• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 119
  • 63
  • 41
  • 20
  • 11
  • 11
  • 11
  • 11
  • 11
  • 11
  • 10
  • 8
  • 3
  • 3
  • 3
  • Tagged with
  • 342
  • 57
  • 53
  • 47
  • 36
  • 34
  • 32
  • 32
  • 31
  • 30
  • 26
  • 24
  • 24
  • 23
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Assessing mechanisms of immunotoxicity for polycyclic aromatic hydrocarbons in rainbow trout (Oncorhynchus mykiss)

Bravo, Claudia F. 09 December 2005 (has links)
During the past 30 years, numerous studies have focused on the toxicities of polycyclic aromatic hydrocarbons (PAH). Laboratory and field studies have helped elucidate the detrimental effects of these chemicals on growth, reproduction and immune response. Polycyclic aromatic hydrocarbons are in the priority list of chemicals to be studied by different governmental agencies and universities and understanding their mechanisms of action is the focus of the current research. The manuscripts presented in this dissertation are focused on the effects and mechanism of action of PAH on disease susceptibility. After a dietary exposure to PAH for up to 50 days (chapter II) and samplings after 3, 7, 14, 28 and 50 days, a number of biomarkers of PAH exposure were measured: Fluorescent aromatic compounds (FACs) in bile, ethoxyresorufin-o-deethylase (EROD) in liver microsomes, cytochrome P450 1A immunohistochemistry in liver and kidney and adduct formation in liver. Additionally markers of oxidative stress were measured: comet assay in blood, protein nitration in kidney and F2-isoprostanes in kidney. Oxidative stress was a probable factor in PAH induced responses in fish adapted to long-term PAH exposures and aryl hydrocarbon activation was not necessarily involved in this process. Disease challenge with Aeromonas salmonicida (chapter III) resulted in differences in mortalities that demonstrated that fish exposed to PAH were more susceptible to disease than fish not exposed to PAH. Determination of gene expression in head kidney of fish exposed and not exposed to PAH challenged with A. salmonicida using microarray and RT-PCR technologies 2, 4, 10 and 20 days after challenge (chapter IV), suggested that PAH exposure was associated with down regulation of interleukin 8, transport associated protein 1, NF-kB modulator, recombination activating gene and major histocompatibility complex II two days after challenge in fish exposed to PAH. The transcript levels were closer to control levels 20 days after challenge, this indicated a recovery from the effect of PAH exposure. / Graduation date: 2006
152

Exploring phenomena that affect the fate and impact of radioactive materials in the blue mussel

Jaeschke, Benedict January 2013 (has links)
Current protection of the marine environment from radiation is based largely on measuring, estimating and modelling accumulation and impact(s) of radionuclides in a few marine species. Using a relevant marine organism, this thesis focusses on investigating some poorly described phenomena that could cause deviations from predicted measurements. Paper I investigated the biological transformation of tritium (radioactive hydrogen) into an organic compound. The resulting organically bound tritium (OBT) showed increased accumulation in mussels, unique incorporation into a key biological molecule (DNA), extended persistence in tissues, and greater toxicity than the inorganic form. Paper II demonstrated significant disparity in OBT accumulation between functionally similar microalgae species and that OBT in algae is readily transferred to a consumer. Highly radioactive particles are a complex issue in radioecology due to their concentrated dose geometry, potentially inducing very different impacts in organisms, compared to external irradiation. Paper III developed a method to introduce radioactive particles that would facilitate their recovery, improve dose-calculation, and aid the measurement of toxicological endpoints. It also showed that such particles can be incorporated into mussel tissues, causing significant effects. In Paper IV, hypoxia – another major ecological hazard in the marine environment – was expected to reduce radiosensitivity. The minimal observable effect from radiation prevented identification of such an interaction, and indicates drawbacks in the (otherwise sensitive) endpoints used. It appears that stressors like hypoxia may be more of a health hazard to marine organisms than environmental levels of ionising radiation. By understanding such causes of variation in accumulation and impact, it is possible to improve risk assessment, providing more justification for regulations chosen and minimising conservatism in setting environmental standards. / <p>At the time of doctoral defense, the following papers were not published and had a status as follows: Paper 3: Manuscript. Paper 4: Manuscript.</p>
153

