• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 45
  • 23
  • 10
  • 6
  • Tagged with
  • 84
  • 38
  • 16
  • 13
  • 12
  • 12
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Timing of colony phenology and foraging activity in honey bees / Zeitliche Koordination von Koloniephänologie und Sammelaktivität bei Honigbienen

Nürnberger, Fabian January 2018 (has links) (PDF)
I. Timing is a crucial feature in organisms that live within a variable and changing environment. Complex mechanisms to measure time are wide-spread and were shown to exist in many taxa. These mechanisms are expected to provide fitness benefits by enabling organisms to anticipate environmental changes and adapt accordingly. However, very few studies have addressed the adaptive value of proper timing. The objective of this PhD-project was to investigate mechanisms and fitness consequences of timing decisions concerning colony phenology and foraging activity in the honey bee (Apis mellifera), a social insect species with a high degree of social organization and one of the most important pollinators of wild plants and crops. In chapter II, a study is presented that aimed to identify the consequences of disrupted synchrony between colony phenology and the local environment by manipulating the timing of brood onset after hibernation. In a follow-up experiment, the importance of environmental factors for the timing of brood onset was investigated to assess the potential of climate change to disrupt synchronization of colony phenology (Chapter III). Chapter IV aimed to prove for the first time that honey bees can use interval time-place learning to improve foraging activity in a variable environment. Chapter V investigates the fitness benefits of information exchange between nest mates via waggle dance communication about a resource environment that is heterogeneous in space and time. II. In the study presented in chapter II, the importance of the timing of brood onset after hibernation as critical point in honey bee colony phenology in temperate zones was investigated. Honey bee colonies were overwintered at two climatically different sites. By translocating colonies from each site to the other in late winter, timing of brood onset was manipulated and consequently colony phenology was desynchronized with the local environment. Delaying colony phenology in respect to the local environment decreased the capability of colonies to exploit the abundant spring bloom. Early brood onset, on the other hand, increased the loads of the brood parasite Varroa destructor later in the season with negative impact on colony worker population size. This indicates a timing related trade-off and illustrates the importance of investigating effects of climate change on complex multi-trophic systems. It can be concluded that timing of brood onset in honey bees is an important fitness relevant step for colony phenology that is highly sensitive to climatic conditions in late winter. Further, phenology shifts and mismatches driven by climate change can have severe fitness consequences. III. In chapter III, I assess the importance of the environmental factors ambient temperature and photoperiod as well as elapsed time on the timing of brood onset. Twenty-four hibernating honey bee colonies were placed into environmental chambers and allocated to different combinations of two temperature regimes and three different light regimes. Brood onset was identified non-invasively by tracking comb temperature within the winter cluster. The experiment revealed that ambient temperature plays a major role in the timing of brood onset, but the response of honey bee colonies to temperature increases is modified by photoperiod. Further, the data indicate the involvement of an internal clock. I conclude that the timing of brood onset is complex but probably highly susceptible to climate change and especially spells of warm weather in winter. IV. In chapter IV, it was examined if honey bees are capable of interval time-place learning and if this ability improves foraging efficiency in a dynamic resource environment. In a field experiment with artificial feeders, foragers were able to learn time intervals and use this ability to anticipate time periods during which feeders were active. Further, interval time-place learning enabled foragers to increase nectar uptake rates. It was concluded that interval time-place learning can help honey bee foragers to adapt to the complex and variable temporal patterns of floral resource environments. V. The study presented in chapter V identified the importance of the honey bee waggle dance communication for the spatiotemporal coordination of honey bee foraging activity in resource environments that can vary from day to day. Consequences of disrupting the instructional component of honey bee dance communication were investigated in eight temperate zone landscapes with different levels of spatiotemporal complexity. While nectar uptake of colonies was not affected, waggle dance communication significantly benefitted pollen harvest irrespective of landscape complexity. I suggest that this is explained by the fact that honey bees prefer to forage pollen in semi-natural habitats, which provide diverse resource species but are sparse and presumably hard to find in intensively managed agricultural landscapes. I conclude that waggle dance communication helps to ensure a sufficient and diverse pollen diet which is crucial for honey bee colony health. VI. In my PhD-project, I could show that honey bee colonies are able to adapt their activities to a seasonally and daily changing environment, which affects resource uptake, colony development, colony health and ultimately colony fitness. Ongoing global change, however, puts timing in honey bee colonies at risk. Climate change has the potential to cause mismatches with the local resource environment. Intensivation of agricultural management with decreased resource diversity and short resource peaks in spring followed by distinctive gaps increases the probability of mismatches. Even the highly efficient foraging system of honey bees might not ensure a sufficiently diverse and healthy diet in such an environment. The global introduction of the parasitic mite V. destructor and the increased exposure to pesticides in intensively managed landscapes further degrades honey bee colony health. This might lead to reduced cognitive capabilities in workers and impact the communication and social organization in colonies, thereby undermining the ability of honey bee colonies to adapt to their environment. / I. Zeitliche Koordination ist äußerst wichtig für Organismen, die in einer variablen und sich wandelnden Umwelt leben. Komplexe Mechanismen, die das Messen von Zeit ermöglichen, sind weit verbreitet und wurden bei vielen Taxa aufgezeigt. Es wird generell angenommen, dass diese Mechanismen Fitnessvorteile verschaffen, indem sie es Organismen ermöglichen, Umweltveränderungen vorherzusehen und sich entsprechen anzupassen. Allerdings gibt es bisher nur sehr wenige Studien zum adaptiven Wert einer guten zeitlichen Koordination. Ziel dieses Dissertations-Projekts war es, Mechanismen der zeitlichen Koordination bei Honigbienen (Apis mellifera) zu erforschen und deren Bedeutung für die Fitness des Honigbienenvolks zu identifizieren. In Kapitel II präsentiere ich meine Studie über die Konsequenzen eines falsch gewählten Zeitpunkts für den Brutbeginn am Ende des Winters und der daraus folgenden gestörten Synchronisation zwischen der Phänologie von Honigbienenvölkern und der lokalen Umwelt. In einem Folgeexperiment wurde die Bedeutung von Umweltfaktoren für das Timing des Brutbeginns untersucht (Kapitel III). Die Studie in Kapitel IV zielt darauf ab, erstmalig den Beweis zu erbringen, dass Honigbienen das „Intervall time-place learning“, d.h. die Fähigkeit, Zeitintervalle zwischen Ereignissen zu lernen und mit deren räumlichen Lage zu assoziieren, beherrschen und, dass diese Fähigkeit beim Sammeln von Ressourcen vorteilhaft ist. Kapitel V untersucht die Fitnessvorteile, die aus dem Austausch von Informationen über ein raumzeitlich heterogenes Ressourcenumfeld zwischen Stockgenossinnen mit Hilfe des Schwänzeltanzes gezogen werden. II. In der Studie, die in Kapitel II präsentiert wird, wurde die Bedeutung des Brutbeginns als entscheidender Punkt für die Phänologie von Honigbienenvölkern in den gemäßigten Breiten untersucht. Honigbienenvölker wurden an zwei klimatisch unterschiedlichen Standorten überwintert. Indem ein Teil der Völker im Spätwinter zwischen den Standorten ausgetauscht wurde, wurde deren Brutbeginn manipuliert und dadurch die Phänologie bezüglich der lokalen Umwelt desynchronisiert. Das verzögern der Phänologie der Völker verminderte deren Fähigkeit die üppige Frühjahrsblüte zu nutzen. Ein früher Brutbeginn andererseits erhöhte die Belastung der Völker durch den Brutparasiten Varroa destructor im Verlauf der Saison, was sich negativ auf die Menge der Arbeiterinnen im Volk auswirkte. Es gibt also entscheidende gegensätzlich wirkende Faktoren, die den optimalen Zeitpunkt des Brutbeginns bestimmen. Die Studie zeigt zudem warum es wichtig ist, die möglichen Folgen des Klimawandels in einem multitrophischen System zu betrachten statt sich auf einfache Interaktionen zu beschränken. Man kann allgemein folgern, dass das Timing des Brutbeginns einen bedeutenden fitnessrelevanten Schritt in der Phänologie von Honigbienenvölkern darstellt, der stark von klimatischen Bedingungen im Spätwinter beeinflusst wird. Verschiebungen und Fehlanpassungen des Brutbeginns, und damit der Phänologie, durch den Klimawandel können ernsthafte negative Konsequenzen für die Fitness von Honigbienenvölkern haben. III. In Kapitel III beleuchte ich die Bedeutung der Umweltfaktoren Umgebungstemperatur und Photoperiode sowie der verstrichenen Zeit auf das Timing des Brutbeginns. Vierundzwanzig überwinternde Honigbienenvölker wurden in Klimakammern untergebracht und auf sechs unterschiedliche Kombinationen von Temperatur- und Lichtregimes verteilt. Der Brutbeginn wurde nicht-invasiv über den Temperaturverlauf auf der Wabe innerhalb der Wintertraube festgestellt. Das Experiment hat gezeigt, dass die Umgebungstemperatur eine entscheidende Rolle beim Timing des Brutbeginns spielt. Allerdings wurde die Reaktion der Völker auf einen Temperaturanstieg vom jeweils vorherrschenden Lichtregime beeinflusst. Zudem deuten die Daten auf die Beteiligung einer inneren Uhr hin. Ich folgere, dass das Timing des Brutbeginns durch ein komplexes System geregelt wird, das wahrscheinlich anfällig für Einflüsse durch den Klimawandel und insbesondere durch Warmwetterphasen im Winter ist. IV. In Kapitel IV meiner Dissertation wird eine Studie präsentiert, die untersucht ob Bienen die Befähigung zum „Intervall time-place learning“ besitzen und ob diese Fähigkeit die Sammeleffizienz in einem dynamischen Ressourcenumfeld verbessert. In einer Feldstudie mit künstlichen Futterquellen zeigten Sammelbienen, dass sie in der Lage waren, Zeitintervalle zu lernen und das Wissen zu nutzen, um die Zeiten vorherzusehen zu denen die Futterquellen aktiv waren. Dieses Lernverhalten ermöglichte es den Sammelbienen, ihre Nektaraufnahmerate zu steigern. Es wurde gefolgert, dass „Intervall time-place learning“ Sammelbienen dabei helfen kann, sich in einem Blühressourcenumfeld mit komplexen und variablen Zeitmustern zurechtzufinden. V. Diese Studie, die in Kapitel V präsentiert wird, untersuchte die Bedeutung der Schwänzeltanzkommunikation der Honigbienen für die raumzeitliche Koordination der Sammelaktivität des Volkes innerhalb eines Ressourcenumfelds, das täglich variieren kann. Die Folgen der Störung der instruktiven Komponenten des Schwänzeltanzes wurden in acht unterschiedlich komplex strukturierten Landschaften innerhalb der gemäßigten Breiten ermessen. Während kein Einfluss auf den Nektarsammelerfolg festgestellt werden konnte, wurde jedoch gezeigt, dass der Pollensammelerfolg, unabhängig von der raumzeitlichen Komplexität der Landschaft, stark von der Schwänzeltanzkommunikation profitiert. Der Grund dafür liegt vermutlich darin, dass Honigbienen vorzugsweise Pollen in halbnatürlichen Habitaten sammeln, die eine hohe Ressourcenvielfalt bieten, aber in intensiv agrarwirtschaftlich genutzten Landschaften eher selten und relativ schwer zu finden sind. Die Studie lässt schließen, dass die Schwänzeltanzkommunikation dabei hilft, eine ausreichende und diverse Pollenernährung zu gewährleisten und damit eine große Rolle für die Gesundheit von Honigbienenvölkern spielt. VI. Ich konnte in meinem Dissertationsprojekt zeigen, dass Honigbienen in der Lage sind ihre Aktivitäten an eine sich jahreszeitlich und täglich verändernde Umwelt anzupassen. Eine gute zeitliche Koordination hat Einfluss auf Sammelerfolg, Volksentwicklung, Gesundheit und letztlich auf die Fitness des Volkes. Allerdings gefährdet der voranschreitende globale Wandel die zeitliche Koordination der Honigbienenvölker. Der Klimawandel hat das Potenzial, zeitliche Anpassungen an die lokale Umwelt zu stören. Die Intensivierung der Landwirtschaft und der damit einhergehende Verlust von Pflanzenvielfalt sowie die kurzen Zeiträume von extrem hohem Ressourcenangebot, gefolgt von einer ausgeprägten Blühlücke, erhöht die Wahrscheinlichkeit, dass zeitlich Fehlanpassungen auftreten. In einer derartigen Umwelt könnte selbst das höchst effiziente Ressourcensammelsystem der Honigbienen nicht mehr genügen, um eine ausreichende, vielfältige und gesunde Ernährung zu gewährleisten. Die globale Verbreitung der parasitischen Varroamilbe durch den Menschen und die erhöhte Belastung durch Pestizide verschlechtert zusätzlich den Gesundheitszustand der Honigbienen. Das wiederum kann sich negativ auf das Lernvermögen und des Weiteren auf die Kommunikation und soziale Organisation der Völker auswirken und dadurch deren Fähigkeit, sich an eine veränderliche Umwelt anzupassen unterwandern.
62

