• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 1
  • Tagged with
  • 9
  • 9
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Oxidation State Roulette:Synthesis and Reactivity of Cobalt Complexes Containing SNS Ligands

Fitchett, Brandon 13 December 2018 (has links)
The use of rare and expensive noble metals in the chemical industry as organometallic catalysts has grown exponentially in the past few decades due to their high activity, selectivity and their ability to catalyze a wide range of reactions. With this growth in use has also come a proportional growth in concern as these toxic metals inevitably leach into the environment and their negative effects on public health and our ecosystems are becoming better understood. First-row transition metal catalysts provide both environmental and economic benefits as alternatives to these noble metals due to their lower toxicity and cheaper costs. The two-electron chemistry that makes the noble metals so attractive however, is more challenging to accomplish with first-row transition metals. Intelligently designing the ligand scaffold which surrounds the metal can mitigate or even eliminate some of the shortfalls of these first-row metals. Some key features that should be considered when designing a ligand are: 1) a strong chelating ability so the ligand can stay attached to the metal, 2) incorporation of strong donors to favour low-spin complexes, 3) inclusion of hemilabile groups to allow for substrate activation and metal stabilization throughout various oxidation states, 4) redox activity to be able to donate or accept electrons, and 5) inclusion of Lewis base functionalities which are able to assist the substrate activation. Ligands which incorporate these features are known as bifunctional ligands as they can accomplish more than one function in the catalytic cycle. Developing first-row transition metal complexes containing these ligands may enable these species to replicate the reactivity and selectivity generally associated with the precious metals. Being able to replace the noble metals used in industry with these catalysts would have tremendous environmental and economic benefits. The objective of this thesis is to advance the field of bifunctional catalysis by examining the behaviour of two sterically svelte, tridentate SNS ligands containing hard nitrogen and soft sulphur donors when bonded to cobalt. Previous work with iron provides a template of the ligand behaviour to which cobalt can be compared, allowing us to contrast the effects exerted by the different metals. After an introduction to bifunctional catalysis in Chapter 1, Chapter 2 describes the reactivity of the amido ligand, SMeNHSMe, with precursors ranging from Co(I) to Co(III), all of which yielded the 19e- pseudooctahedral cobalt(II) bis-amido complex, Co(SMeN-SMe)2 characterized by 1H NMR spectroscopy, single-crystal X-ray crystallography and cyclic voltammetry. Although this complex has a similar structure as the Fe analogue, the cobalt bis-amido complex did not exhibit the same hemilabile behaviour that allowed for simple ligand substitution of one of the thioether groups. Instead it reacted reversibly with 2,2’-bipyridine while 1,2-bis(dimethylphosphino)ethane (DMPE) and 2,6-dimethylphenyl isocyanide both triggered additional redox chemistry accompanied by the loss of protonated SMeNHSMe. In contrast, protonation gave the cobalt(II) amido-amine cation, [Co(SMeNSMe)(SMeNHSMe)](NTf2), which allowed for substitution of the protonated ligand by acetonitrile, triphenylphosphine and 2,2’-bipyridine based on 1H NMR evidence. The ability of Co(SMeNSMe)2 to act as a precatalyst for ammonia-borane dehydrogenation was also probed, revealing that it was unstable under these conditions. Addition of one equivalent of DMPE per cobalt, however, resulted in better activity with a preference for linear aminoborane oligomers using ammonia-borane and, surprisingly, to a change in selectivity to prefer cyclic products when moving to methylamine-borane. Chapter 3 delves into the chemistry of the thiolate ligand, SMeNHS, which formed a new 18e- cobalt(III) pseudooctahedral complex, Co(S-NC-)(SMe)(DEPE), from oxidative addition of the Caryl-SMe bond. Scaling up this reaction resulted instead in formation of an imine-coupled [Co(N2S2)]- anion which was characterized by 1H NMR/EPR spectroscopy, single-crystal X-ray diffraction, cyclic voltammetry and DFT studies. The latter revealed an interesting electronic structure with two electrons delocalized in the ligand, demonstrating the non-innocent nature of the N2S2 ligand. While the analogous iron complex proved to be an effective pre-catalyst for the hydroboration of aldehydes with selectivity against ketones, this behaviour was not observed with [Co(N2S2)]- which gave a slower rate and less selectivity. The knowledge acquired from this thesis work has advanced the field of bifunctional catalysis by extending the application of these two SNS ligands from iron to cobalt, revealing unpredictable differences in reactivity between the metals. By comparing the behaviour of these ligands with iron and cobalt, we gain a better understanding of the chemistry that is accessible by these ligands and the applications for which they may be used. This increased knowledge contributes to our long-term goal of replacing expensive and toxic noble metals with more benign first-row transition metals, improving the sustainability of the chemical industry.
2