PBDEs in the Environment : Time trends, bioaccumulation and the identification of their successor, decabromodiphenyl ethane

Kierkegaard, Amelie January 2007 (has links)
Polybrominated diphenyl ethers (PBDEs) are important chemical flame retardants, but also environmental pollutants. Their bromine substitution lends them a different bioaccumulation behaviour than the better studied organochlorines. The contamination of a Swedish lake with lower brominated BDEs was assessed by a retrospective study of pike. The concentrations of tetra- to hexaBDEs increased exponentially up to the mid-1980s and then decreased slowly, possibly reflecting the voluntary reduction in production/usage of the chemicals. Methoxylated PBDEs were found to be present in similar concentrations to the PBDEs, but originated from different sources. The large size of the bromine atom was believed to result in negligible absorption of higher brominated BDEs in wildlife, thus explaining the low levels observed in fish despite high levels in e.g. sediment. However, it was shown that the fully brominated BDE, BDE209, was absorbed to a small extent via the diet. Once absorbed, it was reductively debrominated to lower brominated BDE congeners. Debromination was also observed in dairy cows exposed to higher brominated BDEs in their natural diet. Moreover, the molecular size restricted the transfer of higher brominated BDEs to milk. In contrast to PCBs and lower brominated BDEs, there was no equilibrium between adipose tissues and milk fat, and with increasing bromine substitution a progressively smaller fraction of the ingested PBDEs was transferred to the milk. This thesis highlights differences in uptake, metabolism and excretion for PBDEs compared to the well characterized organochlorines. A knowledge that is useful for risk assessments given the ongoing use of these compounds. Furthermore, a representative of the next generation brominated flame retardants, decabromodiphenyl ethane, a replacement for the BDE209 technical product, was identified for the first time in the environment.
154

Influence of Invasive Species, Climate Change and Population Density on Life Histories and Mercury Dynamics of Two Coregonus Species

Rennie, Michael 25 September 2009 (has links)
Non-indigenous species can profoundly alter the ecosystems they invade and impact local economies. Growth and body condition declines of commercially fished Great Lakes lake whitefish coincide with the establishment of non-native dreissenid mussels and the cladoceran Bythotrephes longimanus. Declines in lake herring abundance—a key prey item for other commercially important species—have also been reported. Though additional stressors such as climate change may have contributed to changes in coregonid populations, they have not been thoroughly evaluated. Here, I present data that condition and contaminant declines in coregonids are associated with increasing density or warming climate, but growth declines in lake whitefish are likely due to ecosystem changes associated with dreissenids and Bythotrephes. In South Bay, Lake Huron, changes in lake whitefish diet composition and stable isotope signatures were consistent with increased reliance on nearshore resources after dreissenid establishment; lake whitefish occupied shallower habitats and experienced declines in mean diet energy densities post-dreissenid invasion. Growth of South Bay lake whitefish declined after environmental effects were statistically removed, whereas condition declines were explained best by changes in lake whitefish density. Among four lake whitefish populations, growth declined after dreissenids established, but not in uninvaded reference populations. Growth also declined among four lake whitefish populations after the establishment of Bythotrephes relative to reference populations. In contrast with growth, condition of lake whitefish did not change as a result of dreissenid or Bythotrephes invasion. Bioenergetic models revealed that activity rates increased and conversion efficiencies decreased in lake whitefish populations exposed to dreissenids, despite higher consumption rates in populations with dreissenids present. Condition declines among many lake whitefish and lake herring populations (and declines in mercury among herring populations) reflected regional differences and were not related to the presence of Bythotrephes or Mysis relicta. Declines in condition were more pronounced in northwest Ontario populations where climate has changed more dramatically than in southern Ontario. This work suggests that projected range expansions of dreissenid mussels and Bythotrephes will likely affect native fisheries, and their effect on these fisheries may be exacerbated by declining fish condition associated with climate change.
155

Selenium bioaccumulation and speciation in the benthic invertebrate Chironomus dilutus: an assessment of exposure pathways and bioavailability