Sugar perception and sugar receptor function in the honeybee (\(Apis\) \(mellifera\)) / Zuckerwahrnehmung und Zuckerrezeptorfunktion in der Honigbiene (\(Apis\) \(mellifera\))

Değirmenci [née Pölloth], Laura January 2023 (has links) (PDF)
In the eusocial insect honeybee (Apis mellifera), many sterile worker bees live together with a reproductive queen in a colony. All tasks of the colony are performed by the workers, undergoing age-dependent division of labor. Beginning as hive bees, they take on tasks inside the hive such as cleaning or the producing of larval food, later developing into foragers. With that, the perception of sweetness plays a crucial role for all honeybees whether they are sitting on the honey stores in the hive or foraging for food. Their ability to sense sweetness is undoubtedly necessary to develop and evaluate food sources. Many of the behavioral decisions in honeybees are based on sugar perception, either on an individual level for ingestion, or for social behavior such as the impulse to collect or process nectar. In this context, honeybees show a complex spectrum of abilities to perceive sweetness on many levels. They are able to perceive at least seven types of sugars and decide to collect them for the colony. Further, they seem to distinguish between these sugars or at least show clear preferences when collecting them. Additionally, the perception of sugar is not rigid in honeybees. For instance, their responsiveness towards sugar changes during the transition from in-hive bees (e.g. nurses) to foraging and is linked to the division of labor. Other direct or immediate factors changing responsiveness to sugars are stress, starvation or underlying factors, such as genotype. Interestingly, the complexity in their sugar perception is in stark contrast to the fact that honeybees seem to have only three predicted sugar receptors. In this work, we were able to characterize the three known sugar receptors (AmGr1, AmGr2 and AmGr3) of the honeybee fully and comprehensively in oocytes (Manuscript II, Chapter 3 and Manuscript III, Chapter 4). We could show that AmGr1 is a broad sugar receptor reacting to sucrose, glucose, maltose, melezitose and trehalose (which is the honeybees’ main blood sugar), but not fructose. AmGr2 acts as its co-receptor altering AmGr1’s specificity, AmGr3 is a specific fructose receptor and we proved the heterodimerization of all receptors. With my studies, I was able to reproduce and compare the ligand specificity of the sugar receptors in vivo by generating receptor mutants with CRISPR/Cas9. With this thesis, I was able to define AmGr1 and AmGr3 as the honeybees’ basis receptors already capable to detect all sugars of its known taste spectrum. In the expression analysis of my doctoral thesis (Manuscript I, Chapter 2) I demonstrated that both basis receptors are expressed in the antennae and the brain of nurse bees and foragers. This thesis assumes that AmGr3 (like the Drosophila homologue) functions as a sensor for fructose, which might be the satiety signal, while AmGr1 can sense trehalose as the main blood sugar in the brain. Both receptors show a reduced expression in the brain of foragers when compared with nurse bees. These results may reflect the higher concentrated diet of nurse bees in the hive. The higher number of receptors in the brain may allow nurse bees to perceive hunger earlier and to consume the food their sitting on. Forager bees have to be more persistent to hunger, when they are foraging, and food is not so accessible. The findings of reduced expression of the fructose receptor AmGr3 in the antennae of nurse bees are congruent with my other result that nurse bees are also less responsive to fructose at the antennae when compared to foragers (Manuscript I, Chapter 2). This is possible, since nurse bees sit more likely on ripe honey which contains not only higher levels of sugars but also monosaccharides (such as fructose), while foragers have to evaluate less-concentrated nectar. My investigations of the expression of AmGr1 in the antennae of honeybees found no differences between nurse bees and foragers, although foragers are more responsive to the respective sugar sucrose (Manuscript I, Chapter 2). Considering my finding that AmGr2 is the co-receptor of AmGr1, it can be assumed that AmGr1 and the mediated sucrose taste might not be directly controlled by its expression, but indirectly by its co-receptor. My thesis therefore clearly shows that sugar perception is associated with division of labor in honeybees and appears to be directly or indirectly regulated via expression. The comparison with a characterization study using other bee breeds and thus an alternative protein sequence of AmGr1 shows that co-expression of different AmGr1 versions with AmGr2 alters the sugar response differently. Therefore, this thesis provides first important indications that alternative splicing could also represent an important regulatory mechanism for sugar perception in honeybees. Further, I found out that the bitter compound quinine lowers the reward quality in learning experiments for honeybees (Manuscript IV, Chapter 5). So far, no bitter receptor has been found in the genome of honeybees and this thesis strongly assumes that bitter substances such as quinine inhibit sugar receptors in honeybees. With this finding, my work includes other molecules as possible regulatory mechanism in the honeybee sugar perception as well. We showed that the inhibitory effect is lower for fructose compared to sucrose. Considering that sugar signals might be processed as differently attractive in honeybees, this thesis concludes that the sugar receptor inhibition via quinine in honeybees might depend on the receptor (or its co-receptor), is concentration-dependent and based on the salience or attractiveness and concentration of the sugar present. With my thesis, I was able to expand the knowledge on honeybee’s sugar perception and formulate a complex, comprehensive overview. Thereby, I demonstrated the multidimensional mechanism that regulates the sugar receptors and thus the sugar perception of honeybees. With this work, I defined AmGr1 and AmGr3 as the basis of sugar perception and enlarged these components to the co-receptor AmGr2 and the possible splice variants of AmGr1. I further demonstrated how those sugar receptor components function, interact and that they are clearly involved in the division of labor in honeybees. In summary, my thesis describes the mechanisms that enable honeybees to perceive sugar in a complex way, even though they inhere a limited number of sugar receptors. My data strongly suggest that honeybees overall might not only differentiate sugars and their diet by their general sweetness (as expected with only one main sugar receptor). The found sugar receptor mechanisms and their interplay further suggest that honeybees might be able to discriminate directly between monosaccharides and disaccharides or sugar molecules and with that their diet (honey and nectar). / Beim dem eusozialen Insekt Honigbiene (Apis mellifera) leben tausende sterile Arbeitsbienen zusammen mit einer fortpflanzungsfähigen Königin in einem Volk. Alle Aufgaben in der Kolonie werden von diesen Arbeiterinnen erledigt, während sie eine altersabhängige Arbeitsteilung durchlaufen. Als Stockbienen beginnend übernehmen sie Aufgaben im Stock wie die Reinigung oder die Produktion von Larvenfutter und entwickeln sich später zu Sammlerinnen. Das Wahrnehmung von Süße spielt für alle Honigbienen eine entscheidende Rolle, egal ob sie auf den Honigvorräten im Stock sitzen oder nach Nahrung suchen. Ihre Fähigkeit Süße zu wahrzunehmen ist zweifellos notwendig, um Nahrungsquellen zu identifizieren und zu bewerten. Viele der Verhaltensentscheidungen bei Honigbienen basieren auf ihrer Zuckerwahrnehmung, entweder auf individueller Ebene für die Nahrungsaufnahme oder für soziales Verhalten wie beispielsweise das Sammeln oder Verarbeiten von Nektar. Honigbienen zeigen auf vielen Ebenen ein komplexes Spektrum bei der Wahrnehmung von Süße. Sie können mindestens sieben Zuckerarten wahrnehmen und sammeln diese für ihren Stock. Darüber hinaus scheinen sie zwischen diesen Zuckern unterscheiden zu können oder zeigen zumindest klare Präferenzen beim Sammeln. Außerdem ist die Zuckerwahrnehmung bei Honigbienen nicht starr. Ihre Zuckerwahrnehmung ändert sich, wenn sie von einer Stockbiene (z. B. Ammen) zum Nahrungssammeln außerhalb des Stockes übergehen, und ist somit mit ihrer Arbeitsteilung verbunden. Andere direkte oder unmittelbare Faktoren, die die Reaktion auf Zucker verändern, sind Stress, Hunger oder zugrunde liegende Faktoren wie der Genotyp. Interessanterweise steht die Komplexität der Zuckerwahrnehmung in starkem Kontrast zu der Tatsache, dass Honigbienen bisher anscheinend nur drei mögliche Zuckerrezeptoren haben. In dieser Arbeit konnten wir die drei bekannten Honigbienenzuckerrezeptoren (AmGr1, AmGr2 und AmGr3) in Xenopus-Oozyten vollständig und umfassend charakterisieren (Manuscript II, Chapter 3 und Manuscript III, Chapter 4). Wir konnten zeigen, dass AmGr1 ein breitdetektierender Zuckerrezeptor ist, der auf Saccharose, Glukose, Maltose, Melezitose und Trehalose (der Hauptblutzucker bei Honigbienen), aber nicht auf Fruktose reagiert. AmGr2 fungiert als ein Co-Rezeptor, der die Spezifität von AmGr1 verändert. AmGr3 ist ein spezifischer Fruktoserezeptor und wir haben die Heterodimerisierung der Rezeptoren überprüft. Mit meinen Studien konnte ich die gefundene Ligandenspezifität der Zuckerrezeptoren in vivo reproduzieren und vergleichen, indem ich Rezeptormutanten mit CRISPR/Cas9 generierte. Dabei konnte ich AmGr1 und AmGr3 als die Basisrezeptoren von Honigbienen definieren, die bereits alle Zucker ihres bekannten Geschmacksspektrums detektieren können. In der Expressionsanalyse meiner Doktorarbeit (Manuscript I, Chapter 2) konnte ich zeigen, dass beide Basisrezeptoren in den Antennen und im Gehirn von Ammenbienen und Sammlerinnen exprimiert werden. Diese Arbeit geht davon aus, dass AmGr3 (wie das Homologe in Drosophila) als Sensor für Fruktose fungiert, die das Sättigungssignal sein könnte, während AmGr1 Trehalose als Hauptblutzucker im Gehirn wahrnehmen kann. Beide Rezeptoren zeigen eine reduzierte Expression im Gehirn von Sammlerinnen im Vergleich zu Ammenbienen. Diese Ergebnisse könnten die höher konzentrierte Ernährung der Ammenbienen im Stock widerspiegeln. Die höhere Anzahl an Rezeptoren im Gehirn könnte es den Ammenbienen ermöglichen frühzeitiger Hunger wahrzunehmen und die Nahrung, auf der sie sitzen aufzunehmen. Sammelbienen dagegen müssen beim Sammeln und dem reduzierten Nahrungsangebot ausdauernder sein. Die gemessene reduzierte Expression des Fruktoserezeptors AmGr3 in den Antennen von Ammenbienen entsprechen meinen anderen Ergebnissen, wonach Ammenbienen im Vergleich zu Sammelbienen an den Antennen auch weniger empfindlich auf Fruktose reagieren (Manuscript I, Chapter 2). Dies ist möglich, da Ammenbienen eher auf reifem Honig sitzen, der nicht nur einen höheren Zuckergehalt, sondern auch vermehrt Monosaccharide (wie Fructose) enthält, während Sammelbienen weniger konzentrierten Nektar bewerten müssen. Meine Untersuchungen zur Expression von AmGr1 in den Antennen von Honigbienen ergaben keine Unterschiede zwischen Ammenbienen und Sammlerinnen, obwohl Sammlerinnen empfindlicher auf den entsprechenden Zucker Saccharose reagieren. Angesichts unserer Ergebnisse, dass AmGr2 der Co-Rezeptor von AmGr1 ist, kann die Hypothese aufgestellt werden, dass AmGr1 und der vermittelte Saccharose-Geschmack möglicherweise nicht direkt durch seine Expression, sondern indirekt durch seinen Co-Rezeptor reguliert werden. Meine Dissertation zeigt somit deutlich, dass die Zuckerwahrnehmung bei Honigbienen mit Arbeitsteilung verbunden ist und direkt oder indirekt über die Expression geregelt zu werden scheint. Der Vergleich mit einer anderen Charakterisierungsstudie, durchgeführt an anderen Bienenrassen und damit einer alternativen Proteinsequenz von AmGr1, zeigt, dass die Co-Expression verschiedener AmGr1-Varianten mit AmGr2 die Zuckerantwort unterschiedlich verändert. Daher liefert diese Arbeit erste wichtige Hinweise darauf, dass alternatives Spleißen auch bei Honigbienen einen wichtigen Regulationsmechanismus für die Zuckerwahrnehmung darstellen könnte. Des Weiteren habe ich herausgefunden, dass der Bitterstoff Chinin die Qualität der Belohnung in Lernexperimenten für Honigbienen senkt (Manuscript IV, Chapter 5). Bisher wurde kein Bitterrezeptor im Genom von Honigbienen gefunden und diese Arbeit deutet darauf hin, dass Bitterstoffe wie Chinin Zuckerrezeptoren in Honigbienen hemmen. Mit dieser Erkenntnis schließt meine Dissertation auch andere Moleküle als mögliche Regulationsmechanismen in die Zuckerwahrnehmung der Honigbiene ein. Wir haben gezeigt, dass die hemmende Wirkung bei Fruktose im Vergleich zu Saccharose geringer ist. Unter der Berücksichtigung, dass Zuckersignale bei Honigbienen möglicherweise unterschiedlich attraktiv verarbeitet werden, kommt meine Arbeit zu dem Schluss, dass die Hemmung der Zuckerrezeptoren durch Chinin bei Honigbienen abhängig ist von der verwendeten Konzentration, der Bedeutung bzw. Attraktivität des Zuckers und seiner Konzentration. Mit meiner Doktorarbeit konnte ich das Wissen über die Zuckerwahrnehmung der Honigbiene insgesamt erweitern und einen komplexen, umfassenden Überblick formulieren. Ich konnte den mehrdimensionalen Mechanismus aufzeigen, der die Zuckerrezeptoren und damit die Zuckerwahrnehmung von Honigbienen reguliert. Ich konnte AmGr1 und AmGr3 als Basis der Zuckerwahrnehmung definieren und diese Komponenten auf den Co-Rezeptor AmGr2 und die möglichen Spleißvarianten von AmGr1 erweitern. Ich habe außerdem gezeigt, wie diese Zuckerrezeptorkomponenten funktionieren, interagieren, und dass sie eindeutig an der Arbeitsteilung bei Honigbienen beteiligt sind. Zusammenfassend beschreibt meine Dissertation die Mechanismen, die es Honigbienen ermöglichen, Zucker auf komplexe Weise wahrzunehmen, selbst wenn sie eine begrenzte Anzahl von Zuckerrezeptoren besitzen. Meine Daten deuten stark darauf hin, dass Honigbienen Zucker und ihre Nahrung nicht nur aufgrund ihrer generellen Süße unterscheiden können (wie dies mit nur einem Hauptzuckerrezeptor zu erwarten wäre). Die gefundenen Zuckerrezeptormechanismen und deren Zusammenspiel legen nahe, dass Honigbienen möglicherweise direkt zwischen Monosacchariden und Disacchariden bzw. Zuckermolekülen und damit zwischen ihrer Nahrung (Honig und Nektar) unterscheiden können.
63

