reproduction, all other tasks are accomplished by sterile female worker bees. Different tasks are mostly divided by worker bees of different ages (temporal polyethism). Young honeybees perform tasks inside the hive like cleaning and nursing. Older honeybees work at the periphery of the nest and fulfill tasks like guarding the hive entrance. The oldest honeybees eventually leave the hive to forage for resources until they die. However, uncontrollable circumstances might force the colony to adapt or perish. For example, the introduced Varroa destructor mite or the deformed wing virus might erase a lot of in-hive bees. On the other hand, environmental events might kill a lot of foragers, leaving the colony with no new food intake. Therefore, adaptability of task allocation must be a priority for a honeybee colony. In my dissertation, I employed a wide range of behavioral, molecular biological and analytical techniques to unravel the underlying molecular and physiological mechanisms of the honeybee division of labor, especially in conjunction with honeybee malnourishment. The genes AmOARα1, AmTAR1, Amfor and vitellogenin have long been implied to be important for the transition from in-hive tasks to foraging. I have studied in detail expression of all of these genes during the transition from nursing to foraging to understand how their expression patterns change during this important phase of life. My focus lay on gene expression in the honeybee brain and fat body. I found an increase in the AmOARα1 and the Amforα mRNA expression with the transition from in-hive tasks to foraging and a decrease in expression of the other genes in both tissues. Interestingly, I found the opposite pattern of the AmOARα1 and AmTAR1 mRNA expression in the honeybee fat body during orientation flights. Furthermore, I closely observed juvenile hormone titers and triglyceride levels during this crucial time. Juvenile hormone titers increased with the transition from in-hive tasks to foraging and triglyceride levels decreased. Furthermore, in-hive bees and foragers also differ on a behavioral and physiological level. For example, foragers are more responsive towards light and sucrose. I proposed that modulation via biogenic amines, especially via octopamine and tyramine, can increase or decrease the responsiveness of honeybees. For that purpose, in-hive bees and foragers were injected with both biogenic amines and the receptor response was quantified 1 using electroretinography. In addition, I studied the behavioral response of the bees to light using a phototaxis assay. Injecting octopamine increased the receptor response and tyramine decreased it. Also, both groups of honeybees showed an increased phototactic response when injected with octopamine and a decreased response when injected with tyramine, independent of locomotion. Additionally, nutrition has long been implied to be a driver for division of labor. Undernourished honeybees are known to speed up their transition to foragers, possibly to cope with the missing resources. Furthermore, larval undernourishment has also been implied to speed up the transition from in-hive bees to foragers, due to increasing levels of juvenile hormone titers in adult honeybees after larval starvation. Therefore, I reared honeybees in-vitro to compare the hatched adult bees of starved and overfed larvae to bees reared under the standard in-vitro rearing diet. However, first I had to investigate whether the in-vitro rearing method affects adult honeybees. I showed effects of in-vitro rearing on behavior, with in-vitro