• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 4
  • Tagged with
  • 11
  • 11
  • 11
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Clusterização de dados utilizando técnicas de redes complexas e computação bioinspirada / Data clustering based on complex network community detection

Oliveira, Tatyana Bitencourt Soares de 25 February 2008 (has links)
A Clusterização de dados em grupos oferece uma maneira de entender e extrair informações relevantes de grandes conjuntos de dados. A abordagem em relação a aspectos como a representação dos dados e medida de similaridade entre clusters, e a necessidade de ajuste de parâmetros iniciais são as principais diferenças entre os algoritmos de clusterização, influenciando na qualidade da divisão dos clusters. O uso cada vez mais comum de grandes conjuntos de dados aliado à possibilidade de melhoria das técnicas já existentes tornam a clusterização de dados uma área de pesquisa que permite inovações em diferentes campos. Nesse trabalho é feita uma revisão dos métodos de clusterização já existentes, e é descrito um novo método de clusterização de dados baseado na identificação de comunidades em redes complexas e modelos computacionais inspirados biologicamente. A técnica de clusterização proposta é composta por duas etapas: formação da rede usando os dados de entrada; e particionamento dessa rede para obtenção dos clusters. Nessa última etapa, a técnica de otimização por nuvens de partículas é utilizada a fim de identificar os clusters na rede, resultando em um algoritmo de clusterização hierárquico divisivo. Resultados experimentais revelaram como características do método proposto a capacidade de detecção de clusters de formas arbitrárias e a representação de clusters com diferentes níveis de refinamento. / DAta clustering is an important technique to understand and to extract relevant information in large datasets. Data representation and similarity measure adopted, and the need to adjust initial parameters, are the main differences among clustering algorithms, interfering on clusters quality. The crescent use of large datasets and the possibility to improve existing techniques make data clustering a research area that allows innovation in different fields. In this work is made a review of existing data clustering methods, and it is proposed a new data clustering technique based on community dectection on complex networks and bioinspired models. The proposed technique is composed by two steps: network formation to represent input data; and network partitioning to identify clusters. In the last step, particle swarm optimization technique is used to detect clusters, resulting in an hierarchical clustering algorithm. Experimental results reveal two main features of the algorithm: the ability to detect clusters in arbitrary shapes and the ability to generate clusters with different refinement degrees
2

Contribuições ao problema de separação cega de fontes, com ênfase no estudo de sinais esparsos / Contributions to the problem of blind source separation, with emphasis on the study of sparse signals

Nadalin, Everton Zaccaria 19 August 2018 (has links)
Orientadores: Romis Ribeiro de Faissol Attux, Ricardo Suyama / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação / Made available in DSpace on 2018-08-19T01:01:27Z (GMT). No. of bitstreams: 1 Nadalin_EvertonZaccaria_D.pdf: 2615054 bytes, checksum: 5d288f06df05b7075bf283243319df70 (MD5) Previous issue date: 2011 / Resumo: Neste trabalho, foi estudado o problema de Separação Cega de Fontes (BSS), com ênfase nos casos chamados de subparametrizados, isto é, em que o número de fontes é maior do que o de misturas. A primeira contribuição proposta foi a de um limitante relacionado ao erro de inversão intrínseco ao problema quando é utilizada uma estrutura linear de separação. As outras contribuições estão relacionadas à hipótese de que as fontes são esparsas: i) uma proposta de metodologia híbrida, que se utiliza de conceitos baseados em independência e esparsidade dos sinais de forma simultânea para estimar tanto o sistema misturador quanto o número de fontes existentes em misturas com dois sensores; ii) a utilização de ferramentas de otimização baseadas na operação do sistema imunológico para a estimação do sistema misturador em problemas intrinsecamente multimodais; por fim, iii) uma proposta de utilização de um critério baseado em esparsidade para separação de fontes, sendo derivado um processo de otimização baseado na norma ?1 para este fim / Abstract: In this work, we studied the problem of Blind Source Separation (BSS), with emphasis on cases referred to as underdetermined, which occur when the number of sources is greater than the number of mixtures. The first contribution was a proposal of a bound to the inversion error that is intrinsic to the problem when a linear structure is used to perform separation. The other contributions are related to the hypothesis that the signals of the sources are sparse: i) the proposal of a hybrid methodology that employs concepts based on signal independence and sparsity to simultaneously estimate both the mixing system and the number of existing sources in mixtures with two sensors; ii) the use of optimization tools based on the modus operandi of the immune system to estimate the mixing system in problems that are inherently multimodal; finally, iii) the use of a criterion based on sparsity for source separation, which is derived from an optimization process based on the ?1 norm / Doutorado / Engenharia de Computação / Doutor em Engenharia Elétrica
3