Smell and repel: Resin based defense mechanisms and interactions between Australian ants and stingless bees

Wenzel, Frank January 2011 (has links) (PDF)
Bees are subject to permanent threat from predators such as ants. Their nests with large quantities of brood, pollen and honey represent lucrative targets for attacks whereas foragers have to face rivalry at food sources. This thesis focused on the role of stingless bees as third party interactor on ant-aphid-associations as well as on the predatory potential represented by ants and defense mechanisms against this threat. Regular observations of an aphid infested Podocarpus for approaching stingless bees yielded no results. Another aim of this thesis was the observation of foraging habits of four native and one introduced ant species for assessment of their predatory potential to stingless bees. All species turned out to be dietary balanced generalists with one mostly carnivorous species and four species predominantly collecting nectar roughly according to optimal foraging theory. Two of the species monitored, Rhytidoponera metallica and Iridomyrmex rufoniger were considered potential nest robbers. As the name implies, stingless bees lack the powerful weapon of their distant relatives; hence they specialized on other defense strategies. Resin is an important, multipurpose resource for stingless bees that is used as material for nest construction, antibiotic and for defensive means. For the latter purpose highly viscous resin is either directly used to stick down aggressors or its terpenic compounds are included in the bees cuticular surface. In a feeding choice experiment, three ant species were confronted with the choice between two native bee species - Tetragonula carbonaria and Austroplebeia australis - with different cuticular profiles and resin collection habits. Two of the ant species, especially the introduced Tetramorium bicarinatum did not show any preferences. The carnivorous R. metallica predominantly took the less resinous A. australis as prey. The reluctance towards T. carbonaria disappeared when the resinous compounds on its cuticle had been washed off with hexane. To test whether the repulsive reactions were related to the stickiness of the resinous surface or to chemical substances, hexane extracts of bees’ cuticles, propolis and three natural tree resins were prepared. In the following assay responses of ants towards extract treated surfaces were observed. Except for one of the resin extracts, all tested substances had repellent effects to the ants. Efficacy varied with the type of extract and species. Especially to the introduced T. bicarinatum the cuticular extract had no effect. GCMS-analyses showed that some of the resinous compounds were also found in the cuticular profile of T. carbonaria which featured reasonable analogies to the resin of Corymbia torelliana that is highly attractive for stingless bees. The results showed that repellent effects were only partially related to the sticky quality of resin but were rather caused by chemical substances, presumably sesqui- and diterpenes. Despite its efficacy this defense strategy only provides short time repellent effects sufficient for escape and warning of nest mates to initiate further preventive measures. / Bienen sind permanent Gefahren ausgesetzt, ihre Nester voll Brut, Pollen und Honig bieten ein ertragreiches Ziel für Räuber und auch bei der Nahrungssuche droht Konkurrenz an den Futterquellen, beispielsweise durch Ameisen. Ziel dieser Arbeit war es zu untersuchen, welche Rolle stachellose Bienen in Australien als dritter Interaktionspartner an Ameisen-Blattlaus-Assoziationen einnehmen, welcher Bedrohung sie durch räuberische Ameisen ausgesetzt sind und wie sie sich gegen diese verteidigen. Regelmäßige Beobachtungen einer von Blattläusen befallenen Steineibe auf Besuche von stachellosen Bienen blieben erfolglos, es wurden keine Anflüge erfasst. Ein weiterer Fokus dieser Arbeit lag auf der Untersuchung des Nahrungseintrags von vier heimischen, sowie einer eingeschleppten Ameisenart zur Erfassung des räuberischen Potenzials gegenüber stachellosen Bienen. Alle Ameisenarten stellten sich als Generalisten mit ausgewogenem Nahrungseintrag heraus. Eine der Arten ernährte sich hauptsächlich räuberisch, während der Eintrag von Nektar für vier Arten die Hauptressource darstellte und annäherungsweise gemäß der „optimal foraging theory“ erfolgte. Zwei der untersuchten Arten, Rhytidoponera metallica und Iridomyrmex rufoniger, wurden als potenzielle Nesträuber eingestuft. Stachellose Bienen können sich nicht durch Stiche verteidigen, sie nutzen daher andere Strategien. Pflanzenharz stellt für Bienen eine vielseitige Ressource dar, welche als Baumaterial, Desinfiziens und auch zur Verteidigung eingesetzt wird. Das Harz wird entweder in zähflüssiger Form dazu verwendet, um Angreifer zu verkleben oder die darin enthaltenen Terpene gelangen in Bestandteilen auf die Oberfläche der Bienen. In einem Futterwahl-Experiment wurden Tetragonula carbonaria und Austroplebeia australis, zwei heimische Bienenarten mit unterschiedlichen Harzsammel-Gewohnheiten und Oberflächenprofilen, drei Ameisenarten als Beute vorgelegt. Während zwei der Ameisenarten, insbesondere die eingeführte Tetramorium bicarinatum, keinerlei Präferenzen zeigte, entschieden sich die karnivoren R. metallica vorrangig für A. australis, deren Oberflächenprofil weniger Harzkomponenten aufwies. Wurden die Oberflächenbestandteile von T. carbonaria durch Waschen mit Hexan entfernt, verschwand auch die Zurückhaltung der Räuber. Um zu untersuchen ob diese Abwehrreaktion durch die Klebrigkeit der Oberfläche oder durch chemische Substanzen verursacht wurde, wurden Hexan-Extrakte der Bienenoberflächen sowie von drei Baumharzen und Nestmaterial angefertigt. Die nachfolgenden Untersuchungen richteten sich daraufhin auf die Beobachtung der Reaktion von Ameisen bei Kontakt mit Extrakt-behandelten Oberflächen. Bis auf einen der Harzextrakte zeigten alle untersuchten Substanzen unterschiedlich stark abstoßende Effekte auf Ameisen. Die eingeführte T. bicarinatum wurde jedoch nicht durch Bienenextrakt in ihrem Verhalten beeinflusst. Eine GCMS-Analyse ergab, dass einige der Harzsubstanzen auch im Oberflächenprofil von T. carbonaria zu finden waren, welches vor allem Übereinstimmungen mit dem Harz von Corymbia torelliana aufwies, einer Pflanze deren Harz für Bienen besonders attraktiv ist. Es zeigte sich, dass nicht nur die Klebrigkeit, sondern auch chemische Substanzen, vermutlich Sesqui- und Diterpene, für abstoßende Effekte verantwortlich sind. Trotz der Effektivität dieses Mechanismus sorgt er nur für eine kurzzeitige Abwehrreaktion, ermöglicht jedoch die Gelegenheit zur Flucht und Warnung von Nestgenossen, sowie zur Einleitung weiterer Gegenwehr.
64

Ecology of stingless bees (Apidae, Meliponini) in lowland dipterocarp forests in Sabah, Malaysia, and an evaluation of logging impact on populations and communities / Ökologie Stachelloser Bienen (Apidae, Meliponini) in Dipterocarpaceen-Wäldern im Tiefland von Sabah, Malaysia, mit einer Evaluierung des Einflusses der kommerziellen Holznutzung auf Populationen und Gemeinschaften