Investigation of Secondary Coordination Sphere Effects for Cyanohydrin Hydration with Transition Metal Catalysts

Knapp, Spring Melody, Knapp, Spring Melody January 2012 (has links)
The synthesis of high value acrylic monomers is currently done industrially via cyanohydrin hydration using concentrated acids, resulting in large quantities of useless byproducts. This current process is energy intensive and lacks atom economy; therefore, alternative cyanohydrin hydration strategies are under investigation. Ideally, cyanohydrin hydration would be done using organometallic nitrile hydration catalysts. Cyanohydrin hydration with these catalysts is challenging, because it needs to be done at low temperatures and under acidic conditions to reduce cyanohydrin degradation and catalyst poisoning with cyanide. This dissertation describes the reactivity of [Ru(#951; / 10000-01-01
3

Hydroisomerization of alkanes over metal-loaded zeolite catalysts

Abudawood, Raed Hasan January 2011 (has links)
Zeolite catalysis plays an important role in many industrial applications due to their unique properties and has become widely used in the area of oil refining. Of particular interest is Zeolite Y, which can be hydrothermally treated into its ultrastable form, USY. USY offers a superior practicality, especially when dealuminated and metal-loaded. The importance of alkanes hydroisomerization arises from the continuingly stricter regulations imposed on the utilization of gasoline as an automotive fuel. The requirements to reduce the aromatics content in gasoline present a need to find an alternative way to maintain its research octane number (RON). An alternative to gasoline's high-octane aromatic content is to increase the RON for the paraffinic content of gasoline, which can be accomplished through hydroisomerization. Commercially, bifunctional metal-loaded zeolites are used to hydroisomerize the light naphtha stream produced at overheads of atmospheric distillation towers. However, no such process exists for the low-value heavy naphtha cut. This targeted process would, if successful, greatly improve refiner's profitability.In this work, bifunctional USY zeolite catalysts are studied in the hydroisomerization of a normal alkane (nC7, RON = 0). This nC7, found in heavy naphtha, has been used as the 'model' compound. The impact of different reaction conditions and catalyst properties on catalyst activity and stability, in addition to the catalyst selectivity to high octane isomers is one step towards determining optimum conditions and preferential catalyst formulations that favour octane maximization. Six platinum-loaded USY zeolite catalysts, four in-house and two commercial, were tested in an atmospheric glass fixed-bed reactor and a stainless steel reactor purpose-built during the course of this thesis. Reaction temperatures ranged from 170 to 250oC at pressures between 1 and 15 bar. The hydrogen to hydrocarbon molar ratio was fixed at 9, with feed space time ranging from 35.14 to 140.6 kg.s/mol. In-house catalysts were hydrothermally treated at different severities, while commercial ones were originally dealuminated through acid-leaching treatments.Results have shown commercial catalyst CBV-712 gave the best performance and highest octane values for product isomers (>30). In addition, there was no coke generation. The next best catalyst was the most severely steamed in-house catalyst (USY-D) that has shown a remarkable performance at high pressures, almost eclipsing the performance of CBV-712, yet produced higher levels of coke. Other USY catalysts tested were less robust during reactions, probably due to imbalance in their acidic to metallic functions, or diffusion limitations arising from their pore structures. The best catalysts were, nonetheless, highly sensitive to sulfur presence in the feed, which severely impacted their activity, especially their metallic functions, and thus require sulfur-free feeds in order to demonstrate their full capacities. Simple kinetic modelling of experimental data was performed using the initial rates method and estimation of kinetic parameters, whose values were in good agreement with previous literature.
4

Bifunctional Helical Peptide Catalysts for Enzyme-like Reactivity and Selectivity and Selective Stapling of Natural Amino Acid Residues with Hydrophilic Squaric Acid Derivatives