Clusterização de dados utilizando técnicas de redes complexas e computação bioinspirada / Data clustering based on complex network community detection

Tatyana Bitencourt Soares de Oliveira 25 February 2008 (has links)
A Clusterização de dados em grupos oferece uma maneira de entender e extrair informações relevantes de grandes conjuntos de dados. A abordagem em relação a aspectos como a representação dos dados e medida de similaridade entre clusters, e a necessidade de ajuste de parâmetros iniciais são as principais diferenças entre os algoritmos de clusterização, influenciando na qualidade da divisão dos clusters. O uso cada vez mais comum de grandes conjuntos de dados aliado à possibilidade de melhoria das técnicas já existentes tornam a clusterização de dados uma área de pesquisa que permite inovações em diferentes campos. Nesse trabalho é feita uma revisão dos métodos de clusterização já existentes, e é descrito um novo método de clusterização de dados baseado na identificação de comunidades em redes complexas e modelos computacionais inspirados biologicamente. A técnica de clusterização proposta é composta por duas etapas: formação da rede usando os dados de entrada; e particionamento dessa rede para obtenção dos clusters. Nessa última etapa, a técnica de otimização por nuvens de partículas é utilizada a fim de identificar os clusters na rede, resultando em um algoritmo de clusterização hierárquico divisivo. Resultados experimentais revelaram como características do método proposto a capacidade de detecção de clusters de formas arbitrárias e a representação de clusters com diferentes níveis de refinamento. / DAta clustering is an important technique to understand and to extract relevant information in large datasets. Data representation and similarity measure adopted, and the need to adjust initial parameters, are the main differences among clustering algorithms, interfering on clusters quality. The crescent use of large datasets and the possibility to improve existing techniques make data clustering a research area that allows innovation in different fields. In this work is made a review of existing data clustering methods, and it is proposed a new data clustering technique based on community dectection on complex networks and bioinspired models. The proposed technique is composed by two steps: network formation to represent input data; and network partitioning to identify clusters. In the last step, particle swarm optimization technique is used to detect clusters, resulting in an hierarchical clustering algorithm. Experimental results reveal two main features of the algorithm: the ability to detect clusters in arbitrary shapes and the ability to generate clusters with different refinement degrees
4

Bio-inspired Solutions for Optimal Management in Wireless Sensor Networks / Intégration des Solutions Bio-inspirées pour une Gestion optimale dans les Réseaux de Capteur sans Fils

