• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 30
  • 30
  • 12
  • 7
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A study of pre-ignition and knock in an optical spark ignition engine

Vafamehr, Hassan January 2018 (has links)
The currently reported work involved fundamental study of auto-ignition under unusually high knock intensities in an optical spark ignition engine. The single cylinder research engine adopted included full bore overhead optical access capable of withstanding continuous peak in-cylinder pressure and knock intensity of up to 150 bar and 60 bar respectively. Heavy knock was deliberately induced under relatively low loads (5 bar IMEP) using inlet air heating up to 66 °C and a primary reference fuel blend of reduced octane rating (75 RON). High speed chemiluminescence natural light imaging was used together with simultaneous heat release analysis to evaluate the combustion events. The key out comes of this study could be listed as follow: • Proof and improved understanding of multi centred auto-ignition events under high KIs • Improved understanding of the potential pitfalls of over-fuelling for heavy knock suppression • Optical validation of 'natural' oil droplet release and on-off behaviour of knocking cycles Multiple centred auto-ignition events were regularly observed to lead in to violent knocking events, with knock intensities above 140 bar observed. The ability to directly image the events associated with such high magnitude of knock is believed to be a world first in a full bore optical engine. The multiple centred events were in good agreement with the developing detonation theory to be the key mechanism leading to heavy knock in modern downsized SI engines. The accompanying thermodynamic analysis indicated lack of relation between knock intensity and the remaining unburned mass fraction burned at the onset of the auto-ignition. Spatial analysis of the full series of images captured demonstrated random location of the first captured auto-ignition sites during developing auto-ignition events. Under such circumstances new flame kernels formed at these sites, with initial steady growth sometimes observed to suppress the growth of the earlier spark initiated main flame front prior to violent end gas auto-ignition. It was found that pre-ignition most commonly initiated in the area surrounding the exhaust valve head and resulted in a deflagration that caused the overall combustion phasing to be over advanced. In the cycles after heavy knock, droplets of what appeared to be lubricant were sometimes observed moving within the main charge and causing pre-ignition. These released lubricant droplets were found to survive within the combustion chamber for multiple cycles and were associated with a corresponding "on-off" knocking combustion pattern that has been so widely associated with super-knock in real downsized spark ignition engines. This research also concerned with improving understanding of the competing effects of latent heat of vaporization and auto-ignition delay times of different ethanol blended fuels during heaving knocking combustion. Under normal operation the engine was operated under port fuel injection with a stoichiometric air-fuel mixture. Additional excess fuel of varied blend was then introduced directly into the end-gas in short transient bursts. As the mass of excess fuel was progressively increased a trade-off was apparent, with knock intensity first increasing by up to 60% before lower unburned gas temperatures suppressed knock under extremely rich conditions (γ=0.66). This trade-off is not usually observed during conventional low intensity knock suppression via over-fuelling and has been associated with the reducing auto-ignition delay times outweighing the influence of charge cooling and ratio of specific heats. Ethanol had the highest latent heat of vaporization amongst the other fuels directly injected and was more effective to reduce knock intensity albeit still aggravating knock under slightly rich conditions. Overall, the results demonstrate the risks in employing excess fuel to suppress knock deep within a heavy knocking combustion regime (potentially including a Super-Knock regime).
2

Heat generation by cow dung incineration in the north of Iran

Parsamehr, Mohammad January 2013 (has links)
The main objective of this thesis was to design an incinerator which was fuelled by cow dung. The purpose of this study was to investigate if the designed incinerator can provide the heat needs of a medium size farm in the north of Iran. This project was conducted to study local energy sources accessible in a farm to cut the costs of fossil fuels in one hand and reduction of environmental impacts caused by use of those fuels in the other hand. The whole system was composed of heating elements inside the farm building and an incineration system to heat generation by combusting dry cow dung outside the farm building. The wet manure contained 40% moisture that should be dried by passing through two dryers in series before entering the incinerator. An appropriate water-tube boiler has been designed to boil water which condensed in a condenser so that the latent heat of steam has used for heating the building. A shell and tube heat exchanger has been designed for condensing the steam in the shell side and warming up water flow circulated through heating elements in the tube side. Therefore there are two water cycles one within the heat generation system and the other cycle through heating elements which are designed to exchange heat inside a condenser. About the dryers it is attempted to use recoverable heat of flue gas so that the heat required for the drying section is supplied by the stack of incinerator. As the result of the project, proposed system is evaluated in terms of heat balance and thermal efficiency. Calculation shows that the system is quite sufficient to supply heat needs of the farm and the theoretical thermal efficiency of the system is about 78%.
3

The evaluation of novel bio-ethanol derived co-products as potential feed ingredients for carp Cyprinus carpio and tilapia Oreochromis niloticus