Eltz, Thomas January 2001 (has links) (PDF)
The present thesis reports on four years of field research on stingless bee ecology in Sabah, Malaysia. Hereby, it was the main focus to evaluate the effect of selective logging for timber extraction on communities of bees, and to elucidate causative relationships involved in regulating bee populations. Included were background studies on resource use (3.1, 3.2, 3.3) and nesting biology (3.4) as well as comparative studies on stingless bee diversity and abundance in logged and unlogged lowland rainforest sites (4.1, 4.2). Stingless bees proved to be generalist foragers that used a large range of plant species as pollen sources. Nevertheless, different species of bees had rather distinct pollen diets, a findind that was independent of fluctuations in flowering activity in the habitat. At one particular point in time colonies of one species (Trigona collina)collected mold spores (Rhizopus sp.) as a pollen surrogate. In order to obtain low-effort estimates of meliponine pollen sources a new method was developed: Trapping of bee garbage (with funnel traps) and the quantitative analysis of pollen in garbage samples. Pollen in bee garbage reflected pollen import with a certain time lag and could therefore be used for an assessment of long-term pollen foraging (see below). The majority of stingless bee nests (275 nests of 12 species) were found in cavities in trunks or under the bases of large, living canopy trees. Nest trees mostly belonged to commercial species and were of the correct size and (partly) timber quality to warrant harvesting. It was estimated that roughly one third of stingless bee nests in an given forest area would be killed during a selective logging operation. Besides causing direct mortality, logging may also indirectly affect bee populations by reducing the availability of potential nest sites (trees). However, in a comparison of primary and differentially logged forest sites (10 to 30 years after logging) no effect of the degree of disturbance on meliponine nest density was found. Instead, the variation in nest density (0 to 16.2 nest/ha) was best explained by differences in the available floral resources (assessed by analysis of pollen in bee garbage). Bee populations in forest edge situations were favored: there was a positive correlation between nest density and the proportion of external non-forest pollen (e.g. from crop plants, road edge vegetation, mangroves) in the bees’ diet. The highest nest density was found in a site bordering the mangroves in Sandakan Bay. Here, the mangrove tree Rhizophora apiculata represented a extraordinary large fraction of the pollen volume. Presumably, external pollen sources effectively supplement bee diets at times when little flowering occurs inside the forest, thus increasing overall bee carrying-capacity. The idea of differential pollen limitation was strengthened by direct measurements of pollen import and foraging activity over a period of five months. Both were elevated in colonies in a site with high bee density. It is concluded that the abundance of stingless bees in forests in Sabah is chiefly dependent on the local availability of food resources. Hereby, bee populations strongly benefit from edge effects and increased habitat diversity. Although direct negative effects of selective logging are strongly indicated by a close association of bee nests with commercial trees, no clear effects were detected in regenerating forests ten to 30 years after logging. / Die vorliegende Dissertation umfaßt die Ergebnisse einer vierjährigen Studie zur Ökologie von Stachellosen Bienen in den Regenwäldern von Sabah, Malaysia. Hauptziel war es dabei, mögliche Auswirkungen der selektiven Holznutzung auf Bienengemeinschaften zu erforschen und, falls sich ein Effekt nachweisen läßt, die dafür verantwortlichen Wirkfaktoren zu identifizieren. Die Arbeiten schlossen sowohl Hintergrundstudien zur Nahrungsökologie (3.1, 3.2, 3.3) und Nistbiologie (3.4) ein, als auch vergleichende Erfassungen der Bienenabundanz und -diversität in primären und durch Holznutzung gestörten Tieflandregenwäldern (4.1, 4.2). Stachellose Bienen erwiesen sich als generalistische Blütenbesucher, die über die Zeit eine Vielzahl verschiedener Blütenpflanzen als Pollenquellen nutzen. Die Überlappung der Pollenspektren zwischen verschiedenen Bienenarten war jedoch sowohl bei geringer als bei höherer Blühaktivität relative niedrig. In einer Ausnahmesituation wurden von mehreren Kolonien einer Art (Trigona collina) auch Schimmelpilzsporen (Rhizopus sp.) als Pollenersatz eingetragen. Um die Pollennahrung von Meliponinen mit geringerem Aufwand und noch detaillierter erfassen zu können wurde eine neue Methode entwickelt: das automatisierte Absammeln von ‚Bienenmüll‘ (mittels Trichtefallen) und die quantitative Analyse der enthaltenen Pollenexinen. Die Polleninhalte des Mülls erwiesen sich dabei als verzögertes Abbild des eingetragenen Pollens und konnte daher für eine grobe Bestimmung langfristiger Nahrungsgewohnheiten herangezogen werden (siehe unten). Die große Mehrzahl der gefundenen Meliponinen-Nester (275 von 12 Arten) befanden sich entweder in Hohlräumen des Stämme oder unter der Stammbasis großer, lebender und oft kommerziell nutzbarer Kronenbäume. Grobe Berechnungen ergaben, daß mehr als ein Drittel aller Bienennester einer durchschnittlichen selektiven Fällaktion zum Opfer fallen würden. Neben diesem direkten Schaden könnte die kommerzielle Holznutzung auch indirekt (über eine Verringerung der zur Verfügung stehenden, potentiellen Nistbäume) die Bienenpopulationen negativ beeinflussen. Im Vergleich unterschiedlich stark eingeschlagener Flächen (10 bis 30 Jahre nach der letzen Nutzung) konnte allerdings kein Zusammenhang der Bienennestdichte mit dem Störungsgrad des Waldes gefunden werden. Statt dessen wurde die hohe Variation der Nestdichte (0 bis 16.2 Nester/ha) am besten durch die Unterschiede in den verfügbaren Nahrungsressourcen erklärt (bestimmt durch Müllpollenanalyse). Hier waren vor allem Waldflächen in Randlage begünstigt. Es bestand eine positive Korrelation der Nestdichte und dem Anteil externer, nicht aus dem Wald stammender Pollentypen (z. B. Kulturpflanzen, Straßenrandvegetation, Mangrovenpflanzen) an der Bienennahrung. Die bei weitem höchste Nestdichte wurden in einem an die Mangroven der Sandakan Bay angrenzenden Wald gefunden, wo ein herausragender Teil der Pollennahrung aus Pollen des Mangrovenbaums Rhizophora apiculata bestand. Vermutlich stellen externe Pollenquellen eine wichtige Ergänzung der Bienennahrung zu Zeiten geringer Blühaktivität im Wald dar, die die ‘carrying capacity’ des Waldes für Meliponinen erhöht. Die Theorie der unterschiedlichen Limitierung durch Pollenquellen wurde durch direkte Messungen von Polleneintrag und Fouragieraktivität überprüft: Beides war über fünf Monate hinweg bei Nestern in einer bienenreichen Fläche erhöht. Zusammenfassend läßt sich schließen, daß die Abundanz von Stachellosen Bienen in Sabahanischen Wäldern hauptsächlich von der lokalen Nahrungsverfügbarkeit abhängt und Bienenpopulationen hierbei stark von Randeffekten und erhöhter Habitatdiversität profitieren. Ein Einfluß von anthropogener Störung durch selektive Holznutzung ist aufgrund der Nistbiologie von Meliponinen kurz und mittelfristig zu erwarten, konnte aber in regenerierenden Wäldern zehn bis 30 Jahren nach dem Einschlag nicht eindeutig nachgewiesen werden.
65

Untersuchungen zu natürlicher und manipulierter Aufzucht von Apis mellifera : Morphologie, Kognition und Verhalten / Studies of natural and manipulated breeding of Apis mellifera: Morphology, cognition and behaviour

Bock, Fiola January 2005 (has links) (PDF)
3. Zusammenfassung Ein noch immer unvollständig verstandenes Problem sind die exakten Mechanismen der Arbeitsteilung und Koordination innerhalb von Bienenvölkern Apis mellifera. Auf der einen Seite muss die sensorische und neuronale Ausstattung jedes Individuums das Potential zur Kommunikation und Aufgabenbewältigung enthalten, zum anderen müssen jedem Bienenvolk Mechanismen zur Steuerung zur Verfügung stehen, die auch so weit in die Zukunft reichenden Notwendigkeiten wie Wintervorbereitungen zuverlässig durchführen. Die vorliegende Arbeit beleuchtet daraus ausgewählte Aspekte. Zum einen werden Aspekte der kognitiven Fähigkeiten der Einzelbienen untersucht, die im Hinblick auf ihre Rolle als sammelnde Arbeiterinnen eine wichtige Rolle spielen. Das Erkennen und Verarbeiten von Mustern spielt eine wichtige Rolle beim Auffinden von potentiellen Nahrungsquellen. Hier konnte mittels des DMTS – Paradigma ein hoher Abstraktionsgrad der Musterverarbeitung sowie eine Speicherung auch komplexer Muster gezeigt werden. Zum anderen wird die Bruttemperatur als ein Einfluss auf die Puppenentwicklung und dessen mögliche Folgen auf kognitive Fähigkeiten und Lebenshistorie untersucht. Variation der Bruttemperatur wurde in verschiedenen Zusammenhängen als starker Einfluss auf unterschiedliche Aspekte der Entwicklung gezeigt. In der vorliegenden Arbeit kann diese Bruttemperatur als möglicher Faktor der nachfolgend unterschiedlichen Ausprägung von Verhaltensmustern gezeigt werden. Dabei wird ebenso auf die Unterschiede im Verhaltensmuster von täglichen Stocktätigkeiten wie auf die resultierenden Unterschiede in der Lebensgeschichte und –spanne eingegangen, die aus unterschiedlichen Brutaufzuchtstemperaturen resultieren können. Als Aufzuchtstemperaturen werden dabei 32°C, 35°C sowie 36°C verwendet, um eine Vari ation zwischen der an anderer Stelle berichteten mittleren, der niedrigsten und der höchsten Temperatur für morphologisch vollständig entwickelte Bienen zu erreichen und die daraus resultierenden Arbeiterinnen zu untersuchen. Sowohl die Ergebnisse der Verhaltensuntersuchungen von Stockbienen wie auch der Vergleich von Lebensaktivität und –spanne zeigen dabei signifikante Unterschiede zwischen den bei unterschiedlichen Temperaturen aufgezogenen Arbeiterinnen in deren analysiertem Verhalten. / One of the still incompletely understood problems is the accurate mechanisms of work division and co-ordination within bee colonies Apis mellifera. On the one side the sensory and neural equipment of each individual must contain the potential for communication and task accomplishment that is viable for the daily organisation of a honeybee hive, on the other hand reliable mechanisms for planning and fulfilling future demands like winter preparations are vitally important. This work investigates selected aspects of the underlying communication and regulation aspects of these demands. The cognitive abilities of the single worker bee regarding their role as foraging and collecting force for the beehive are examined. The process of recognizing and processing the visual cues found while foraging is examined by means of the DMTS – paradigm. A high degree of abstraction while processing the patterns as well as the memorisation of complex samples is shown. Furthermore the breeding temperature as one factor influencing pupae development and its influence on subsequent behaviour and life history of the adult workers is analysed. The available work can link differences in the brood temperature with the resulting different patterns of behaviour and life history of worker bees. The temperature levels while raising the different groups of honeybees were chosen as 32°C, 35°C and 36°C to rea ch a variation between the from other groups reported as normal, the lowest and highest breeding temperature and to examine the resulting female workers. Both the results of the behavioural observation of worker bees that are active inside the colony as well as the overall comparison of their life activity and lifespan show significant differences between these groups of bees that were raised on varying brood temperatures.
66

Antibakterielle und antivirale Abwehrreaktionen in unterschiedlichen Entwicklungsstadien der Honigbiene (Apis mellifera) / Antibacterial and antiviral defence reactions in different developmental stages of the honey bee (Apis mellifera)