reared honeybees foraging earlier and for a shorter time than hive reared honeybees. Yet, nursing behavior was unaffected. Afterwards, I investigated the effects of different larval diets on adult honeybee workers. I found no effects of malnourishment on behavioral or physiological factors besides a difference in weight. Honeybee weight increased with increasing amounts of larval food, but the effect seemed to vanish after a week. These results show the complexity and adaptability of the honeybee division of labor. They show the importance of the biogenic amines octopamine and tyramine and of the corresponding receptors AmOARα1 and AmTAR1 in modulating the transition from inhive bees to foragers. Furthermore, they show that in-vitro rearing has no effects on nursing behavior, but that it speeds up the transition from nursing to foraging, showing strong similarities to effects of larval pollen undernourishment. However, larval malnourishment showed almost no effects on honeybee task allocation or physiology. It seems that larval malnourishment can be easily compensated during the early lifetime of adult honeybees. / Honigbienen gehören zu den wenigen Spezies, die in eusozialen Gemeinschaften leben. Die eierlegende Königin und die männlichen Drohnen dienen nur der Fortpflanzung. Alle anderen Arbeiten von den sterilen Arbeiterinnen ausgeführt werden. Die Arbeitsteilung wird meistens anhand des Alters der Bienen organisiert. Junge Arbeiterinnen bleiben im Inneren der Kolonie und führen beispielsweise Putzarbeiten und Ammentätigkeiten aus. Mit zunehmendem Alter verlagern sich ihre Tätigkeiten immer mehr in Richtung des Nestausgangs wo sie, unteranderem als Wächterbienen, den Stockeingang bewachen. Die ältesten Honigbienen verlassen das Nest, um Honig, Pollen, Wasser oder Propolis zu sammeln, bis sie am Ende sterben. Allerdings können unvorhersehbare Ereignisse dazu führen, dass sich die Kolonie anpassen muss, um nicht unterzugehen. Krankheiten wie der Flügeldeformationsvirus oder die, durch den Menschen eingeführte, Varroa destructor Milbe können auf einen Schlag eine große Zahl an Bienen auslöschen. Des Weiteren können beispielsweise starke Unwetter dafür sorgen, dass etliche Sammlerinnen auf ihrem Sammelflug sterben und die Kolonie ohne neuen Nektar oder Pollen zurückgelassen wird. Es liegt auf der Hand, dass eine starre Arbeitsverteilung nicht ausreicht, um solchen Umständen entgegenzuwirken und, dass eine gewisse Flexibilität notwendig ist. In meiner Dissertation habe ich eine weitreichende Anzahl an verhaltensbiologischen und molekularbiologischen Techniken verwendet, um die molekularen und physiologischen Mechanismen der Arbeitsteilung bei Honigbienen aufzuklären, vor allem im Bezug auf den Übergang von Ammenbienen zu Sammlerinnen. Es ist seit langer Zeit bekannt, dass die Gene AmOARα1, AmTAR1, Amfor und Vitellogenin beim Übergang von Ammenbienen zu Sammlerinnen von zentraler Bedeutung sind. Deshalb habe ich die Expression dieser Gene, sowohl im Gehirn als auch im Fettkörper, in genau diesem Zusammenhang betrachtet und die unterschiedlichen Veränderungen der Expressionsmuster während dieser wichtigen Phase im Leben einer Honigbiene analysiert. Ich konnte zeigen, dass sowohl die mRNA Expression des AmOARα1 und des Amforα beim Übergang von Ammenbienen zu Sammlerinnen anstieg, während die Expression der anderen Kandidatengene im gleichen Zeitraum sowohl im Gehirn als auch im Fettkörper abfiel. Interessanterweise zeigten die Expressionsmuster des AmOARα1 und des Am3 TAR1, während der Orientierungsflüge, genau in die entgegengesetzte