Kinghorn, Michael James 17 October 2019 (has links)
Peptide secondary structure provides an exceptional scaffold on which to design highly reactive and selective enzyme-like catalysts. This work describes the rational design and synthesis of a suite of helical peptide catalysts that are capable of achieving proximity-induced rate enhancement in Diels-Alder cycloadditions and indole alkylations. Microwave assisted synthesis of resin-supported polypeptides enables incorporation of non-natural amino acid residues that induce helicity (Aib) or provide functional handles on which organic catalytic residues can be attached. These small peptide catalysts exhibit binding-driven selectivity rather than relying on the inherent reactivity of substrates, which allows access to products that are not obtainable with traditional catalysts in solution. Catalyst efficiency reached up to 28,000 turn overs, which mimics natural enzymatic systems. Studies were also conducted into the stabilization of peptide secondary structure via covalent linking of nucleophilic amino acid side chains with squaric acid residues. Under mild conditions, stapling of nitrogen, sulfur and oxygen residues can readily be achieved in either organic or aqueous media. Squaric acid staples display pH selectivity for specific side chains and selective removal of diester staples (diserine staple) is demonstrated with methylamine. This new method for peptide stapling is shown to dramatically increase the proteolytic stability of eIF4E cancer inhibitor proteins, which typically are prone to quick degradation. Tyrosidine and RGD peptide analogues were synthesized and cyclized on resin in order to provide a new pathway to macrocyclization of antibacterial and integrin binding cyclic peptides.
5

Bifunctional Enamine‐Metal Lewis Acid Catalysis and α-Enaminones for Cyclization Reactions

Davis, Jacqkis 08 1900 (has links)
The use of enamines continues to be an important tool in organic syntheses as both a catalyst and reactant. The addition of metal catalysts coupled with enamine catalysis has generated many reactions that normally would not occur separately. However, catalysts' incompatibility is an issue that we wish to solve allowing new chemistry to occur without hindrance. The use of enamines has continued to be a well-studied area of organic chemistry, but the field is ripe for different types of enamines to gain the spotlight. Enaminones are enamines with both nucleophilic and electrophilic properties. They allow reactions that are normally not possible with enamines to become obtainable. Chapter 1 is a brief introduction on enamines and the reason they gained so much attention. Then ends with enaminones and what makes them interesting reactants. Chapter 2 described a new synthesis for the tricyclic synthesis of chromanes using a novel bifunctional catalyst system of enamine-metal Lewis acid giving great yields (up to 87 %yield) and excellent stereoselectivity (up to 99 % ee). Chapter 3 covered new reactions for ring-open cyclopropane (up to 94% yield), tetrahydroquinolinones (up to 84% yield) and enantiospecific tetrahydroquinolinones (up to 84% yield and 97% ee) using α-enaminone and donor-acceptor cyclopropanes. Finally, Chapter 4 focused a new method for synthesizing benzobicyclo[3.2.1]octanes with an added sterically bulky quaternary center and imine functionalization giving yields between 36-73% yield using α-enaminone with alkylidene malonates.
6

Late Transition Metal Complexes Bearing Functionalized N-Heterocyclic Carbenes and the Catalytic Hydrogenation of Polar Double Bonds

O, Wylie Wing Nien 16 August 2013 (has links)
Late transition metal complexes of silver(I), rhodium(I), ruthenium(II), palladium(II) and platinum(II) containing a nitrile-functionalized N-heterocyclic carbene ligand (C-CN) were prepared. The nitrile group on the C–CN ligand was shown to undergo hydrolysis under basic conditions, leading to a silver(I) carbene complex with a primary-amido functional group, and a trimetallic complex of palladium(II) with a partially hydrolyzed C–N–N–C donor ligand. The reduction of a nitrile-functionalized imidazolium salt in the presence of nickel(II) chloride under mild conditions yielded an axially chiral square-planar nickel(II) complex containing a unique primary-amino functionalized N-heterocyclic carbene ligand (C-NH2). A transmetalation reaction moved this chelating C–NH2 ligand from nickel(II) to ruthenium(II), osmium(II), and iridium(III), yielding important catalysts for the hydrogenation of polar double bonds. The ruthenium(II) complex, [Ru(p-cymene)(C–NH2)Cl]PF6 catalyzed the transfer and H2-hydrogenation of ketones. The bifunctional hydride complex, [Ru(p-cymene)(C–NH2)H]PF6, which contains a Ru–H/N–H couple showed no activity under catalytic conditions unless when activated by a base. The outer-sphere mechanism involving bifunctional catalysis of ketone reduction is disfavored according to experimental and theoretical studies and an inner-sphere mechanism is proposed involving the decoordination of the amine donor from the C–NH2 ligand. The ruthenium(II) complex [RuCp*(C–NH2)py]PF6 showed higher activity than the iridium(III) complex [IrCp*(C–NH2)Cl]PF6 in the hydrogenation of ketones. This ruthenium(II) complex also catalyzes the hydrogenation of an aromatic ester, a ketimine, and the hydrogenolysis of styrene oxide. We proposed an alcohol-assisted outer sphere bifunctional mechanism for both systems based on experimental findings and theoretical calculations. The cationic iridium(III) hydride complex, [IrCp*(C–NH2)H]PF6 , was prepared and this failed to react with a ketone in the absence of base. The crucial role of the alkoxide base was demonstrated in the activation of this hydride complex in catalysis. Calculations support the proposal that the base deprotonates the amine group of this hydride complex and triggers the migration of the hydride to the η5-Cp* ring producing a neutral iridium(I) amido complex. This system contains an active Ir–H/N–H couple required for the outer sphere hydrogenation of ketones in the bifunctional mechanism.
7