Azzami, Klara January 2011 (has links) (PDF)
Das angeborene Immunsystem von Insekten besteht aus einer humoralen Komponente, einer zellulären Komponente und dem Prophenoloxidase-aktivierenden System. Fast alle Erkenntnisse über das angeborene Immunsystem stammen von Arbeiten mit Modellorganismen wie z.B. Drosophila oder Anopheles gambiae. Wie genau das Immunsystem der Honigbiene (Apis mellifera) funktioniert, ist jedoch noch relativ unbekannt. In der vorliegenden Arbeit wurden die unterschiedlichen Immunreaktionen aller drei Entwicklungsstadien der Honigbiene nach artifizieller Infektion mit Gram-negativen und Gram-positiven Bakterien (Escherichia coli und Micrococcus flavus) und dem Akuten Bienen Paralyse Virus (ABPV) untersucht und verglichen. Eine E. coli-Injektion zeigt bei Larven und adulten Arbeiterinnen nur wenig Auswirkung auf das äußere Erscheinungsbild und die Überlebensrate. In beiden Entwicklungsstadien wird die humorale Immunantwort stark induziert, erkennbar an der Expression der antimikrobiellen Peptide (AMPs) Hymenoptaecin, Defensin1 und Abaecin. Zusätzlich werden allein in Jungbienen nach bakterieller Infektion vier weitere immunspezifische Proteine exprimiert. Unter anderem eine Carboxylesterase (CE1) und das Immune-Responsive Protein 30 (IRp30). Die Expression von CE1 und IRp30 zeigt dabei den gleichen zeitlichen Verlauf wie die der AMPs. In Jungbienen kommt es zudem nach E. coli-Injektion zu einer raschen Abnahme an lebenden Bakterien in der Hämolymphe, was auf eine Aktivierung der zellulären Immunantwort schließen lässt. Ältere Bienen und Winterbienen zeigen eine stärkere Immunkompetenz als Jungbienen. Selbst nicht-infizierte Winterbienen exprimieren geringe Mengen der immunspezifischen Proteine IRp30 und CE1. Die Expression von IRp30 kann dabei durch Verwundung oder Injektion von E. coli noch gesteigert werden. Eine weitere Besonderheit ist die im Vergleich zu Jungbienen raschere Abnahme an lebenden Bakterien in der Hämolymphe bis hin zur vollständigen Eliminierung. Die Reaktion von Puppen auf eine bakterielle Infektion war völlig unerwartet. Nach Injektion von E. coli-Zellen kommt es innerhalb von 24 h p.i. zu einem tödlichen Kollaps, der sich in einer Graufärbung des gesamten Puppenkörpers äußert. Da keine Expression von AMPs nachzuweisen war, wird die humorale Immunantwort offensichtlich nicht induziert. Auch die zelluläre Immunantwort scheint nicht aktiviert zu werden, denn es konnte keine Abnahme an lebenden E. coli-Zellen beobachtet werden. Aufgrund dieser fehlenden Immunreaktionen vermehrt sich E. coli im Hämocoel infizierter Puppen und scheint damit deren Tod herbeizuführen. Nach viraler Infektion wurden in allen drei Entwicklungsstadien der Honigbiene gänzlich andere Reaktionen beobachtet als nach bakterieller Infektion. Bei dem verwendeten Akuten Bienen Paralyse Virus (ABPV) handelt es sich um ein Picorna-ähnliches Virus, dessen Vermehrung in der Hämolymphe über die massive Synthese der Capsidproteine verfolgt werden kann. Eine Injektion von sehr wenigen ABPV-Partikeln ins Hämocoel hat dramatische Auswirkungen auf Larven. Nach Virusinjektion kommt es innerhalb weniger Stunden zu einer raschen Virusvermehrung und schon 24 h p.i. zum Tod, häufig begleitet von einer Schwarzfärbung der gesamten Larve. Kurz vor dem Ableben kommt es neben dem Abbau hochmolekularer Speicherproteine zur Expression zahlreicher Proteine, die u.a. an der Translation oder dem Schutz vor oxidativem Stress beteiligt sind. Auf Jungbienen hat eine ABPV-Infektion keine so dramatischen Auswirkungen wie auf Larven. Sie zeigen lediglich Zeichen von Paralyse, zudem überleben sie länger bei höheren injizierten Partikelzahlen, die Virusvermehrung ist langsamer und es kommt zu keiner starken Veränderung des Hämolymph-Proteinmusters. Es konnte gezeigt werden, dass es in ABPV-infizierten Larven oder adulten Bienen zu keiner erkennbaren Aktivierung des humoralen Immunsystems in Form von exprimierten AMPs kommt. Zudem scheint die humorale Immunantwort auch nicht unterdrückt zu werden, denn nach gleichzeitiger Injektion von E. coli und ABPV kommt es neben der Expression viraler Capsidproteine auch zur Expression von AMPs. Zusätzlich konnte in Jungbienen nach Infektion mit ABPV eine zelluläre Immunantwort in Form von Nodulation ausgeschlossen werden. Ältere Bienen scheinen nicht nur mit bakteriellen Infektionen, sondern auch mit einer ABPV-Infektion besser zurechtzukommen. Bei einer Menge an ABPV-Partikeln, die in Jungbienen spätestens 72 h p.i. zum Tod führt, ist in Winterbienen eine Virusvermehrung erst ab 96 h p.i. erkennbar und diese beeinträchtigt die Überlebensrate kaum. Puppen sind einer Virusinfektion genauso schutzlos ausgeliefert wie einer Bakterieninfektion. Es kommt zwar zu keiner starken Änderung des äußeren Erscheinungsbildes, jedoch bleiben Puppen in ihrer Entwicklung komplett stehen. Das Virus muss sich daher stark vermehren, allerdings nicht überwiegend - wie bei Larven und adulten Bienen - in der Hämolymphe. / The innate immune system of insects comprises of a humoral component, a cellular component and the prophenoloxidase-activating system. Almost all knowledge about the innate immune system derives from model organisms like Drosophila or Anopheles gambiae. The exact mechanisms of the innate immune system of the honey bee (Apis mellifera) have yet to be discovered. This work investigates and compares the immune reactions of all three developmental stages of the honey bee after artificial infection with Gram-negative (Escherichia coli) and the Acute bee paralysis virus (ABPV). After injection of E. coli neither a change in the outer appearance nor a significant reduction of the survival rate of larvae or adult worker bees can be observed. In both developmental stages, a strong induction of the humoral immune response visible by the expression of the antimicrobial peptides (AMPs) hymenoptaecin, defensin1 and abaecin occurs. However, bacterial challenge of young adult worker bees leads to the expression of additional immune-specific proteins: a carboxylesterase (CE1) and the immune-responsive protein (IRp30). The expressions of CE1 and IRp30 show the same time course as the expression of AMPs. Furthermore, after injection of E. coli-cells into the haemocoel of young adult worker bees a fast decrease of living bacteria in the haemolymph could be observed. Older bees show a stronger immune competence in many ways. In winter bees even non-infected individuals express constitutively low amounts of the immune-responsive proteins IRp30 and CE1. The expression of IRp30 can still be enhanced by wounding or injection of E. coli. Moreover, older bees display a drastic reduction of living bacteria in the haemolymph as compared to young adult worker bees resulting in an almost complete elimination. Pupae in contrast react surprisingly different to a bacterial challenge. Injection of living E. coli-cells leads to a deadly collapse within 24 h p.i. accompanied by a colour change of the whole pupal body from white to grey. Since no visible expression of AMPs could be detected, the humoral immune response obviously was not induced. The same appears to be true for the cellular immune response, as no decrease in living E. coli-cells was observed upon infection. Because of this lack of humoral and cellular immune reactions, E. coli can proliferate in the haemocoel of infected pupae and potentially cause their death. All three developmental stages of the honey bee show completely different reactions to a viral infection than to a bacterial challenge. The Acute bee paralysis virus (ABPV) used in this study is a picorna-like virus with a positive, single-stranded RNA-genome and a non-enveloped protein capsid. Its proliferation in the haemocoel can be monitored by a massive synthesis of capsid proteins in the haemolymph. In contrast to a bacterial challenge, injection of only a few ABPV-particles into the haemocoel has tremendous effects on larvae. Injection of viral particles leads to a strong viral multiplication within hours and to death 24 h p.i. often accompanied by a colour change of the whole larva from pale-white to black. In addition to a visible degradation of high-molecular storage proteins shortly before the larvae die, the expression of proteins involved in translation or protection against oxidative stress can be observed. Young adult worker bees do not show such a tremendous reaction as larvae to a viral infection. They just display signs of paralysis. In contrast to larvae, young adult worker bees show better survival rates for higher numbers of injected virus-particles, the viral multiplication proceeds slower and there is no strong visible change of the haemolymph protein pattern. It could be demonstrated that no expression of AMPs and therefore no detectable activation of the humoral immune system by the virus occurs. But the humoral immune reponse also does not seem to be suppressed, since a simultaneous injection of E. coli and ABPV leads to the expression of viral capsid proteins in concert with the expression of AMPs. Additionally, nodulation, a prominent cellular immune response of young adult worker bees to bacterial infection, is likewise not initiated by ABPV-infection. Older bees apparently are not only capable of better fighting a bacterial infection, but also in surviving an ABPV-infection. Injection of an amount of viral particles leading to death of young adult worker bees within 72 h p.i., only leads to just detectable amounts of virus in winter bees 96 h p.i.. At the same time, the survival rate is not more impaired than after E. coli-injection. Pupae are as susceptible to a viral infection as to bacterial challenge. Although there is no strong visible change in the outer appearance, the pupaes’ development ceases within 3 d p.i.. This is possibly due to a strong multiplication of the virus, but obviously not mainly in the haemolymph, as it can be observed in larvae and adult bees as well.
67

Die Expression humoraler und zellulärer Immunreaktionen bei Drohnenlarven und adulten Drohnen der Honigbiene (Apis mellifera) / Expression of humoral and cellular immune reactions of dronelarvae and adult drones of the honey bee (Apis mellifera)