Franz, Eric Duncan 08 June 2012
Uranium mining and milling operations at Key Lake, Saskatchewan, Canada, have been releasing effluent since 1983, resulting in the accumulation of selenium in surface water, sediment, and biota in downstream lakes relative to pre-development and reference lake conditions. Elevated selenium can pose a risk to fish and bird populations in aquatic ecosystems as a result of the trophic transfer of selenium from the base of the aquatic food web. This research program was designed to address specific knowledge gaps related to the bioaccumulation of selenium at the benthic-detrital link of aquatic food webs. To fulfill this objective, laboratory and in situ field experiments were conducted using the benthic invertebrate Chironomus dilutus to identify the exposure pathway(s) and selenium species associated with the bioaccumulation of selenium by benthic invertebrates downstream from the Key Lake operation. Laboratory bioaccumulation tests that exposed midge larvae to 4.3 µg/L as dissolved selenate for 10 d resulted in negligible accumulation of selenium. However, larvae rapidly accumulated selenium over 10 d of exposure to 3.8 and 1.8 µg/L selenite and seleno-DL-methionine (Se-met), respectively. Furthermore, once selenium was accumulated by the larvae from the selenite and Se-met treatments, the majority of it was retained after a 10 d depuration period in clean water. When additional midge larvae were exposed to selenium until emergence, selenium accumulated during the larval stage was passed onto the adults following metamorphosis, with only a small percentage of the selenium (< 5%) transferred to the exuvia. Selenium speciation analysis using X-ray absorption spectroscopy showed that increases in total selenium concentrations corresponded to increased fraction of organic selenides, modeled as selenomethionine, in C. dilutus larvae and adults. Results from the 2008 in situ caging study confirmed that surface water is not a significant selenium exposure pathway for benthic invertebrates at Key Lake. Chironomus dilutus larvae accumulated between 20- and 90-fold more selenium from exposure to sediment compared to exposure to surface water in the high exposure lake. In response to these findings, a second in situ experiment was conducted in 2009 to investigate the importance of dietary selenium (biofilm or detritus) vs. whole-sediment as an exposure pathway. Larvae exposed to sediment detritus (top 2 â 3 mm of sediment) from the exposure site had the highest selenium concentrations after 10 d of exposure (15.6 ± 1.9 µg/g) compared to larvae exposed to whole-sediment (12.9 ± 1.7 µg/g) or biofilm (9.9 ± 1.6 µg/g). Biofilm had lower total selenium concentrations than the detritus and whole-sediment fractions, but nearly 80% of the selenium was present as organic selenides similar to selenomethionine. Biofilms appear to be an enriched source of organic selenium and are important food items for many benthic consumers. Integrating the separate lines of evidence that were generated during laboratory and in situ bioaccumulation tests helped strengthen the understanding of selenium accumulation in the benthic-detrital food web and subsequent trophic transfer of selenium to benthic invertebrates.
156

Organochlorine contaminants in fish and snails from three U. S. Arctic freshwater lakes

Wilson, Rose 10 June 1994 (has links)
Graduation date: 1995
157

Chronic bioaccumulation and toxicity of cadmium from a periphyton diet to Hyalella azteca