Richtung. Zusätzlich habe ich mir bei denselben Bienen auch den Juvenilhormongehalt in der Hämolymphe und die Menge an Triglyceriden im Fettkörper angeschaut. Der Juvenilhormongehalt nahm schlagartig zu, als die Bienen mit dem Sammeln begannen. Die Menge an Triglyceriden nahm allerdings von Ammenbienen, über Bienen während des Orientierungsfluges zu Sammlerinnen konstant ab. Des Weiteren war bereits bekannt, dass sich Ammenbienen und Sammlerinnen nicht nur auf genetischer, sondern auch auf verhaltensbiologischer und physiologischer Ebene voneinander unterscheiden. Zum Beispiel sind Sammlerinnen empfindlicher für Licht und Saccharose. Ich stellte die Hypothese auf, dass die Empfindlichkeit von Honigbienen für solche Schwellen durch biogene Amine, insbesondere Oktopamin und Tyramin, moduliert werden kann. Oktopamin sollte die Empfindlichkeit von Bienen erhöhen, wohingegen Tyramin diese verringern sollte. Hierfür injizierte ich Stockbienen und Sammlerinnen beide biogenen Amine und analysierte die Rezeptorantwort mit einem Elektroretinogramm (ERG) und die Lichtempfindlichkeit in einer Phototaxisarena. Oktopamininjektion führte dazu, dass die Rezeptorantwort im ERG erhöht wurde und dass beide Gruppen eine erhöhte Lichtempfindlichkeit aufwiesen. Tyramin hatte in beiden Experimenten genau den gegenteiligen Effekt. Allerdings kann der Ammen-Sammlerinnen-Übergang nicht nur durch biogene Amine moduliert werden, auch die Ernährung hat einen großen Einfluss. Zum Beispiel fangen unterernährte Honigbienen eher an zu sammeln als satte Honigbienen. Des Weiteren sollte auch die larvale Unterernährung bereits einen Einfluss auf die spätere Arbeitsteilung haben, da man bei Arbeiterinnen, die im Larvenstadium bereits unterernährt waren, eine erhöhte Menge an Juvenilhormon festgestellt hatte. Dies sieht man auch beim Übergang von Ammenbienen zu Sammlerinnen. Deshalb nutzte ich eine Methode zur artifiziellen Aufzucht von Honigbienen, um die Standarddiät, die diese normalerweise erhalten, zu variieren. Allerdings musste ich zuerst den Effekt der in-vitro Aufzucht auf im Stock aufgezogene Honigbienen untersuchen. Ich konnte zeigen, dass die artifizielle Aufzucht das Sammelverhalten erwachsener Honigbienen signifikant beeinflusste, während das Ammenverhalten der in-vitro aufgezogenen Bienen nicht beeinflusst wurde. Artifiziell aufgezogene Honigbienen begannen, im Vergleich zu normalen Bienen, früher zu sammeln und sammelten für eine kürzere Zeit. Danach zog ich unterernährte, normal ernährte und überfütterte Honigbienen in-vitro 4 auf. Ich fand Unterschiede im Gewicht zwischen den Behandlungsgruppen. Unterernährte Bienen waren die leichtesten und überfütterte Bienen wogen am meisten. Dieser Unterschied verschwand aber über die Zeit. Des Weiteren konnte ich keinen Einfluss der Ernährung auf das Ammenverhalten oder das Sammelverhalten zeigen. Dieser Ergebnisse zeigen sowohl die Komplexität als auch das Anpassungsvermögen der Arbeitsteilung von Honigbienen. Sie zeigen, dass sowohl die beiden biogenen Amine Oktopamin und Tyramin, als auch die dazugehörigen Rezeptoren AmOARα1 und AmTAR1 bei der Modulation des Ammen-Sammlerinnen-Übergangs eine große Rolle spielen. Des Weiteren zeigen die Ergebnisse des Vergleichs von artifiziell und im Stock aufgezogenen Bienen, starke Gemeinsamkeiten zu einer larvalen Unterernährung mit Pollen. Jedoch scheint eine allgemeine larvale Unterernährung kaum einen Effekt auf den AmmenSammlerinnen-Übergang zu haben. Diese scheint während der ersten Lebenstage von Honigbienen relativ leicht kompensiert werden zu können.