Abba Ari, Ado adamou 12 July 2016 (has links)
Au cours de ces dernières années, les réseaux de capteurs sans fils ont connu un intérêt croissant à la fois au sein de la communauté scientifique et industrielle en raison du large potentiel en terme d’applications offertes. Toutefois, les capteurs sont conçus avec d’extrêmes contraintes en ressources, en particulier la limitation de l’énergie. Il est donc nécessaire de concevoir des protocoles efficaces, évolutifs et moins consommateur d’énergie afin de prolonger la durée de vie de ces réseaux. Le clustering est une approche très populaire, utilisée pour l’optimisation de la consommation d’énergie des capteurs. Cette technique permet d’influencer fortement la performance globale du réseau. En outre, dans de tels réseaux, le routage génère un nombre assez élevé d’opérations non négligeables qui affectent considérablement la durée de vie du réseau ainsi que le débit offert. Dans cette thèse, nous nous sommes intéressés d’une part aux problèmes de clustering et de routage en utilisant des méthodes d’optimisation inspirées de certaines sociétés biologiques fournissant des modèles puissants qui conduisent à l’établissement d’une intelligence globale en se basant sur des comportements individuels très simples. Nous avons proposé une approche de clustering distribuée basée sur le processus de sélection des sites de nidification chez les colonies d’abeilles. Nous avons formulé le problème de clustering distribuée comme un processus social de prise de décision dans lequel les capteurs agissent d’une manière collective pour choisir des représentants au sein de leurs clusters respectifs. Le protocole proposé assure une distribution de l’équilibrage de charge entre les membres de chaque cluster afin de prolonger la durée de vie du réseau en faisant un compromis entre la consommation d’énergie et la qualité du canal de communication. D’autre part, nous avons proposé un protocole de routage basé sur des clusters en utilisant un algorithme inspiré du phénomène de butinage des abeilles. Nous avons formulé le problème de clustring comme un problème de programmation linéaire alors que le problème du routage est résolu par une fonction de coûts. L’algorithme de clustering permet la construction efficace des clusters en faisant un compromis entre la consommation d’énergie et la qualité du canal communication au sein des clusters tandis que le routage est réalisé de manière distribuée. Les protocoles proposés ont été intensivement expérimentés sur plusieurs topologies dans différents scénarios de réseaux et comparés avec des protocoles bien connus de clustering et routage. Les résultats obtenus démontrent l’efficacité des protocoles proposés. / During the past few years, wireless sensor networks witnessed an increased interest in both the industrial and the scientific community due to the potential wide area of applications. However, sensors’ components are designed with extreme resource constraints, especially the power supply limitation. It is therefore necessary to design low power, scalable and energy efficient protocols in order to extend the lifetime of such networks. Cluster-based sensor networks are the most popular approach for optimizing the energy consumption of sensor nodes, in order to strongly influence the overall performance of the network. In addition, routing involves non negligible operations that considerably affect the network lifetime and the throughput. In this thesis, we addressed the clustering and routing problems by hiring intelligent optimization methods through biologically inspired computing, which provides the most powerful models that enabled a global intelligence through local and simple behaviors. We proposed a distributed clustering approach based on the nest-sites selection process of a honeybee swarm. We formulated the distributed clustering problem as a social decision-making process in which sensors act in a collective manner to choose their cluster heads. To achieve this choice, we proposed a multi- objective cost-based fitness function. In the design of our proposed algorithm, we focused on the distribution of load balancing among each cluster member in order to extend network lifetime by making a tradeoff between the energy consumption and the quality of the communication link among sensors. Then, we proposed a centralized cluster-based routing protocol for wireless sensor networks by using the fast and efficient searching features of the artificial bee colony algorithm. We formulated the clustering as a linear programming problem and the routing problem is solved by proposing a cost-based function. We designed a multi-objective fitness function that uses the weighted sum approach, in the assignment of sensors to a cluster. The clustering algorithm allows the efficient building of clusters by making a tradeoff between the energy consumption and the quality of the communication link within clusters while the routing is realized in a distributed manner. The proposed protocols have been intensively experimented with a number of topologies in various network scenarios and the results are compared with the well-known cluster-based routing protocols. The results demonstrated the effectiveness of the proposed protocols.
5

Cellular distributed and parallel computing

Xu, Lei January 2014 (has links)
This thesis focuses on novel approaches to distributed and parallel computing that are inspired by the mechanism and functioning of biological cells. We refer to this concept as cellular distributed and parallel computing which focuses on three important principles: simplicity, parallelism, and locality. We first give a parallel polynomial-time solution to the constraint satisfaction problem (CSP) based on a theoretical model of cellular distributed and parallel computing, which is known as neural-like P systems (or neural-like membrane systems). We then design a class of simple neural-like P systems to solve the fundamental maximal independent set (MIS) selection problem efficiently in a distributed way, by drawing inspiration from the way that developing cells in the fruit fly become specialised. Building on the novel bio-inspired approach to distributed MIS selection, we propose a new simple randomised algorithm for another fundamental distributed computing problem: the distributed greedy colouring (GC) problem. We then propose an improved distributed MIS selection algorithm that incorporates for the first time another important feature of the biological system: adapting the probabilities used at each node based on local feedback from neighbouring nodes. The improved distributed MIS selection algorithm is again extended to solve the distributed greedy colouring problem. Both improved algorithms are simple and robust and work under very restrictive conditions, moreover, they both achieve state-of-the-art performance in terms of their worst-case time complexity and message complexity. Given any n-node graph with maximum degree Delta, the expected time complexity of our improved distributed MIS selection algorithm is O(log n) and the message complexity per node is O(1). The expected time complexity of our improved distributed greedy colouring algorithm is O(Delta + log n) and the message complexity per node is again O(1). Finally, we provide some experimental results to illustrate the time and message complexity of our proposed algorithms in practice. In particular, we show experimentally that the number of colours used by our distributed greedy colouring algorithms turns out to be optimal or near-optimal for many standard graph colouring benchmarks, so they provide effective simple heuristic approaches to computing a colouring with a small number of colours.
6

Bio-inspired computing leveraging the synchronization of magnetic nano-oscillators / Calcul bio-inspiré basé sur la synchronisation de nano-oscillateurs magnétiques