Golding, Lisa Ann January 2010 (has links)
Dietary cadmium (Cd) can contribute significantly to chronic bioaccumulation and toxicity in aquatic organisms. This contribution needs to be quantified so that the relative importance of waterborne and dietary cadmium exposure pathways can be incorporated into protective water quality guidelines and ecological risk assessments. In this research, the contribution of dietary Cd from a natural periphyton diet to chronic (28 d) bioaccumulation and toxicity in the freshwater amphipod Hyalella azteca was quantified using a mechanistically-based saturation bioaccumulation model. Factors that influence dietary Cd bioavailability such as food type, food form, dietary Cd speciation and concentration were investigated. Assimilation efficiency, ingestion rate and the excretion rate constant of dietary Cd were determined for each of these factors. Food nutrition was also considered. Lastly, model predictions of Cd bioaccumulation and toxicity were compared to measurements of tissue concentration and survival when H. azteca were exposed to metal contaminated water and periphyton collected from lakes in the metal mining region of Rouyn-Noranda, Quebec, Canada. In 28 d laboratory experiments where H. azteca bioaccumulated Cd from water and food, dietary Cd was estimated to contribute markedly (21 – 94 %) to bioaccumulated Cd in H. azteca. Effects on chronic survival were best predicted from body concentration rather than water or food exposure concentration. Assimilation efficiency of dietary Cd differed with food type likely as a result of Cd speciation, but did not differ with Cd concentration or food form. Ingestion rate differed with food form while excretion rate constants were unaffected by dietary Cd bioavailability. Predictions of chronic Cd bioaccumulation in H. azteca exposed to field contaminated samples were robust, however the model did not account for effects of water chemistry on Cd bioaccumulation and is thus constrained in its application. Predictions of chronic survival were over-estimated likely due to the additional toxicity caused by the low nutritional quality of the field contaminated periphyton. This research demonstrated that both waterborne and dietary Cd need to be considered in models that assess chronic risk of exposure and effects to H. azteca.
158

Selenium bioaccumulation and speciation in the benthic invertebrate Chironomus dilutus: an assessment of exposure pathways and bioavailability

Franz, Eric Duncan 08 June 2012 (has links)
Uranium mining and milling operations at Key Lake, Saskatchewan, Canada, have been releasing effluent since 1983, resulting in the accumulation of selenium in surface water, sediment, and biota in downstream lakes relative to pre-development and reference lake conditions. Elevated selenium can pose a risk to fish and bird populations in aquatic ecosystems as a result of the trophic transfer of selenium from the base of the aquatic food web. This research program was designed to address specific knowledge gaps related to the bioaccumulation of selenium at the benthic-detrital link of aquatic food webs. To fulfill this objective, laboratory and in situ field experiments were conducted using the benthic invertebrate Chironomus dilutus to identify the exposure pathway(s) and selenium species associated with the bioaccumulation of selenium by benthic invertebrates downstream from the Key Lake operation. Laboratory bioaccumulation tests that exposed midge larvae to 4.3 µg/L as dissolved selenate for 10 d resulted in negligible accumulation of selenium. However, larvae rapidly accumulated selenium over 10 d of exposure to 3.8 and 1.8 µg/L selenite and seleno-DL-methionine (Se-met), respectively. Furthermore, once selenium was accumulated by the larvae from the selenite and Se-met treatments, the majority of it was retained after a 10 d depuration period in clean water. When additional midge larvae were exposed to selenium until emergence, selenium accumulated during the larval stage was passed onto the adults following metamorphosis, with only a small percentage of the selenium (< 5%) transferred to the exuvia. Selenium speciation analysis using X-ray absorption spectroscopy showed that increases in total selenium concentrations corresponded to increased fraction of organic selenides, modeled as selenomethionine, in C. dilutus larvae and adults. Results from the 2008 in situ caging study confirmed that surface water is not a significant selenium exposure pathway for benthic invertebrates at Key Lake. Chironomus dilutus larvae accumulated between 20- and 90-fold more selenium from exposure to sediment compared to exposure to surface water in the high exposure lake. In response to these findings, a second in situ experiment was conducted in 2009 to investigate the importance of dietary selenium (biofilm or detritus) vs. whole-sediment as an exposure pathway. Larvae exposed to sediment detritus (top 2 â 3 mm of sediment) from the exposure site had the highest selenium concentrations after 10 d of exposure (15.6 ± 1.9 µg/g) compared to larvae exposed to whole-sediment (12.9 ± 1.7 µg/g) or biofilm (9.9 ± 1.6 µg/g). Biofilm had lower total selenium concentrations than the detritus and whole-sediment fractions, but nearly 80% of the selenium was present as organic selenides similar to selenomethionine. Biofilms appear to be an enriched source of organic selenium and are important food items for many benthic consumers. Integrating the separate lines of evidence that were generated during laboratory and in situ bioaccumulation tests helped strengthen the understanding of selenium accumulation in the benthic-detrital food web and subsequent trophic transfer of selenium to benthic invertebrates.
159

Influence of Invasive Species, Climate Change and Population Density on Life Histories and Mercury Dynamics of Two Coregonus Species