Omar, Samd Sofy January 2012 (has links)
The nutritional value of novel yeast products were evaluated for warmwater fish species. A yeast co-product (yeast protein concentrate unrefined (YPCU)) obtained from a bio-ethanol process using wheat was tested using iso-nitrogenous (38% crude protein) and iso-lipidic (8%) diets for juvenile mirror carp (Cyprinus carpio). The fishmeal (FM) protein component of a basal diet was replaced by (YPCU) at 7.5, 15, 20, and 50% of total dietary protein. After an 8 week feeding trial, all fish fed YPCU yielded better growth performance than the control fed fish, with diets containing 15% and 20% YPCU being optimal. Whole body composition was unaffected by dietary treatment, however, ash levels were elevated in fish fed >15% YPCU. Hepatic alanine amino transferase (ALAT) and aspartate amino transferase (ASAT) were measured as bio-indicators of liver function in carp. Only ASAT activity was significantly lower for carp fed 20% and 50% YPCU. Additionally, histological assessment of liver and intestinal tissues gave no indication of impairment, but high YPCU inclusion (>15%) elevated the number of goblet cells present in the posterior intestine. Molecular microbiological analysis using DGGE revealed no definitive changes in intestinal microbial communities. In a second study, bio-ethanol yeast (refined YPCR and unrefined YPCU) and dried distillers grain with solubles (DDGS) a co-product of the bio-fuel process and distillery yeast from potable alcohol (whisky) production (YPCPA) were evaluated as before for carp. FM was replaced with 30% of YPCU, YPCR and YPCPA and 15, or 30 % DDGS with a combination of 10% YPCR. Weight gain, and Apparent Net Protein Utilization (ANPU%) were higher in fish fed YPCU 30%, equivalent for fish fed FM, YPCR 30%,DDGS 15% and DDGS 30%, and lower in fish fed YPCPA 30% diets. Feed conversion ratio was significantly increased in carp fed YPCU 30% and decreased for carp fed DDGS 30% and YPC PA 30% compared with the control group. A significant improvement of net mineral retention was seen for carp feed the yeast supplementation diets compared to the fishmeal control group. The YPCU 30% diet produced the highest mineral retention in fish fed yeasts and the YPCPA 30% gave lowest retention. The microvilli density of the intestinal tract decreased for carp fed YPCR 30%, but microvilli length significantly increased in fish fed YPCU 30% compared with other groups, thus indicating changes in gut integrity. In the third study, four diets were formulated to replace 0, 10, 20 and 30% of the fishmeal with refined yeast protein concentrate (YPCR) for Nile tilapia (O. niloticus) of mean weight 12.39g. Growth performance and feed efficiency were not affected with up to 20% replacement with YPCR. There were no obvious changes in the liver structure, but high yeast inclusion showed higher numbers of intestinal goblet cells with increasing YPCR dietary inclusion suggesting enhanced intestinal integrity. Microvilli density and length was significantly (P = 0.025) improved with up to 10% and 30% YPCR inclusion in comparison to other dietary treatments. It was generally concluded that YPC co-products were effectively viable for both juvenile carp and tilapia offering an option for partial fish meal replacement.
4

Using mobile distributed pyrolysis facilities to deliver a forest residue resource for bio-fuel production

Brown, Duncan 10 December 2013 (has links)
Distributed mobile conversion facilities using either fast pyrolysis or torrefaction processes can be used to convert forest residues to more energy dense substances (bio-oil, bio-slurry or torrefied wood) that can be transported as feedstock for bio-fuel facilities. All feedstock are suited for gasification, which produces syngas that can be used to synthesise petrol or diesel via Fischer-Tropsch reactions, or produce hydrogen via water gas shift reactions. Alternatively, the bio-oil product of fast pyrolysis may be upgraded to produce petrol and diesel, or can undergo steam reformation to produce hydrogen. Implementing a network of mobile facilities reduces the energy content of forest residues delivered to a bio-fuel facility as mobile facilities use a fraction of the biomass energy content to meet thermal or electrical demands. The total energy delivered by bio-oil, bio-slurry and torrefied wood is 45%, 65% and 87% of the initial forest residue energy content, respectively. However, implementing mobile facilities is economically feasible when large transport distances are required. For an annual harvest of 1.717 million m3 (equivalent to 2000 ODTPD), transport costs are reduced to less than 40% of the total levelised delivered feedstock cost when mobile facilities are implemented; transport costs account for up to 80% of feedstock costs for conventional woodchip delivery. Torrefaction provides the lowest cost pathway of delivering a forest residue resource when using mobile facilities. Cost savings occur against woodchip delivery for annual forest residue harvests above 2.25 million m3 or when transport distances greater than 250 km are required. Important parameters that influence levelised delivered costs of feedstock are transport distances (forest residue spatial density), haul cost factors, thermal and electrical demands of mobile facilities, and initial moisture content of forest residues. Relocating mobile facilities can be optimised for lowest cost delivery as transport distances of raw biomass are reduced. The overall cost of bio-fuel production is determined by the feedstock delivery pathway and also the bio-fuel production process employed. Results show that the minimum cost of petrol and diesel production is 0.86 $ litre-1 when a bio-oil feedstock is upgraded. This corresponds to a 2750 TPD upgrading facility requiring an annual harvest of 4.30 million m3. The minimum cost of hydrogen production is 2.92 $ kg-1, via the gasification of a woodchip feedstock and subsequent water gas shift reactions. This corresponds to a 1100 ODTPD facility and requires an annual harvest of 947,000 m3. The levelised cost of bio-fuel strongly depends on the size of annual harvest required for bio-fuel facilities. There are optimal harvest volumes (bio-fuel facility sizes) for each bio-fuel production route, which yield minimum bio-fuel production costs. These occur as the benefits of economies of scale for larger bio-fuel facilities compete against increasing transport costs for larger harvests. Optimal harvest volumes are larger for bio-fuel production routes that use feedstock sourced from mobile facilities, as mobile facilities reduce total transport requirements. / Graduate / 0791 / drbrown@uvic.ca
5