Late Transition Metal Complexes Bearing Functionalized N-Heterocyclic Carbenes and the Catalytic Hydrogenation of Polar Double Bonds

O, Wylie Wing Nien 16 August 2013 (has links)
Late transition metal complexes of silver(I), rhodium(I), ruthenium(II), palladium(II) and platinum(II) containing a nitrile-functionalized N-heterocyclic carbene ligand (C-CN) were prepared. The nitrile group on the C–CN ligand was shown to undergo hydrolysis under basic conditions, leading to a silver(I) carbene complex with a primary-amido functional group, and a trimetallic complex of palladium(II) with a partially hydrolyzed C–N–N–C donor ligand. The reduction of a nitrile-functionalized imidazolium salt in the presence of nickel(II) chloride under mild conditions yielded an axially chiral square-planar nickel(II) complex containing a unique primary-amino functionalized N-heterocyclic carbene ligand (C-NH2). A transmetalation reaction moved this chelating C–NH2 ligand from nickel(II) to ruthenium(II), osmium(II), and iridium(III), yielding important catalysts for the hydrogenation of polar double bonds. The ruthenium(II) complex, [Ru(p-cymene)(C–NH2)Cl]PF6 catalyzed the transfer and H2-hydrogenation of ketones. The bifunctional hydride complex, [Ru(p-cymene)(C–NH2)H]PF6, which contains a Ru–H/N–H couple showed no activity under catalytic conditions unless when activated by a base. The outer-sphere mechanism involving bifunctional catalysis of ketone reduction is disfavored according to experimental and theoretical studies and an inner-sphere mechanism is proposed involving the decoordination of the amine donor from the C–NH2 ligand. The ruthenium(II) complex [RuCp*(C–NH2)py]PF6 showed higher activity than the iridium(III) complex [IrCp*(C–NH2)Cl]PF6 in the hydrogenation of ketones. This ruthenium(II) complex also catalyzes the hydrogenation of an aromatic ester, a ketimine, and the hydrogenolysis of styrene oxide. We proposed an alcohol-assisted outer sphere bifunctional mechanism for both systems based on experimental findings and theoretical calculations. The cationic iridium(III) hydride complex, [IrCp*(C–NH2)H]PF6 , was prepared and this failed to react with a ketone in the absence of base. The crucial role of the alkoxide base was demonstrated in the activation of this hydride complex in catalysis. Calculations support the proposal that the base deprotonates the amine group of this hydride complex and triggers the migration of the hydride to the η5-Cp* ring producing a neutral iridium(I) amido complex. This system contains an active Ir–H/N–H couple required for the outer sphere hydrogenation of ketones in the bifunctional mechanism.
8

Development of new methods for the asymmetric formation of C-N bonds / Développement de nouvelles méthodes de formation asymétriques de la liaison C-N