Talatchian, Philippe 09 January 2019 (has links)
Les nano-oscillateurs à transfert de spin sont des composants radiofréquences magnétiques non-linéaires, nanométrique, de faible consommation en énergie et accordables en fréquence. Ce sont aussi potentiellement des candidats prometteurs pour l’élaboration de larges réseaux d’oscillateurs couplés. Ces derniers peuvent être utilisés dans les architectures neuromorphiques qui nécessitent des assemblées très denses d’unités de calcul complexes imitant les neurones biologiques et comportant des connexions ajustables entre elles. L’approche neuromorphique permet de pallier aux limitations des ordinateurs actuels et de diminuer leur consommation en énergie. En effet pour résoudre des tâches cognitives telles que la reconnaissance vocale, le cerveau fonctionne bien plus efficacement en terme d’énergie qu’un ordinateur classique. Au vu du grand nombre de neurone dans le cerveau (100 milliards) une puce neuro-inspirée requière des oscillateurs de très petite taille tels que les nano-oscillateurs à transfert de spin. Récemment, une première démonstration de calcul neuromorphique avec un unique nano-oscillateur à transfert de spin a été établie. Cependant, pour aller au-delà, il faut démontrer le calcul neuromorphique avec plusieurs nano-oscillateurs et pouvoir réaliser l’apprentissage. Une difficulté majeure dans l’apprentissage des réseaux de nano-oscillateurs est qu’il faut ajuster le couplage entre eux. Dans cette thèse, en exploitant l'accordabilité en fréquence des nano-oscillateurs magnétiques, nous avons démontré expérimentalement l'apprentissage des nano-oscillateurs couplés pour classifier des voyelles prononcées avec un taux de reconnaissance de 88%. Afin de réaliser cette tache de classification, nous nous sommes inspirés de la synchronisation des taux d’activation des neurones biologiques et nous avons exploité la synchronisation des nano-oscillateurs magnétiques à des stimuli micro-ondes extérieurs. Les taux de reconnaissances observés sont dus aux fortes accordabilités et couplage intermédiaire des nano-oscillateurs utilisés. Enfin, afin de réaliser des taches plus difficiles nécessitant de larges réseaux de neurones, nous avons démontré numériquement qu’un réseau d’une centaine de nano-oscillateurs magnétiques peut être conçu avec les contraintes standards de nano-fabrication. / Spin-torque nano-oscillators are non-linear, nano-scale, low power consumption, tunable magnetic microwave oscillators which are promising candidates for building large networks of coupled oscillators. Those can be used as building blocks for neuromorphic hardware which requires high-density networks of neuron-like complex processing units coupled by tunable connections. The neuromorphic approach allows to overcome the limitation of nowadays computers and to reduce their energy consumption. Indeed, in order to perform cognitive tasks as voice recognition or image recognition, the brain is much more efficient in terms of energy consumption. Due to the large number of required neurons (100 billions), a neuromorphic chip requires very small oscillators such as spin-torque nano-oscillators to emulate neurons. Recently a first demonstration of neuromorphic computing with a single spin-torque nano-oscillator was established, allowing spoken digit recognition with state of the art performance. However, to realize more complex cognitive tasks, it is still necessary to demonstrate a very important property of neural networks: learning an iterative process through which a neural network can be trained using an initial fraction of the inputs and then adjusting internal parameters to improve its recognition or classification performance. One difficulty is that training networks of coupled nano-oscillators requires tuning the coupling between them. Here, through the high frequency tunability of spin-torque nano-oscillators, we demonstrate experimentally the learning ability of coupled nano-oscillators to classify spoken vowels with a recognition rate of 88%. To realize this classification task, we took inspiration from the synchronization of rhythmic activity of biological neurons and we leveraged the synchronization of spin-torque nano-oscillators to external microwave stimuli. The high experimental recognition rates stem from the weak-coupling regime and the high tunability of spin-torque nano-oscillators. Finally, in order to realize more difficult cognitive tasks requiring large neural networks, we show numerically that arrays of hundreds of spin-torque nano-oscillators can be designed with the constraints of standard nano-fabrication techniques.
7

Bio-Inspired Evolutionary Algorithms for Multi-Objective Optimization Applied to Engineering Applications