Low Pressure Catalytic Co-Conversion of Biogenic Waste (Rapeseed Cake) and Vegetable Oil

Giannakopoulou, Kanellina, Lukas, Michael, Vasiliev, Aleksey, Brunner, Christoph, Schnitzer, Hans 01 May 2010 (has links)
Zeolite catalysts of three types (H-ZSM-5, Fe-ZSM-5 and H-Beta) were tested in the catalytic co-conversion of rapeseed cake and safflower oil into bio-fuel. This low pressure process was carried out at the temperatures of 350 and 400 °C. The yields and compositions of the product mixtures depended on the catalyst nature and the process temperatures. The produced organic phases consisted mainly of hydrocarbons, fatty acids and nitriles. This mixture possessed improved characteristics (e.g. heating value, water content, density, viscosity, pH) compared with the bio-oils, making possible its application as a bio-fuel. The most effective catalyst, providing the highest yield of organic liquid phase, was the highly acidic/wide-pore H-Beta zeolite. The products obtained on this catalyst demonstrated the highest degree of deoxygenation and the higher HHV (Higher Heating Value). The aqueous liquid phase contained water-soluble carboxylic acids, phenols and heterocyclic compounds.
6

Analysing performance of bio-refinery systems by integrating black liquor gasification with chemical pulp mills

Naqvi, Muhammad Raza January 2012 (has links)
Mitigation of climate change and energy security are major driving forces for increased biomass utilization. The pulp and paper industry consumes a large proportion of the biomass worldwide including bark, wood residues, and black liquor. Due to the fact that modern mills have established infrastructure for handling and processing biomass, it is possible to lay foundation for future gasification based bio-refineries to poly-produce electricity, chemicals or bio-fuels together with pulp and paper products. There is a potential to export electricity or bio-fuels by improving energy systems of existing chemical pulp mills by integrating gasification technology. The present study investigates bio-fuel alternatives from the dry black liquor gasification (BLG) system with direct causticization and direct methane production from the catalytic hydrothermal gasification (CHG) system. The studied systems are compared with bio-fuel alternatives from the Chemrec BLG system and the improvements in the energy systems of the pulp mill are analyzed. The results are used to identify the efficient route based on system performance indicators e.g. material and energy balances to compare BLG systems and the conventional recovery boiler system, potential biofuel production together with biomass to biofuel conversion efficiency, energy ratios, potential CO2 mitigation combining on-site CO2 reduction using CO2 capture and potential CO2 offsets from biofuel use, and potential motor fuel replacement. The results showed that the dry BLG system for synthetic natural gas (SNG) production offers better integration opportunities with the chemical pulp mill in terms of overall material and energy balances. The biofuel production and conversion efficiency are higher in the CHG system than other studied configurations but at a cost of larger biomass import. The dry BLG system for SNG production achieved high biomass to biofuel efficiency and considerable biofuel production. The energy ratio is significant in the dry BLG (SNG) system with less biomass demand and considerable net steam production in the BLG island. The elimination of the lime kiln in the dry BLG systems resulted in reduced consequences of incremental biomass import and associated CO2 emissions. Hydrogen production in the dry BLG system showed the highest combined CO2 mitigation potential i.e. on-site CO2 capture potential and CO2 offset from biofuel replacing fossil fuel. The results also showed that the motor fuel replacement potential with SNG as compressed natural gas (CNG) replacing gasoline in the transport sector is significantly high in countries with large pulp industry. / QC 20120528
7