Lishchynskyi, Anton 16 July 2012 (has links)
Au cours de ce travail de nouvelles méthodes pour la formation de liaison C-N ont été développées. Dans la première partie de cette thèse une application de catalyse métal-ligand bifonctionnelle pour la réaction énantiosélective aza-Michael est démontrée. Dans la deuxième partie nous présentons le travail sur les cyclisations, en utilisant des alcaloïdes du quinquina facilement disponibles, comme catalyseurs des plus prometteurs, fournissant des β-amino-acides d’indoline avec jusqu'à 98% ee. Parmi eux, l’hydroquinidine ressort du lot comme étant le catalyseur donnant le meilleur excès énatiomérique. La troisième partie est liée à l'élaboration d'un nouveau processus intermoléculaires de diamination de styrènes, diènes et triènes, utilisant des bis-sulfonylimides comme source d'azote, en combinaison avec le diacétate de iodosobenzène, qui fournit une approche intéressante et efficace de diamines vicinales biologiquement et chimiquement important. La réaction peut être effectuée à température ambiante sans avoir besoin de protection par atmosphère inerte. / The concept of metal-ligand bifunctionality was successfully applied for an enantioselective aza-Michael reaction by employing well-defined ruthenium amido complexes. The catalyst was optimised and the corresponding chiral indoline β-amino acid derivatives were obtained with high enantioselectivities. Next, a straightforward enantioselective bifunctional organocatalytic approach was also developed. Employing hydroquinidine as catalyst the corresponding cyclic products were obtained in excellent enantioselectivities and quantitative yields. These compounds can be selectively deprotected and applied to peptide synthesis. Finally, we have developed unprecedented diamination reactions of styrenes, butadienes and hexatrienes employing easily accessible hypervalent iodine(III) reagents under robust reaction conditions. The first examples of the metal-free 1,2-diamination of butadienes were demonstrated and this oxidation methodology was further extended to the highly attractive 1,4 installation of two nitrogen atoms within a single step.
9