39

Octopaminergic Signaling in the Honeybee Flight Muscles : A Requirement for Thermogenesis / Octopaminerge Signalwege in der Flugmuskulatur der Honigbiene : Eine Voraussetzung für die Thermogenese

Kaya-Zeeb, Sinan David January 2023 (has links) (PDF)
For all animals the cold represents a dreadful danger. In the event of severe heat loss, animals fall into a chill coma. If this state persists, it is inevitably followed by death. In poikilotherms (e.g. insects), the optimal temperature range is narrow compared to homeotherms (e.g. mammals), resulting in a critical core temperature being reached more quickly. As a consequence, poikilotherms either had to develop survival strategies, migrate or die. Unlike the majority of insects, the Western honeybee (Apis mellifera) is able to organize itself into a superorganism. In this process, worker bees warm and cool the colony by coordinated use of their flight muscles. This enables precise control of the core temperature in the hive, analogous to the core body temperature in homeothermic animals. However, to survive the harsh temperatures in the northern hemisphere, the thermogenic mechanism of honeybees must be in constant readiness. This mechanism is called shivering thermogenesis, in which honeybees generate heat using their flight muscles. My thesis presents the molecular and neurochemical background underlying shivering thermogenesis in worker honeybees. In this context, I investigated biogenic amine signaling. I found that the depletion of vesicular monoamines impairs thermogenesis, resulting in a decrease in thoracic temperature. Subsequent investigations involving various biogenic amines showed that octopamine can reverse this effect. This clearly indicates the involvement of the octopaminergic system. Proceeding from these results, the next step was to elucidate the honeybee thoracic octopaminergic system. This required a multidisciplinary approach to ultimately provide profound insights into the function and action of octopamine at the flight muscles. This led to the identification of octopaminergic flight muscle controlling neurons, which presumably transport octopamine to the flight muscle release sites. These neurons most likely innervate octopamine β receptors and their activation may stimulate intracellular glycolytic pathways, which ensure sufficient energy supply to the muscles. Next, I examined the response of the thoracic octopaminergic system to cold stress conditions. I found that the thoracic octopaminergic system tends towards an equilibrium, even though the initial stress response leads to fluctuations of octopamine signaling. My results indicate the importance of the neuro-muscular octopaminergic system and thus the need for its robustness. Moreover, cold sensitivity was observed for the expression of one transcript of the octopamine receptor gene AmOARβ2. Furthermore, I found that honeybees without colony context show a physiological disruption within the octopaminergic system. This disruption has profound effects on the honeybees protection against the cold. I could show how important the neuro-muscular octopaminergic system is for thermogenesis in honeybees. In this context, the previously unknown neurochemical modulation of the honeybee thorax has now been revealed. I also provide a broad basis to conduct further experiments regarding honeybee thermogenesis and muscle physiology. / Kälte stellt für alle Tiere eine lebensbedrohliche Situation dar. Erleiden sie einen schwerwiegenden Wärmeverlust, stellt sich der Zustand eines Kältekomas ein. Hält dieser Zustand über einen längeren Zeitraum an, folgt unweigerlich der Tod. Poikilotherme (z.B. Insekten) weisen ein schmaleres optimales Temperaturfenster als Homoiotherme (z.B. Säugetiere) auf, wodurch sie ihre kritische Körpertemperatur schneller erreichen. Dadurch waren Poikilotherme gezwungen entweder Überlebenstrategien zu entwickeln, abzuwandern oder zu sterben. Im Gegensatz zu den meisten anderen Insektenarten, ist die Westliche Honigbiene Apis mellifera in der Lage einen Superorganismus zu bilden, in dem Arbeiterbienen durch den koordinierten Einsatz ihrer Flugmuskeln für Erwärmung oder Abkühlung sorgen. In Analogie zur Körpertemperatur von Homoiothermen, ermöglicht dies die exakte Kontrolle der Kerntemperatur des Bienenstocks. Um unter den rauen Bedingungen in der nördlichen Hemisphäre bestehen zu können, muss eine ununterbrochene Einsatzbereitschaft des thermogenen Mechanismus der Honigbiene garantiert werden. Dabei