Development of a Computational Fluid Dynamics Model for Combustion of Fast Pyrolysis Liquid (Bio-oil)

McGrath, Arran Thomas 14 December 2011 (has links)
A study was carried out into the computational fluid dynamic simulation of bio-oil combustion. Measurements were taken in an empirical burner to obtain information regarding the flow behaviour. A surrogate fuel was developed to mimic the unique chemical and physical properties of bio-oil combustion. The resulting computational model of the burner domain and surrogate fuel was compared with empirical data. The bio-oil model displayed a good agreement with the data in terms of the combustion behaviour, but was limited by the uncertain flow solution associated with the burner used.
8

Development of a Computational Fluid Dynamics Model for Combustion of Fast Pyrolysis Liquid (Bio-oil)

McGrath, Arran Thomas 14 December 2011 (has links)
A study was carried out into the computational fluid dynamic simulation of bio-oil combustion. Measurements were taken in an empirical burner to obtain information regarding the flow behaviour. A surrogate fuel was developed to mimic the unique chemical and physical properties of bio-oil combustion. The resulting computational model of the burner domain and surrogate fuel was compared with empirical data. The bio-oil model displayed a good agreement with the data in terms of the combustion behaviour, but was limited by the uncertain flow solution associated with the burner used.
9

Dyzelinio variklio, dirbančio rapsų aliejaus ir benzino mišiniais, darbo rodiklių tyrimas / Research of the diesel engine performance parameters when operating on rape oil and petrol blends

Čebyla, Kornelijus 07 June 2005 (has links)
The theme of the Kornelijus Cebyla Master degree final project is „Research of the diesel engine performance parameters when operating on rape oil and petrol blends“. The research work consists of 71 pages, 6 tables, 46 pictures and 14 appendixes. There were used 24 references. The research was started in year 2003 and finisched in 2005 at Lithuanian University of Agriculture. The purpose of this project – to quality a develop of usage rape oil and petrol blends as a fuel in diesel engines, and the a connected with the problem is direct – injection diesel engine D – 243, to make conclusions and suggestions. Analysis of the to reduce viscosity rape oil and petrol blends shows that negligible quantity of petrol is use ful researchimprone atomisation of rape oil. 36 0C temperature B2,5 blends on the decrease viscosity 5,76 %, B10 blends the viscosity is 26,84 %, ≈ 36,10 % to reduction than rape oil. When engine is operating on B2,5 blends its power increases on 1,31 – 10,41 %. Mass metric fuel consumption, is functioning B2,5 blends, reduces 1,5 – 3,8 %, and on other the blendss its increases on 1 – 17 %. When engine operates on rape oil and petrol blendss CH emission increases on 10 – 25 ppm depending on to load. Load the increscent CO emission increases. The addition of petrol in to rape oil nitirc oxides NO and nitric dioxides NO2 concentration increases. When engine is operating B2,5 blends increases of smoke 5,97 – 27,31 %, and on other the blends reduction of smoke 3,9... [to full text]
10

Rapsų aliejaus ir dyzelinių degalų mišiniais veikiančio variklio rodiklių tyrimas / The Analysis of Engine Performance Parameters when Operating on Pure Rapeseed Oil and its Blends with Diesel

Garliauskas, Paulius 07 June 2005 (has links)
The theme of the Mr. Paulius Garliauskas’s Master degree final project is “The Analysis of Engine Performance Parameters when Operating on Pure Rapeseed Oil and its Blends with Diesel”. The research work consists of 50 pages, 6 tables, 16 pictures and 3 appendixes. There were used 25 references. The research was started in 2003 and finished in 2005 year at Lithuanian University of Agriculture. The purpose of this project – to evaluate the influence of rapeseed oil and diesel fuel blends in comparison with diesel fuel on direct-injection diesel engine D-243, parameters like max power, fuel consumption and ecological parameters in order, to make conclusions and suggestions. Analysis of the research results show that using rapeseed oil and diesel blends max power reduce 1,9 -12,2 %, effective fuel consumption increase 3,3 – 12,1 % because of less calorific capacity of bio-fuels The hydrocarbon emission increase 200 ppm, when engine working at 25 % rapeseed oil and diesel blend, but it increase 100 – 150 ppm (when n = 2200 min-1) and engine working at 50 % and 75 % rapeseed oil blend, carbon monoxide reduce 200 – 300 ppm, smoke emissions – 2 – 12 % and emissions of NOx increase 400 ppm when engine working at 75 % rapeseed oil blend and reduce 100 ppm when engine working at 25 % rapeseed oil blend and it running at the rated speed of 2200 min-1. For more explicit and plausible conclusions long term running tests should be needed.

Page generated in 0.0228 seconds