Gätschenberger, Heike January 2012 (has links) (PDF)
Soziale Insekten wie die Honigbiene (Apis mellifera) besitzen ein breites Spektrum an Abwehrmechanismen gegen Pathogenbefall, sowohl auf der Ebene der Kolonie (soziale Immunität) als auch auf der Stufe des Individuums (angeborenes Immunsystem). Die Hauptaufgabe der relativ kurzlebigen Drohnen besteht in der Begattung von Jungköniginnen. Daher stellte sich die Frage, ob auch die Drohnen ähnlich den Arbeiterinnen mit energieaufwendigen Immunreaktionen auf Infektionen reagieren. Wie im Folgenden beschrieben, konnte ich nachweisen, dass Drohnen eine ausgeprägte Immunkompetenz besitzen. Das angeborene Immunsystem setzt sich aus humoralen und zellulären Abwehrreaktionen zusammen. Bei der humoralen Immunantwort werden bestimmte evolutionär konservierte Signalkaskaden aktiviert, an deren Ende die Expression einer Vielzahl von antimikrobiellen Peptiden (AMPs) und immunspezifischen Proteinen (IRPs) steht. Zur Analyse der humoralen Immunantwort wurden von mir zum einen Hemmhoftests durchgeführt, um die gesamte antimikrobielle Aktivität der Haemolymphe nach artifizieller Infektion zu ermitteln und zum anderen spezifische AMPs bzw. IRPs identifiziert. Hierzu wurden die Haemolymphproteine in ein- oder zwei-dimensionalen Polyacrylamidgelen aufgetrennt und ausgewählte Proteinbanden bzw. -spots mittels nano HPLC/Massenspektrometrie analysiert. Die Hauptkomponenten des zellulären Immunsystems sind Wundheilung, Phagozytose, Einkapselung und Nodulation. In meiner Arbeit habe ich zum ersten Mal Noduli bei infizierten Drohnen nachweisen können. Frisch geschlüpfte adulte Drohnen (1d) weisen ein breites Spektrum an Immunreaktionen auf, das sowohl humorale als auch zelluläre Immunantworten umfasst. Nach Infektion mit dem Gram-negativen Bakterium E.coli und verschiedenen bakteriellen Zellwandbestandteilen wie Lipopolysaccharid (LPS), Peptidoglycan (PGN) und 1,3ß-Glucan (Bestandteil von Pilzzellwänden), werden die AMPs Hymenoptaecin, Defensin 1 und Abaecin induziert. Desweiteren exprimieren junge adulte Drohnen eine Reihe hochmolekularer immunspezifischer Proteine (IRPs) wie z.B. Carboxylesterase (CE 1), eine Serinprotease, die möglicherweise an der Prozessierung der Prophenoloxidase beteiligt ist, ein Peptidoglycan-interagierendes Protein (PGRP-S2) und zwei Proteine unbekannter Funktion, IRp42 und IRp30. Parallel zu bekannten bienenspezifischen AMPs wurde ein animales Peptidtoxin (APT) in Drohnenlarven, adulten Drohnen und adulten Hummeln nach E.coli Infektion in der Haemolymphe nachgewiesen. Von dem als OCLP 1 (ω-conotoxin-like protein 1) benannten Peptid war bereits bekannt, dass es in Fischen paralytische und damit toxische Effekte auslöst. Meine Beobachtungen lassen vermuten, dass es sich bei OCLP 1 um ein Peptidtoxin mit antimikrobiellen Eigenschaften und damit um eine neue Klasse von AMPs handelt. Die allgemeine humorale Immunkompetenz scheint während der gesamten Lebensspanne adulter Drohnen (~ 7 Wochen) konstant zu bleiben, wie durch die gleichbleibende antimikrobielle Aktivität im Hemmhoftest gezeigt wurde. Junge Drohnen reagieren auf eine E.coli Infektion mit der Bildung zahlreicher Noduli (~1000 Noduli/Drohn), die vor allem entlang des Herzschlauches zu finden sind. Diese zelluläre Immunantwort nimmt mit dem Alter der Drohnen ab, so dass bei 18 d alten Drohnen nur noch rund 10 Noduli/Drohn gefunden werden. Auf der anderen Seite nimmt die phagozytotische Aktivität bei älteren Drohnen scheinbar zu. In einer Reihe von parallel laufenden Versuchsreihen konnte ich eindrucksvoll zeigen, dass zelluläre Immunreaktionen wie Phagozytose und Nodulation unmittelbar nach bakterieller Infektion einsetzen. Hierbei erreicht die Nodulibildung 8-10 h p.i. eine Plateauphase, wohingegen die humorale Immunantwort erst 6 h p.i. schwach einsetzt, danach stetig zunimmt und noch 72 h p.i. nachweisbar ist. Es ist mir gelungen, eine Methode zur künstlichen Aufzucht von Drohnenlarven zu etablieren. Diese ermöglichte konstante und sterile Versuchsbedingungen zur Untersuchung der Immunreaktionen von Larven. Nach Infektion mit E.coli reagieren Drohnenlarven mit einer starken Aktivierung ihrer humoralen Immunantwort durch die Expression von AMPs, jedoch werden keine hochmolekularen IRPs wie in adulten Drohnen hochreguliert. Zudem ist die Nodulibildung in Larven nur schwach ausgeprägt. Völlig unerwartete Beobachtungen wurden beim Studium der Immunkompetenz von Drohnenpuppen gemacht. Nach Injektion lebender E.coli Zellen in Drohnenpuppen stellte ich eine dramatische Veränderung im Aussehen der Puppen fest. Die Puppen verfärbten sich gräulich schwarz. Genauere Untersuchungen haben dann gezeigt, dass die Drohnenpuppen, wie auch die der Arbeiterinnen, offensichtlich keine zelluläre Abwehrreaktion aktivieren können und die humorale Immunantwort nur sehr schwach ausfällt und viel zu spät einsetzt. / Social insects like honey bees (Apis mellifera) possess a wide range of defence mechanisms against pathogens on the colony level (social immunity) as well as on the individual level (innate immunity). In early summer, honey bee colonies consist of about 50.000 workers, a few hundred drones and one queen. The main task of the short-lived drones is to mate with a virgin queen. This raises a question: do drones, similar to workers mount an energy-intense immune reaction to fend off infections? In my thesis I could show that drones exhibit an effective immune competence. The innate immune response is composed of a humoral and a cellular component. In the humoral immune response, evolutionally conserved signalling pathways are activated and lead to the induced synthesis of antimicrobial peptides (AMPs) and immune responsive proteins (IRPs). In order to analyse the humoral immune response, I conducted inhibition zone assays as well as one- and two-dimensional gelelectrophoresis. Afterwards, HPLC/MS was performed in order to identify specific protein spots. Wound healing, phagocytosis, encapsulation and nodulation are the principal components of the cellular immune system. In my work, I could show nodulation reactions in infected drones for the first time. Newly emerged drones (1d) respond to infections with a wide range of immune reactions, including humoral and cellular defence mechanisms. The AMPs hymenoptaecin, defensin 1 and abaecin are induced after infection with gram-negative E.coli, bacterial cell wall components like lipopolysaccharides (LPS), peptidoglycan (PGN) and 1,3ß-glucan (cell wall component of fungi). In addition, young drones express some high molecular immune responsive proteins (IRPs) like carboxylesterase (CE 1), a serine protease, that is potentially part of the prophenoloxidase activating system, further a peptidoglycan recognition protein (PGRP-S2) and with IRp30 and IRp42 two proteins of unknown function. IRp42 possibly belongs to the glycin-rich proteins (GRP) because of its glycin–rich regions. Glycin-rich proteins are known to participate in host defence in plants. IRp30 is a leucine-rich repeat containing protein with a C-terminal leucine zipper, which is common among Hymenopterans. Therefore it is possible for IRp30 to interact with other proteins, like cell wall structures of pathogens. I detected the bee-specific lysozyme 2 in the haemolymph of adult drones after septic infection. It belongs to the chicken (c)-type lysozymes like lysozyme 1, which are potentially active against gram-positive and gram-negative bacteria and fungi in insects. After E.coli infection, an animal peptide toxin (APT) was detected simultaneously to the known AMPs in the haemolymph of larvae, adult drones and adult bumble bees. It is known that this peptide, called OCLP 1 (ω-conotoxin-like protein 1), triggers paralytic and thus toxic effects in fish. My observations suggest that OCLP 1 is probably a peptide toxin with antimicrobial characteristics, and thus could belong to a new class of AMPs. Throughout their whole life (~ 7 weeks), adult drones maintain their immune competence. This was shown by the continuous antimicrobial activity of drone haemolymph in inhibition zone assays. After E.coli infection, young drones react with nodule formation (~1000 noduli/drone), which are mostly attached to the dorsal vessel. With increasing age, this type of cellular immune response weakens, so that 18d old drones only produce 10 noduli/drone. On the other hand, the phagocytic activity seems to increase in older drones In an array of parallel tests, I showed the immediate onset of the cellular immune reactions phagocytosis and nodulation upon septic infections. Nodule formation reaches a plateau 8-10 h p.i., whereas humoral immune response just begins to start 6 h p.i., continuously rises and is still measurable 72 h p.i.. I succeeded in establishing a method for rearing honey bee drone larvae artificially. This enabled constant and sterile conditions for the testing of immune reactions in larvae. A strong activation of humoral immunity with the expression of AMPs resulted from E.coli infection, yet no immune responsive proteins were induced like in adult drones. Moreover, nodule formation in larvae is weak. While studying immune competence of drone pupae, I made a surprising observation. There is a dramatic change in the physical appearance of drone pupae after injecting living E.coli bacteria. They change colour to a greyish black. Precise examinations revealed that there is no cellular immune response in drone pupae as well as in worker pupae, only a weak humoral immune reaction which is initiated too late.
68

Non-target effects of a multiple insect resistant Bt-maize on the honey bee (Apis mellifera L.) / Nichtzieleffekte eines Bt-Mais mit multipler Insektenresistenz auf Honigbienen (Apis mellifera L.)

Hendriksma, Harmen P. January 2011 (has links) (PDF)
Neue methodische Entwicklungen zur Untersuchung der Ursachen des weltweit beobachteten Bienensterbens sind nötig, um die lebenswichtige Ökosystemdienstleistung der Bestäubung zu gewährleisten. Die ökologisch und wirtschaftlich bedeutsame Honigbiene (Apis mellifera) ist ein wichtiger Nichtziel-Organismus im Zulassungsverfahren für gentechnisch veränderte Pflanzen. Bisher sind vor allem Methoden zur Testung erwachsener Bienen unter Laborbedingungen verwendet worden, aber für eine Risikobewertung mit Hilfe von standardisierten Bienenkolonien oder in vitro gezüchteten Honigbienenlarven sind keine robusten Methoden oder standardisierte Protokolle vorhanden. In dieser Arbeit wurde eine Vielzahl an neuen methodischen Ansätzen für die Biosicherheitsforschung entwickelt: eine Mortalitäts-Falle (Kapitel II), ein "Full-Life-Cycle" Test (III), eine robuste in vitro Aufzucht-Methodik (IV), ein standardisierter in vitro Test für Bt-Pollen (V), eine gemischte Toxizitätsprüfung für transgene Reinproteine (VI) und eine Überprüfung der Darmmikroflora sowie der Pollenverdauungrate (VII). Die Ergebnisse dieser Studien zeigten keine nachteiligen Wirkungen von Bt-Maispollen oder Bt-Reinproteinen im "Worst-Case" Szenario auf Honigbienen. In Anbetracht der Datenlage ist eine Schädigung der Honigbiene durch den getesteten Bt-Mais Mon89034xMon88017 unwahrscheinlich. Die Anwendung der Untersuchungsmethoden in zukünftigen Biosicherheitsstudien für transgene Pflanzen wird empfohlen. / Honey bee pollination is an ecologically and economically important ecosystem service. New methodological developments are needed to research the underlying factors of globally observed bee losses. The honey bee (Apis mellifera) is a key non-target arthropod species for environmental risk assessment of genetically modified (GM) crops. For GM-crop risk assessments, mainly methods for monitoring adult honey bees under laboratory conditions are documented. However, protocols with robust methods for standardized colonies or in vitro reared honey bee larvae are currently lacking. Within the research, presented in this this dissertation, multiple methodological developments are achieved; a mortality trap (Chapter II), a ‘full life cycle test’ (III), a novel in vitro rearing methodology (IV), a standardized in vitro test for Bt-pollen (V), a mixed toxicity test for purified transgenic proteins (VI), and a bacterial flora test with pollen digestion rate monitoring (VII). Overall, the studies did not indicate a detrimental effect caused by Bt-maize pollen, or by purified Bt-proteins at worst case exposure levels. Considering the risk for honey bees and larvae, we conclude that the tested Bt-maize Mon89034xMon88017 is not likely to cause harm to honey bee colonies. The study methods presented are highly recommended for future environmental risk assessment studies testing GM-crop biosafety on honey bees.
69

The Dual Olfactory Pathway in the Honeybee Brain: Sensory Supply and Electrophysiological Properties / Der duale olfaktorische Weg im Gehirn der Honigbiene: Sensorischer Eingang und elektrophysiologische Eigenschaften