ist die Honigbiene in der Lage durch Zittern der Flugmuskulatur Wärme zu erzeugen. In dieser Dissertation stelle ich die molekularen und neurochemischen Grundlagen des thermogenen Muskelzitterns bei Honigbienenarbeiterinnen vor. In diesem Zusammenhang habe ich die Signalwege von verschiedenen biogenen Aminen untersucht und konnte demonstrieren, dass eine Erschöpfung vesikulärer Monoamine den Prozess der Thermogenese beeinflusst und zu einem Absinken der Thoraxtemperatur führt. Unter Einbeziehung veschiedener biogener Amine, konnten Folgeuntersuchungen zeigen, dass dieser Effekt durch Octopamin rückgängig gemacht werden kann. Dies weist eindeutig auf eine Beteiligung des octopaminergen Systems hin. Auf Basis dieser Erkenntnisse folgte die Erforschung des thorakalen octopaminergen Systems der Honigbiene. Dabei erforderte es einen multidisziplinären Ansatz, um weitere Einblicke in die Funktion und Wirkung von Octopamin in der Flugmuskulatur zu gewinnen. Im Zuge dessen, konnten flugmuskelinnervierende octopaminerge Neuronen identifiziert werden, die mutmaßlich die Flugmuskeln mit Octopamin versorgen. Es sind höchstwahrscheinlich diese Neuronen, die für eine Stimulation von Octopamin-β-Rezeptoren verantwortlich sind und wordurch intrazelluläre glykolytische Prozesse eine ausreichende Muskelversorgung gewährleisten. In den darauffolgenden Experimenten habe ich das Ansprechen des thorakalen octopaminergen Systems auf Kältestress untersucht und konnte zeigen, dass dieses System nach einem Gleichgewichtszustand strebt. Dies trifft selbst nach einer starken initialen Stressantwort zu. Meine Ergebnisse verdeutlichen die Bedeutsamkeit des neuromuskulären octopaminergen Systems und zeigen seine erforderliche Resilienz gegenüber exogenen Faktoren. Es konnte die Kälteempfindlichkeit eines Transkriptes des Octopaminrezeptorgens AmOARβ2 nachgewiesen werden. Zusätzlich konnte ich zeigen, dass Honigbienen ohne den sozialen Kontext der Kolonie eine starke physiologische Störung innerhalb des untersuchten Systems und damit auch in Bezug auf ihre Kälteresilienz aufweisen. Meine Dissertation verdeutlicht die enorme Bedeutung des neuromuskulären octopaminergen Systems im Kontext der Thermogenese im Organismus Honigbiene. In diesem Rahmen konnte die bisher unerforschte neurochemische Modulation des Honigbienenthorax aufgeklärt werden. Darüber hinaus bietet meine Arbeit eine Grundlage für künftige Experimente zur Thermogenese und Muskelphysiologie der Honigbiene.
40

Wachse der Honigbiene Apis mellifera carnica Pollm. / Waxes of the honeybee Apis mellifera carnica Pollm.

Fröhlich, Birgit Susanne January 2000 (has links) (PDF)
Um einen Beitrag zum besseren Verständnis der Rolle der Bienenwachse in der Kommunikation der Honigbienen leisten zu können, wurden Wabenwachse unterschiedlichen Alters und Kutikulawachse unterschiedlicher Kasten,Geschlechter und Berufsgruppen mit Hilfe von Gaschromatographie, Massenspektroskopie und FTIR-Spektroskopie untersucht. Die chemischen Analysen zeigten mittels Diskriminantenfunktionsanalysen hochsignifikante Unterschiede in den aliphatischen Kohlenwasserstoffen zwischen Wabenwachsen unterschiedlichen Alters und Kutikulawachsen unterschiedlicher Kasten und Geschlechter. Erstmals konnte für ein komplexes Substanzgemisch (Bienenwachs) eine lineare Abhängigkeit zwischen dem Schmelzverhalten und der chemischen Zusammensetzung der Wachse nachgewiesen werden.Mit Hilfe von Verhaltensversuchen wurde der Frage nachgegangen, ob die chemischen Unterschiede für die Bienen überhaupt relevant sind. Mit Hilfe der differentielle Konditionierung des Rüsselreflexes wurde getestet, inwieweit Bienen die verschiedenen Wachse unterscheiden können. Eine Diskriminierung der Wachse aufgrund der aliphatischen Kohlenwasserstoffe war den Honigbienen nicht möglich. Dies ergab einen neuen und interessanten Einblick in die Kommunikation der Honigbienen / Quantitative chemical analyses of comb waxes with different age and cuticular waxes of different castes and sexes with gas chromatography, mass spectrometry and FTIR-spectrometry showed significant chemical differences in the aliphatic hydrocarbons and differences in the physical properties of the waxes. We used the proboscis extension reflex to test the ability of the bees to discriminate between these waxes. Differentially conditioned bees significantly discriminated between all waxes. They do not use the aliphatic hydrocarbons, but the esters and more polar components of the waxes.

Page generated in 0.0287 seconds