Bifunctional and Nanospatial Effects in Copper Catalysts for Methanol Synthesis

López Luque, Iván 03 December 2025 (has links)
[ES] Las expectantes y ambiciosas políticas adoptadas actualmente por las instituciones internacionales para lograr escenarios de Cero Emisiones Netas (NZE), con el fin de mitigar el cambio climático, han impulsado la transición hacia cambios más sostenibles en los sectores energético y químico. En este contexto, la llamada Economía del Metanol (Methanol Economy) se ha propuesto como una solución viable para almacenar, distribuir y utilizar energía y fuentes de carbono renovables. Esta estrategia utiliza el metanol y sus derivados para cubrir la demanda de energía y productos químicos de plataforma, con ventajas como la producción ampliamente establecida, versatilidad y facilidad de almacenamiento y transporte, aprovechando la infraestructura de combustibles existente. La producción de metanol se basa mayoritariamente en mezclas de CO/CO2/H2 provenientes de fuentes no renovables, como el gas natural. La transición hacia el uso de fuentes de carbono más sostenibles, como el CO2 o el e-syngas (CO+H2), habilitados por tecnologías de Captura, Almacenamiento y Utilización de Carbono (CCUS), representa un desafío para satisfacer de manera económica la creciente demanda de metanol. La optimización de catalizadores más activos y selectivos sigue siendo complicada, debido al limitado conocimiento de estos sistemas catalíticos complejos. Esta tesis aborda aspectos fisicoquímicos fundamentales en catalizadores de Cu para la hidrogenación de CO2 y CO a metanol, incluyendo efectos de promoción, distribución nanométrica de centros metálicos y distancias de transporte superficial. Primero, se analiza la relación entre los efectos de promoción Cu-óxido y la fuente de carbono utilizada (CO2 o CO). Se diseñaron catalizadores de Cu soportado ajustando la acidez de los centros de Lewis en la periferia del Cu-óxido. Estudios de actividad catalítica y técnicas espectroscópicas, como FTIR in situ y adsorción de CO a baja temperatura, mostraron similitudes en la hidrogenación de CO y CO2, como energías de activación (Ea) similares y la ocupación predominante de centros ácidos de Lewis por formiatos. Sin embargo, solo una fracción pequeña de estos centros en la interfaz Cu/óxido participa activamente en la reacción, y estudios cinéticos con isótopos revelaron diferencias clave en los mecanismos de reacción. A continuación, se investiga la cuantificación y optimización de la periferia catalítica relevante (CRP) en la interfaz metal-óxido. Variando sistemáticamente la distancia entre nanopartículas en catalizadores Cu/ZrO2 y utilizando espectroscopía infrarroja de modulación-excitación, se cuantificaron la abundancia y dinámica de los intermediarios activos en función de la distancia entre nanopartículas de Cu, diferenciándolos de las especies espectadoras. Esta metodología identificó un espaciado óptimo de ca. 7 nm, donde la producción de metanol es máxima (>19 mmolMeOH mmolCu-1 h-1 a 513 K), y demostró cómo el solapamiento de la CRP entre nanopartículas afecta el control cinético de los pasos elementales en la reacción. Finalmente, la tesis explora los efectos de las distancias de transporte superficial entre centros de Cu metálico y sitios ácidos de Lewis en Zr(IV) en la hidrogenación de CO2. Se estudiaron distancias Cu-ZrO2 de nanómetros a micrómetros, revelando que la falta de contacto directo entre nanocristales de Cu y sitios de Lewis en ZrO2 disminuye la producción de metanol y la selectividad. Los resultados sugieren que el "spillover" de hidrógeno desde Cu hacia intermediarios en ZrO2 se vuelve cinéticamente relevante al aumentar la distancia entre los centros, subrayando la importancia de la cooperación entre sitios para optimizar la síntesis de metanol. En conjunto, los resultados proporcionan nuevos conocimientos sobre la cooperación de sitios activos y los efectos nanoespaciales en mecanismos bifuncionales, que resultan esenciales para optimizar racionalmente los procesos de síntesis de metanol a partir de COx en catalizadores de Cu soportados. / [CA] Les expectants i ambicioses polítiques adoptades actualment per les institucions internacionals per a aconseguir escenaris de Zero Emissions Netes (NZE), amb la finalitat de mitigar el canvi climàtic, han impulsat la transició cap a canvis més sostenibles en els sectors energètic i químic. En este context, l'anomenada Economia del Metanol (Methanol Economy) s'ha proposat com una solució viable per a emmagatzemar, distribuir i utilitzar energia i fonts de carboni renovables. Esta estratègia utilitza el metanol i els seus derivats per a cobrir la demanda d'energia i productes químics de plataforma, amb avantatges com la producció àmpliament establida, versatilitat i facilitat d'emmagatzematge i transport, aprofitant la infraestructura de combustibles existent. La producció de metanol es basa majoritàriament en mescles de CO/CO2/H provinents de fonts no renovables, com el gas natural. La transició cap a l'ús de fonts de carboni més sostenibles, com el CO2 o l'e-syngas (CO+H2), habilitats per tecnologies de Captura, Emmagatzematge i Utilització de Carboni (CCUS), representa un desafiament per a satisfer de manera econòmica la creixent demanda de metanol. L'optimització de catalitzadors més actius i selectius continua sent complicada, a causa del limitat coneixement d'estos sistemes catalítics complexos. Esta tesi aborda aspectes fisicoquímics fonamentals en catalitzadors de Cu per a la hidrogenació de CO i CO2 a metanol, incloent-hi efectes de promoció, distribució nanomètrica de centres metàl·lics i distàncies de transport superficial. Primer, s'analitza la relació entre els efectes de promoció Cu-òxid i la font de carboni utilitzada (CO o CO2). Es van dissenyar catalitzadors de Cu suportat ajustant l'acidesa dels centres de Lewis en la perifèria del Cu-òxid. Estudis d'activitat catalítica i tècniques espectroscòpiques, com FTIR in situ i adsorció de CO a baixa temperatura, van mostrar similituds en la hidrogenació de CO i CO2, com a energies d'activació (Ea) similars i l'ocupació predominant de centres àcids de Lewis per formiats. No obstant això, només una fracció xicoteta d'estos centres en la interfície Cu/òxid participa activament en la reacció, i estudis cinètics amb isòtops van revelar diferències clau en els mecanismes de reacció. A continuació, s'investiga la quantificació i optimització de la perifèria catalítica rellevant (CRP) en la interfície metall-òxid. Variant sistemàticament la distància entre nanopartícules en catalitzadors Cu/ZrO2 i utilitzant espectroscopía infraroja de modulació-excitació, es van quantificar l'abundància i dinàmica dels intermediaris actius en funció de la distància entre nanopartícules de Cu, diferenciant-los de les espècies espectadores. Esta metodologia va identificar un espaiat òptim de ca. 7 nm, on la producció de metanol és màxima (>19 mmolMeOH mmolCu-1 h-1 a 513 K), i va demostrar com el solapament de la CRP entre nanopartícules afecta el control cinètic dels passos elementals en la reacció. Finalment, la tesi explora els efectes de les distàncies de transport superficial entre centres de Cu metàl·lic i llocs àcids de Lewis en Zr(IV) en la hidrogenació de CO2. Es van estudiar distancies Cu-ZrO2 de nanòmetres a micròmetres, revelant que la falta de contacte directe entre nanocristalls de Cu i llocs de Lewis en ZrO2 disminuïx la producció de metanol i la selectivitat. Els resultats suggerixen que l'"spillover" d'hidrogen des de Cu cap a intermediaris en ZrO2 es torna cinèticament rellevant en augmentar la distància entre els centres, subratllant la importància de la cooperació entre llocs per a optimitzar la síntesi de metanol. En conjunt, els resultats proporcionen nous coneixements sobre la cooperació de llocs actius i els efectes nanoespaciales en mecanismes bifuncionales, que resulten essencials per a optimitzar racionalment els processos de síntesis de metanol a partir de COX en catalitzadors de Cu suportats. / [EN] The expectant and optimistic policies currently adopted by international institutions to achieve Net Zero Emission scenarios to mitigate the effects of climate change have encouraged the transition towards greener solutions in the energy and chemical sectors. The so-called Methanol Economy has been proposed as a viable alternative approach to store, distribute, and utilize renewable energy and carbon. This strategy uses methanol and its derivatives to meet the demand for both energy and platform chemicals, with its main advantages being its well-established production, versatility, and ease of storage and transport using the existing fuel infrastructure. Currently, methanol is primarily produced from mixtures of CO/CO2/H2 derived from non-renewable sources, mainly natural gas. However, transitioning to more sustainable carbon sources, such CO2 or e-syngas (CO+H2), available in the context of Carbon Capture, Storage, and Utilization (CCUS) technologies, remains technologically challenging to meet the current and anticipated methanol demand feasibly. The design and optimization of more active and selective catalysts for these processes is still a hurdle to overcome, primarily due to the limited fundamental understanding of the complex catalytic systems involved. Therefore, this thesis investigates physicochemical aspects, such as promotional effects, metal (nano)spatial distribution, and surface transport distances, which are still in debate in the hydrogenation of CO2 and CO to methanol using Cu-based catalysts. This thesis investigates the role of oxide promotion in Cu-based methanol synthesis catalysts, with a focus on how this effect varies based on the reactant (CO or CO2) used. It designs Cu catalysts with tunable Lewis acid (LA) strength at the Cu-oxide periphery, which is explored through catalytic activity analyses and spectroscopic methods (in situ FTIR and low-temperature FTIR with CO adsorption). Findings reveal that while CO and CO2 hydrogenation share similar energy barriers (Ea) and predominantly involve formate occupation on LA sites, they exhibit key mechanistic differences. These include kinetic isotope effects and the role of hydroxyls in formate formation during CO hydrogenation, showing how specific site interactions affect the catalytic pathway. The thesis also addresses the engineering and quantification of the catalysis-relevant periphery (CRP) at metal-oxide interfaces. By controlling Cu nanoparticle spacing in Cu/ZrO2-supported catalysts with consistent nanoparticle sizes, and using Modulation-Excitation Infrared Spectroscopy, the research measures the dynamics of surface reaction intermediates and distinguishes them from spectator species. This method allows identification of an optimal Cu nanoparticle spacing (~7 nm) for enhanced methanol production (>19 mmolMeOH mmolCu-1 h-1 at 513 K), showing that CRP overlap influences rate-limiting steps in the methanol synthesis process. Finally, the thesis investigates surface transport phenomena, specifically hydrogen spillover, between Cu and Zr(IV) sites in CO2 hydrogenation. By analyzing Cu-ZrO2 spacings from nanometers to micrometers, it finds that indirect contact between Cu and Lewis acidic ZrO2 sites, even at the nanoscale, leads to lower methanol formation rates and selectivity. Results suggest that as the distance between Cu and LA sites increases, surface transport, likely involving hydrogen spillover from Cu to ZrO2-stabilized CO2 intermediates, becomes increasingly relevant. Together, these findings emphasize the importance of nanospatial arrangement and site cooperation in optimizing catalytic performance for methanol synthesis from CO and CO2 feedstocks. Considering together, the results provide new insights into site cooperation and nanospatial effects in bifunctional mechanisms, the understanding of which emerges as essential to rationally optimize methanol synthesis processes by conversion of COx feedstocks on supported Cu catalysts. / López Luque, I. (2024). Bifunctional and Nanospatial Effects in Copper Catalysts for Methanol Synthesis [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/213880

Page generated in 0.0884 seconds