DeBruyne, Sandra, DeBruyne January 2018 (has links)
No description available.
8

Designing an Artificial Immune inspired Intrusion Detection System

Anderson, William Hosier 08 December 2023 (has links) (PDF)
The domain of Intrusion Detection Systems (IDS) has witnessed growing interest in recent years due to the escalating threats posed by cyberattacks. As Internet of Things (IoT) becomes increasingly integrated into our every day lives, we widen our attack surface and expose more of our personal lives to risk. In the same way the Human Immune System (HIS) safeguards our physical self, a similar solution is needed to safeguard our digital self. This thesis presents the Artificial Immune inspired Intrusion Detection System (AIS-IDS), an IDS modeled after the HIS. This thesis proposes an architecture for AIS-IDS, instantiates an AIS-IDS model for evaluation, conducts a robust set of experiments to ascertain the efficacy of the AIS-IDS, and answers key research questions aimed at evaluating the validity of the AIS-IDS. Finally, two expansions to the AIS-IDS are proposed with the goal of further infusing the HIS into AIS-IDS design.
9

A Mycorrhizal Model for Transactive Energy Markets

Gould, Zachary M. 08 September 2022 (has links)
Mycorrhizal Networks (MNs) facilitate the exchange of resources including energy, water, nutrients, and information between trees and plants in forest ecosystems. This work explored MNs as an inspiration for new market models in transactive energy networks, which similarly involve exchanges of energy and information between buildings in local communities. Specific insights from the literature on the structure and function of MNs were translated into an energy model with the aim of addressing challenges associated with the proliferation of distributed energy resources (DERs) at the grid edge and the incorporation of DER aggregations into wholesale energy markets. First, a systematic review of bio-inspired computing interventions applied to microgrids and their interactions with modern energy markets established a technical knowledge base within the context of distributed electrical systems. Second, a bio-inspired design process built on this knowledge base to yield a structural and functional blueprint for a computational mycorrhizal energy market simulation. Lastly, that computational model was implemented and simulated on a blockchain-compatible, multi-agent software platform to determine the effect that mycorrhizal strategies have on transactive energy market performance. The structural translation of a mapped ectomycorrhizal network of Douglas-firs in Oregon, USA called the 'wood-wide web' created an effective framework for the organization of a novel mycorrhizal energy market model that enabled participating buildings to redistribute percentages of their energy assets on different competing exchanges throughout a series of week-long simulations. No significant changes in functional performance –- as determined by economic, technical, and ecological metrics – were observed when the mycorrhizal results were compared to those of a baseline transactive energy community without periodic energy asset redistribution. Still, the model itself is determined to be a useful tool for further exploration of innovative, automated strategies for DER integration into modern energy market structures and electrical infrastructure in the age of Web3, especially as new science emerges to better explain trigger and feedback mechanisms for carbon exchange through MNs and how mycorrhizae adapt to changes in the environment. This dissertation concludes with a brief discussion of policy implications and an analysis applying the ecological principles of robustness, biodiversity, and altruism to the collective energy future of the human species. / Doctor of Philosophy / Beneath the forest floor, a network of fungi connects trees and plants and allows them to exchange energy and other resources. This dissertation compares this mycorrhizal network (mycorrhiza = fungus + root) to a group of solar-powered buildings generating energy and exchanging it in a local community marketplace (transactive energy markets). In the analogy, the buildings become the plants, the solar panels become the leaves, and the electrical grid represents the mycorrhizal network. Trees and plants produce their own energy through photosynthesis and then send large portions of it down to the roots, where they can trade it or send it to neighbors via the mycorrhizal network. Similarly, transactive energy markets are designed to allow buildings to sell the energy they produce on-site to neighbors, usually at better rates. This helps address a major infrastructure challenge that is arising with more people adding roof-top solar to their homes. The grid that powers our buildings is old now and it was designed to send power from a central power plant out to its edges where most homes and businesses are located. When too many homes produce solar power at the same time, there is nowhere for it to go, and it can easily overload the grid leading to fires, equipment failures, and power outages. Mycorrhizal networks solve this problem in part through local energy balancing driven by cooperative feedback patterns that have evolved over millennia to sustain forest ecosystems. This work applies scientific findings on the structure and function of mycorrhizal networks (MNs) to energy simulation methods in order to better understand the potential for building bio-inspired energy infrastructure in local communities. Specifically, the mapped structure of a MN of douglas-fir trees in Oregon, USA was adapted into a digital transactive energy market (TEM) model. This adaptation process revealed that a single building can connect to many TEMs simultaneously and that the number of connections can change over time just as symbiotic connections between organisms grow, decay, and adapt to a changing environment. The behavior of MNs in terms of when those connections are added and subtracted informed the functionality of the TEM model, which adds connections when community energy levels are high and subtracts connections when energy levels are low. The resulting 'mycorrhizal' model of the TEM was able to change how much energy each connected household traded on it by changing the number of connections (more connections mean more energy and vice versa). Though the functional performance of the mycorrhizal TEM did not change significantly from that of a typical TEM when they were the context of decentralized computer networks (blockchains) and distributed artificial intelligence. A concluding discussion addresses ways in which elements of this new model could transform energy distribution in communities and improve the resilience of local energy systems in the face of a changing climate.
10