Kropf, Jan January 2018 (has links) (PDF)
The olfactory sense is of utmost importance for honeybees, Apis mellifera. Honeybees use olfaction for communication within the hive, for the identification of nest mates and non-nest mates, the localization of food sources, and in case of drones (males), for the detection of the queen and mating. Honeybees, therefore, can serve as excellent model systems for an integrative analysis of an elaborated olfactory system. To efficiently filter odorants out of the air with their antennae, honeybees possess a multitude of sensilla that contain the olfactory sensory neurons (OSN). Three types of olfactory sensilla are known from honeybee worker antennae: Sensilla trichoidea, Sensilla basiconica and Sensilla placodea. In the sensilla, odorant receptors that are located in the dendritic arborizations of the OSNs transduce the odorant information into electrical information. Approximately 60.000 OSN axons project in two parallel bundles along the antenna into the brain. Before they enter the primary olfactory brain center, the antennal lobe (AL), they diverge into four distinct tracts (T1-T4). OSNs relay onto ~3.000-4.000 local interneurons (LN) and ~900 projection neurons (PN), the output neurons of the AL. The axons of the OSNs together with neurites from LNs and PNs form spheroidal neuropil units, the so-called glomeruli. OSN axons from the four AL input tracts (T1-T4) project into four glomerular clusters. LNs interconnect the AL glomeruli, whereas PNs relay the information to the next brain centers, the mushroom body (MB) - associated with sensory integration, learning and memory - and the lateral horn (LH). In honeybees, PNs project to the MBs and the LH via two separate tracts, the medial and the lateral antennal-lobe tract (m/lALT) which run in parallel in opposing directions. The mALT runs first to the MB and then to the LH, the lALT runs first to the LH and then to the MB. This dual olfactory pathway represents a feature unique to Hymenoptera. Interestingly, both tracts were shown to process information about similar sets of odorants by extracting different features. Individual mALT PNs are more odor specific than lALT PNs. On the other hand, lALT PNs have higher spontaneous and higher odor response action potential (AP) frequencies than mALT PNs. In the MBs, PNs form synapses with ~184.000 Kenyon cells (KC), which are the MB intrinsic neurons. KCs, in contrast to PNs, show almost no spontaneous activity and employ a spatially and temporally sparse code for odor coding. In manuscript I of my thesis, I investigated whether the differences in specificity of odor responses between m- and lALT are due to differences in the synaptic input. Therefore, I investigated the axonal projection patterns of OSNs housed in S. basiconica in honeybee workers and compared them with S. trichoidea and S. placodea using selective anterograde labeling with fluorescent tracers and confocal- microscopy analyses of axonal projections in AL glomeruli. Axons of S. basiconica-associated OSNs preferentially projected into the T3 input-tract cluster in the AL, whereas the two other types of sensilla did not show a preference for a specific glomerular cluster. T3- associated glomeruli had previously been shown to be innervated by mALT PNs. Interestingly, S. basiconica as well as a number of T3 glomeruli lack in drones. Therefore I set out to determine whether this was associated with the reduction of glomeruli innervated by mALT PNs. Retrograde tracing of mALT PNs in drones and counting of innervated glomeruli showed that the number of mALT-associated glomeruli was strongly reduced in drones compared to workers. The preferential projections of S. basiconica-associated OSNs into T3 glomeruli in female workers together with the reduction of mALT-associated glomeruli in drones support the presence of a female-specific olfactory subsystem that is partly innervated by OSNs from S. basiconica and is associated with mALT projection neurons. As mALT PNs were shown to be more odor specific, I suppose that already the OSNs in this subsystem are more odor specific than lALT associated OSNs. I conclude that this female-specific subsystem allows the worker honeybees to respond adequately to the enormous variety of odorants they experience during their lifetime. In manuscript II, I investigated the ion channel composition of mALT and lALT PNs and KCs in situ. This approach represents the first study dealing with the honeybee PN and KC ion channel composition under standard conditions in an intact brain preparation. With these recordings I set out to investigate the potential impact of intrinsic neuronal properties on the differences between m- and lALT PNs and on the sparse odor coding properties of KCs. In PNs, I identified a set of Na+ currents and diverse K+ currents depending on voltage and Na+ or Ca2+ that support relatively high spontaneous and odor response AP frequencies. This set of currents did not significantly differ between mALT and lALT PNs, but targets for potential modulation of currents leading to differences in AP frequencies were found between both types of PNs. In contrast to PNs, KCs have very prominent K+ currents, which are likely to contribute to the sparse response fashion observed in KCs. Furthermore, Ca2+ dependent K+ currents were found, which may be of importance for coincidence detection, learning and memory formation. Finally, I conclude that the differences in odor specificity between m- and lALT PNs are due to their synaptic input from different sets of OSNs and potential processing by LNs. The differences in spontaneous activity between the two tracts may be caused by different neuronal modulation or, in addition, also by interaction with LNs. The temporally sparse representation of odors in KCs is very likely based on the intrinsic KC properties, whereas general excitability and spatial sparseness are likely to be regulated through GABAergic feedback neurons. / Der Geruchssinn ist für die Honigbiene, Apis mellifera, von größter Bedeutung. Honigbienen kommunizieren olfaktorisch, sie können Nestgenossinnen und koloniefremde Honigbienen aufgrund des Geruchs unterscheiden, sie suchen und erkennen Nahrungsquellen olfaktorisch, und Drohnen (männliche Honigbienen) finden die Königin mit Hilfe des Geruchssinns. Deshalb dient die Honigbiene als exzellentes Modell für die Untersuchung hochentwickelter olfaktorischer Systeme. Honigbienen filtern Duftmoleküle mit ihren Antennen aus der Luft. Auf diesen Antennen sitzen Sensillen, die die olfaktorischen sensorischen Neurone (OSN) beinhalten. Drei verschiedene olfaktorische Sensillen existieren bei Arbeiterinnen: Sensilla trichoidea, Sensilla basiconica und Sensilla placodea. In diesen Sensillen sind olfaktorische Rezeptorproteine auf den Dendriten der OSN lokalisiert. Diese Duftrezeptoren wandeln die Duftinformationen in elektrische Informationen um. Die Axone von ca. 60.000 OSN ziehen in zwei Bündeln entlang der Antenne in das Gehirn. Bevor sie das erste olfaktorische Gehirnzentrum, den Antennallobus (AL), erreichen, spalten sie sich in vier distinkte Trakte (T1-T4) auf. Im AL verschalten sie auf 3.000-4.000 lokale Interneurone (LN) und auf etwa 900 Ausgangsneurone des AL, die Projektionsneurone (PN). Die axonalen Endigungen der OSN bilden mit Neuriten der PN und LN kugelförmige Strukturen, die so genannten Glomeruli. Die OSN aus den vier Trakten T1-T4 ziehen in vier zugehörige glomeruläre Cluster. LN verschalten die Information unter den AL Glomeruli, PN leiten olfaktorische Informationen zu den nächsten Gehirnstrukturen, den Pilzkörpern und dem lateralen Horn, weiter. Die Pilzkörper werden als Zentrum für sensorische Integration, Lernen und Gedächtnis gesehen. Die PN, die den AL mit dem Pilzkörper und dem lateralen Horn verbinden, verlaufen in Honigbienen parallel über zwei Bahnen, den medialen und den lateralen Antennallobustrakt (mALT/lALT), aber in entgegengesetzter Richtung. Dieser duale olfaktorische Signalweg wurde in dieser Ausprägung bisher nur in Hymenopteren gefunden. Interessanterweise prozessieren beide Trakte Informationen über die gleichen Düfte. Dabei sind mALT PN duftspezifischer und lALT PN haben höhere spontane Aktionspotentialfrequenzen sowie höhere Aktionspotentialfrequenzen in Antwort auf einen Duftreiz. Im Pilzkörper verschalten PN auf Kenyon Zellen (KC), die intrinsischen Neurone des Pilzkörpers. KC sind im Gegensatz zu PN fast nicht spontan aktiv und kodieren Informationen auf räumlicher und zeitlicher Ebene mit geringer Aktivität. Man spricht von einem so genannten "sparse code". Im ersten Manuskript meiner Doktorarbeit habe ich untersucht, ob die Unterschiede in der Spezifität der Duftantworten zwischen mALT und lALT PN zumindest zum Teil auf Unterschieden im sensorischen Eingang beruhen. Ich habe die axonalen Projektionen der OSN der S. basiconica in Honigbienen untersucht und mit den Projektionen von OSN in S. trichoidea und S. placodea verglichen. Dazu wurden die OSN in den S. basiconica anterograd mit Fluoreszenzmarkern gefärbt und mit mittels konfokaler Mikroskopie untersucht und quantifiziert. Die Axone von OSN aus S. basiconica ziehen präferentiell in das T3 Glomerulus Cluster, die Axone der anderen beiden Sensillentypen zeigen keine Präferenz für ein spezielles Cluster. Es wurde bereits gezeigt, dass die Glomeruli des T3 Clusters von mALT PN innerviert werden. Interessanterweise fehlen S. basiconica und Teile der T3 Glomeruli in Drohnen. Deshalb habe ich untersucht, ob die T3 Reduzierung in Drohnen mit einer Reduzierung der mALT Glomeruli einhergeht. Retrograde Färbungen der mALT PN in Drohnen zeigten, daß die Zahl der mALT Glomeruli in Drohnen gegenüber Arbeiterinnen deutlich reduziert ist. Die Präferenz der OSN der S. basiconica für das T3 Cluster und die reduzierte Anzahl von mALT Glomeruli in Drohnen weisen auf ein arbeiterinnenspezifisches olfaktorisches Subsystem hin, welches aus S. basiconica, T3 Glomeruli und einer Gruppe von mALT PN besteht. Da die mALT PN duftspezifischer als lALT PN sind, vermute ich, dass auch die OSN, die auf mALT PN verschalten, duftspezifischer antworten als OSN die auf lALT PN verschalten. Daraus schließe ich, daß dieses Subsystem den Arbeiterinnen ermöglicht, passend auf die enorme Breite an Duftstoffen zu reagieren, die diese im Laufe ihres arbeitsteiligen Lebens wahrnehmen müssen. Im zweiten Manuskript meiner Doktorarbeit habe ich die Ionenkanalzusammensetzung der mALT PN, der lALT PN und der KC in situ untersucht. Mein Ansatz stellt die erste Studie dar, die die Ionenkanäle von Neuronen in der Honigbiene unter Standardbedingungen an einer intakten Gehirnpräparation untersucht. Mit diesen Messungen versuche ich die potentiellen bioelektrischen Grundlagen für Unterschiede in der Informationskodierung in mALT PN, lALT PN und Kenyon Zellen zu ergründen. In PN konnte ich eine Gruppe von Na+ Ionenkanälen und Na+ abhängigen, Ca2+ abhängigen sowie spannungsabhängigen K+ Ionenkanälen identifizieren, die die Grundlagen für hohe, spontane Aktionspotentialfrequenzen und hohe Duftantwortfrequenzen schaffen. Diese Ströme unterschieden sich nicht grundsätzlich zwischen m- und lALT PN. Jedoch wurden potentielle Ziele für neuronale Modulation gefunden, welche zu unterschiedlichen Aktionspotentialfrequenzen zwischen PN der beiden Trakte führen könnten. Im Gegensatz zu den PN wurden in Kenyon Zellen in der Relation sehr starke K+ Ionenströme gemessen. Diese dienen sehr wahrscheinlich der schnellen Terminierung von Duftantworten, also dem Erzeugen des zeitlichen "sparse code". Außerdem wurden Ca2+ abhängige K+ Kanäle gefunden, die für Koinzidenzdetektion, Lernen und Gedächtnis von Bedeutung sein können. In der Gesamtsicht folgere ich aus meinen Ergebnissen, dass die Unterschiede in der Duftspezifizität zwischen m- und lALT PN überwiegend auf deren sensorischen Eingängen von unterschiedlichen Populationen von OSN und der Verarbeitung über lokale Interneuronen im AL beruht. Die Unterschiede in der Spontanaktivität zwischen mALT und lALT basieren sehr wahrscheinlich auf neuronaler Modulation und/oder Interaktion mit LN. Die zeitliche Komponente des "sparse code" in KC entsteht höchstwahrscheinlich durch die intrinsischen elektrischen Eigenschaften der KC, wohingegen die generelle Erregbarkeit und der räumliche "sparse code" mit großer Wahrscheinlichkeit auf der Regulation durch GABAerge Neurone beruht.
70

Bee demise and bee rise: From honey bee colony losses to finding measures for advancing entire bee communities / Bienenschwund und Bienenaufschwung: Von Honigbienen-Kolonieverlusten zur Förderung von gesamten Bienengemeinschaften