Rennie, Michael 25 September 2009 (has links)
Non-indigenous species can profoundly alter the ecosystems they invade and impact local economies. Growth and body condition declines of commercially fished Great Lakes lake whitefish coincide with the establishment of non-native dreissenid mussels and the cladoceran Bythotrephes longimanus. Declines in lake herring abundance—a key prey item for other commercially important species—have also been reported. Though additional stressors such as climate change may have contributed to changes in coregonid populations, they have not been thoroughly evaluated. Here, I present data that condition and contaminant declines in coregonids are associated with increasing density or warming climate, but growth declines in lake whitefish are likely due to ecosystem changes associated with dreissenids and Bythotrephes. In South Bay, Lake Huron, changes in lake whitefish diet composition and stable isotope signatures were consistent with increased reliance on nearshore resources after dreissenid establishment; lake whitefish occupied shallower habitats and experienced declines in mean diet energy densities post-dreissenid invasion. Growth of South Bay lake whitefish declined after environmental effects were statistically removed, whereas condition declines were explained best by changes in lake whitefish density. Among four lake whitefish populations, growth declined after dreissenids established, but not in uninvaded reference populations. Growth also declined among four lake whitefish populations after the establishment of Bythotrephes relative to reference populations. In contrast with growth, condition of lake whitefish did not change as a result of dreissenid or Bythotrephes invasion. Bioenergetic models revealed that activity rates increased and conversion efficiencies decreased in lake whitefish populations exposed to dreissenids, despite higher consumption rates in populations with dreissenids present. Condition declines among many lake whitefish and lake herring populations (and declines in mercury among herring populations) reflected regional differences and were not related to the presence of Bythotrephes or Mysis relicta. Declines in condition were more pronounced in northwest Ontario populations where climate has changed more dramatically than in southern Ontario. This work suggests that projected range expansions of dreissenid mussels and Bythotrephes will likely affect native fisheries, and their effect on these fisheries may be exacerbated by declining fish condition associated with climate change.
160

Chronic bioaccumulation and toxicity of cadmium from a periphyton diet to Hyalella azteca

Golding, Lisa Ann January 2010 (has links)
Dietary cadmium (Cd) can contribute significantly to chronic bioaccumulation and toxicity in aquatic organisms. This contribution needs to be quantified so that the relative importance of waterborne and dietary cadmium exposure pathways can be incorporated into protective water quality guidelines and ecological risk assessments. In this research, the contribution of dietary Cd from a natural periphyton diet to chronic (28 d) bioaccumulation and toxicity in the freshwater amphipod Hyalella azteca was quantified using a mechanistically-based saturation bioaccumulation model. Factors that influence dietary Cd bioavailability such as food type, food form, dietary Cd speciation and concentration were investigated. Assimilation efficiency, ingestion rate and the excretion rate constant of dietary Cd were determined for each of these factors. Food nutrition was also considered. Lastly, model predictions of Cd bioaccumulation and toxicity were compared to measurements of tissue concentration and survival when H. azteca were exposed to metal contaminated water and periphyton collected from lakes in the metal mining region of Rouyn-Noranda, Quebec, Canada. In 28 d laboratory experiments where H. azteca bioaccumulated Cd from water and food, dietary Cd was estimated to contribute markedly (21 – 94 %) to bioaccumulated Cd in H. azteca. Effects on chronic survival were best predicted from body concentration rather than water or food exposure concentration. Assimilation efficiency of dietary Cd differed with food type likely as a result of Cd speciation, but did not differ with Cd concentration or food form. Ingestion rate differed with food form while excretion rate constants were unaffected by dietary Cd bioavailability. Predictions of chronic Cd bioaccumulation in H. azteca exposed to field contaminated samples were robust, however the model did not account for effects of water chemistry on Cd bioaccumulation and is thus constrained in its application. Predictions of chronic survival were over-estimated likely due to the additional toxicity caused by the low nutritional quality of the field contaminated periphyton. This research demonstrated that both waterborne and dietary Cd need to be considered in models that assess chronic risk of exposure and effects to H. azteca.

Page generated in 0.0626 seconds