Autômatos celulares e sistemas bio-inspirados aplicados ao controle inteligente de robôs

Lima, Danielli Araújo 10 April 2017 (has links)
CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico / Em diversas situações, o volume de tarefas a serem cumpridas não pode ser realizado por um único robô. Assim, um campo que tem despertado crescente interesse é a investigação do comportamento de enxame de robôs de busca. Estratégias de cooperação e controle desse enxame devem ser consideradas para um desempenho eficiente do time de robôs. Existem várias técnicas clássicas em inteligência artificial que são capazes de resolver este problema. Neste trabalho um conjunto de técnicas bio-inspiradas, que engloba um modelo baseado em autômatos celulares com memória e feromônio invertido, foi considerado inicialmente para coordenar um time de robôs na tarefa de forrageamento para ambientes previamente conhecidos. Os robôs do time compartilham o mesmo ambiente, comunicando-se através do feromônio invertido, que é depositado por todos os agentes a cada passo de tempo, resultando em forças de repulsão e maior cobertura do ambiente. Por outro lado, o processo de retorno para o ninho é baseado no comportamento social observado no processo de evacuação de pedestres, resultando em forças de atração. Todos os movimentos deste processo são de primeira escolha e a resolução de conflitos proporciona uma característica não-determinista ao modelo. Posteriormente, o modelo base foi adaptado para a aplicação nas tarefas de coleta seletiva e busca e resgate. Os resultados das simulações foram apresentados em diferentes condições de ambiente. Além disso, parâmetros como quantidade e disposição da comida, posição dos ninhos e largura, constantes relacionadas ao feromônio, e tamanho da memória foram analisados nos experimentos. Em seguida, o modelo base proposto neste trabalho para tarefa de forrageamento, foi implementado usando os robôs e-Puck no ambiente de simulação Webots, com as devidas adaptações. Por fim, uma análise teórica do modelo investigado foi analisado através da teoria dos grafos e das filas. O método proposto neste trabalho mostrou-se eficiente e passível de ser implementado num alto nível de paralelismo e distribuição. Assim, o modelo torna-se interessante para a aplicação em outras tarefas robóticas, especialmente em problemas que envolvam busca multi-objetiva paralela. / In several situations, the volume of tasks to be accomplished can not be performed by a single robot. Thus, a field that has attracted growing interest is the behavior investigation of the search swarm robots. Cooperation and control strategies of this swarm should be considered for an efficient performance of the robot team. There are several classic techniques in artificial intelligence that are able to solve this problem. In this work a set of bio-inspired techniques, which includes a model based on cellular automata with memory and inverted pheromone, was initially considered to coordinate a team of robots in the task of foraging to previously known environments. The team's robots share the same environment, communicating through the inverted pheromone, which is deposited by all agents at each step of time, resulting in repulsive forces and increasing environmental coverage. On the other hand, the return process to the nest is based on the social behavior observed in the process of pedestrian evacuation, resulting in forces of attraction. All movements in this process are first choice and conflict resolution provides a non-deterministic characteristic to the model. Subsequently, the base model was adapted for the application in the tasks of selective collection and search and rescue. The results of the simulations were presented under different environment conditions. In addition, parameters such as amount and arrangement of food, nest position and width, pheromone-related constants, and memory size were analyzed in the experiments. Then, the base model proposed in this work for foraging task, was implemented using the e-Puck robots in the simulation environment Webots, with the appropriate adaptations. Finally, a theoretical analysis of the investigated model was analyzed through the graphs and queuing theory. The method proposed in this work proved to be efficient and capable of being implemented at a high level of parallelism and distribution. Thus, the model becomes interesting for the application in other robotic tasks, especially in problems that involve parallel multi-objective search. / Tese (Doutorado)

Page generated in 0.0576 seconds