Seitz, Nicola January 2020 (has links) (PDF)
My dissertation comprises three studies: (1) an assessment of honey bee colony losses in the USA between 2014 and 2015, (2) an exploration of the potential of reclaimed sand mines as bee habitat, and (3) an evaluation of native and non-native pollinator friendly plants in regard to their attraction to bees. While the first study focuses on honey bees, the latter two studies primarily take wild bees or entire bee communities in focus. The study on honey bee colony losses was conducted within the framework of the Bee Informed Partnership (BIP, beeinformed.org) and aligns with the annual colony loss surveys which have been conducted in the USA since the winter of 2006/2007. It was the fourth year for which summer and annual losses were calculated in addition to winter losses. Among participants, backyard beekeepers were the largest group (n = 5690), although sideline (n = 169) and commercial (n = 78) beekeepers managed the majority (91.7 %) of the 414 267 surveyed colonies. Overall, 15.1 % of the estimated 2.74 million managed colonies in the USA were included in the study. Total honey bee colony losses (based on the entirety of included colonies) were higher in summer (25.3 %) than in winter (22.3 %) and amounted to 40.6 % for the entire 2014/2015 beekeeping year. Average colony losses per beekeeper or operation were higher in winter (43.7 %) than in summer (14.7 %) and amounted to 49 % for the entire 2014/2015 beekeeping year. Due to the dominance of backyard beekeepers among participants, average losses per operation (or unweighted loss) stronger reflected this smaller type of beekeeper. Backyard beekeepers mainly named colony management issues (e.g., starvation, weak colony in the fall) as causes for mortality, while sideline and commercial beekeepers stronger emphasized parasites or factors outside their control (e.g., varroa, nosema, queen failure). The second study took place at reclaimed sand mines. Sand mines represent anthropogenically impacted habitats found worldwide, which bear potential for bee conservation. Although floral resources can be limited at these habitats, vegetation free patches of open sandy soils and embankments may offer good nesting possibilities for sand restricted and other bees. We compared bee communities as found in three reclaimed sand mines and at adjacent roadside meadows in Maryland, USA, over two years. Both sand mines and roadsides hosted diverse bee communities with 111 and 88 bee species, respectively. Bee abundances as well as richness and Shannon diversity of bee species were higher in sand mines than at roadsides and negatively correlated with the percentage of vegetational ground cover. Species composition also differed significantly between habitats. Sand mines hosted a higher proportion of ground nesters, more uncommon and more ‘sand loving’ bees similar to natural sandy areas of Maryland. Despite the destruction of the original pre-mining habitat, sand mines thus appear to represent a unique habitat for wild bees, particularly when natural vegetation and open sand spots are encouraged. Considering habitat loss, the lack of natural disturbance regimes, and ongoing declines of wild bees, sand mines could add promising opportunities for bee conservation which has hitherto mainly focused on agricultural and urban habitats. The third study was an experimental field study on pollinator friendly plants. Bees rely on the pollen and nectar of plants as their food source. Therefore, pollinator friendly plantings are often used for habitat enhancements in bee conservation. Non-native pollinator friendly plants may aid in bee conservation efforts, but have not been tested and compared with native pollinator friendly plants in a common garden experiment. In this study, we seeded mixes of 20 native and 20 non-native pollinator friendly plants in two separate plots at three sites in Maryland, USA. For two years, we recorded flower visitors to the plants throughout the blooming period and additionally sampled bees with pan traps. A total of 3744 bees (120 species) were sampled in the study. Of these, 1708 bees (72 species) were hand netted directly from flowers for comparisons between native and non-native plants. Depending on the season, bee abundance and species richness was either similar or lower (early season and for richness also late season) at native plots compared to non-native plots. Additionally, the overall bee community composition differed significantly between native and non-native plots. Furthermore, native plants were associated with more specialized plant-bee visitation networks compared to non-native plants. In general, visitation networks were more specialized in the early season than the later seasons. Four species (Bombus impatiens, Halictus poeyi/ligatus, Lasioglossum pilosum, and Xylocopa virginica) out of the five most abundant bee species (also including Apis mellifera) foraged more specialized on native than non-native plants. Our study showed that non-native plants were well accepted by a diverse bee community and had a similar to higher attraction for bees compared to native plants. However, we also demonstrated alterations in foraging behavior, bee community assemblage, and visitation networks. As long as used with caution, non-native plants can be a useful addition to native pollinator friendly plantings. This study gives a first example of a direct comparison between native and non-native pollinator friendly plants. / Meine Dissertation umfasst drei Studien: (1) eine Erfassung von Honigbienen-Kolonieverlusten in den USA zwischen 2014 und 2015, (2) die Erforschung des Potenzials renaturierter Sandminen als Habitat für Bienen und (3) eine Evaluierung nativer sowie standortfremder bestäuberfreundlicher Pflanzen hinsichtlich ihrer Attraktivität für Bienen. Während die erste Studie Honigbienen im Fokus hat, verschiebt sich der Fokus der zwei weiteren Studien hin zu Wildbienen bzw. gesamten Bienengemeinschaften. Die Studie zu Honigbienenkolonieverlusten wurde im Rahmen des Bee Informed Partnerships (BIP, beeinformed.org) durchgeführt und reiht sich ein in die seit dem Winter 2006/2007 jährlich durchgeführten Untersuchungen in den USA. Es ist das vierte Jahr in dem Sommer- und Jahresverluste zusätzlich zu den Winterverlusten kalkuliert wurden. Unter den Teilnehmern bildete die Gruppe der Hobby-Imker den größten Anteil (n = 5690), obwohl nebenberufliche (n = 169) und kommerzielle (n = 78) Imker den Großteil (91,7 %) der 414 267 begutachteten Bienenvölkern bzw. Kolonien hielten. Insgesamt enthielt die Studie 15,1 % der auf 2,74 Mio. geschätzten Gesamtzahl an gehaltenen Bienenvölkern in den USA. Die Gesamtverluste an Honigbienenvölkern (basierend auf der Gesamtheit der erfassten Völker) waren im Sommer mit 25,3 % höher als im Winter mit 22,3 % und bezifferten sich auf 40,6 % für das gesamte Imkerjahr in 2014/2015. Durchschnittliche Kolonieverluste pro Imkerbetrieb waren höher im Winter (43,7 %) als im Sommer (14,7 %) und betrugen 49 % für das gesamte Imkerjahr in 2014/2015. Aufgrund der hohen Anzahl an Hobby-Imkern unter den Teilnehmern reflektieren die durchschnittlichen Kolonieverluste pro Imkerbetrieb (oder ungewichtete Verluste) v.a. die Situation dieser kleineren Imkerbetriebe. Hobby-Imker nannten als Gründe für die Honigbienenmortalität hauptsächlich Probleme des Koloniemanagements (z.B. Verhungerung, schwache Völker im Herbst), während nebenberufliche und kommerzielle Imker stärker Faktoren betonten, die außerhalb ihrer Kontrolle lagen (z.B. Varroamilben, Nosemasporen, Versagen der Königin). Die zweite Studie fand in renaturierten Sandminen statt. Sandminen sind weltweit zu findende anthropogen veränderte Landschaften, die ein Potenzial für Bienenschutz haben. Obwohl florale Ressourcen in diesen Habitaten limitiert sein können, könnten die vegetationsfreien Flecken auf offenen Sandböden und Böschungen gute Nistplätze für auf Sand spezialisierte und andere Bienen bieten. Wir haben Bienengemeinschaften aus drei renaturierten Sandminen sowie jeweils nahe gelegenen bepflanzten Straßenrändern in Maryland, USA verglichen. Sowohl die Sandminen als auch die Straßenränder enthielten vielfältige Bienengemeinschaften mit 111 (Sandminen) und 88 (Straßenränder) Bienenarten. Bienenabundanz, Artenreichtum und Shannon Diversität waren höher in den Sandminen als an den Straßenrändern und korrelierten negativ mit dem Anteil an vorhandener Bodenvegetation. Darüber hinaus unterschied sich die Artzusammensetzung signifikant zwischen den beiden Habitattypen. Sandminen enthielten einen größeren Anteil an Bodennistern, mehr seltene Arten und mehr sandliebende Arten, ähnlich natürlicher sandiger Gebiete in Maryland. Trotz der Zerstörung des ursprünglichen prä-Minen Habitats, scheinen Sandminen daher ein einzigartiges Bienenhabitat für Wildbienen darzustellen, besonders wenn die natürliche Besiedlung von Vegetation und offene Sandflächen gefördert werden. Im Hinblick auf Habitatverluste, auf das Fehlen von natürlichen Landschaftsstörungen und auf den weiterschreitenden Rückgang an Wildbienen, könnten Sandminen eine vielversprechende Möglichkeit für Bienenschutz darstellen, der sich bisher stark auf landwirtschaftliche und urbane Habitate konzentrierte. Bei der dritten Studie handelt es sich um eine experimentelle Feldstudie zu bestäuberfreundlichen Pflanzen. Bienen sind auf Pollen und Nektar von Pflanzen als Nahrungsquelle angewiesen. Aus diesem Grund werden bestäuberfreundliche Pflanzen oft für Habitatverbesserungen im Rahmen von Bienenschutzmaßnahmen gepflanzt. Standortfremde bestäuberfreundliche Pflanzen können dabei die Bienenschutzmaßnahmen unterstützen, wurden aber bisher nicht in einem Common Garden Experiment zusammen mit nativen bestäuberfreundlichen Pflanzen getestet bzw. verglichen. In dieser Studie haben wir Saatgutmischungen mit jeweils 20 nativen und 20 standortfremden Pflanzen in zwei separaten Plots in drei Gebieten in Maryland, USA ausgesät. Zwei Jahre lang protokollierten wir über die gesamten Blühzeiträume hinweg Pflanzenbesucher und sammelten Bienen mit Farbschalen. Insgesamt erfassten wir 3744 Bienen (120 Arten), von denen 1708 Individuen (72 Arten) per Hand direkt von den Blüten gesammelt wurden für die Vergleiche zwischen nativen und standortfremden Pflanzen. Abhängig von der Saison waren Bienenabundanz und Artenreichtum entweder ähnlich oder niedriger (frühe Saison und für Artenreichtum auch späte Saison) in nativen Plots verglichen mit den standortfremden Plots. Zusätzlich unterschied sich die Zusammensetzung der Bienengemeinschaft signifikant zwischen nativen und standortfremnden Pflanzen. Darüber hinaus waren die Bienen-Pflanzen-Besuchs-Netzwerke nativer Pflanzen spezialisierter als die Besuchs-Netzwerke standortfremder Pflanzen. Im Allgemeinen waren die Besuchs-Netzwerke in der frühen Saison spezialisierter als in der späten Saison. Vier Arten (Bombus impatiens, Halictus poeyi/ligatus, Lasioglossum pilosum, und Xylocopa virginica) der fünf am häufigsten vorkommenden Arten (zusätzlich auch Apis mellifera) fouragierten spezialisierter auf nativen Pflanzen als auf standortfremden Pflanzen. Unsere Studie zeigte, dass standortfremde Pflanzen weitläufig von einer artenreichen Bienengemeinschaft angenommen wurden und eine ähnliche bis höhere Attraktivität für Bienen aufwiesen verglichen mit nativen Pflanzen. Allerdings demonstrierten wir auch Änderungen im Fouragierverhalten, in der Zusammensetzung der Bienengemeinschaft und in den Besuchs-Netzwerken. Insgesamt kann ein vorsichtiger Einsatz standortfremder Pflanzen eine sinnvolle Ergänzung zu nativen bestäuberfreundlichen Anpflanzungen sein. Diese Studie stellt ein erstes Beispiel eines direkten Vergleichs von nativen und standortfremden bestäuberfreundlichen Anpflanzungen dar.

Page generated in 0.0592 seconds