• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 15
  • 3
  • 1
  • Tagged with
  • 44
  • 31
  • 15
  • 13
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Etude de la cycloaddition 1,3-dipolaire des ylures de pyridinium pour le développement de nouvelles réactions de ligations fluorogéniques / Study of pyridinium ylide-alkyne cycloaddition for the development of new fluorogenic click reactions

Bonte, Simon 16 December 2013 (has links)
L'objectif de ce travail est la mise au point de réactions de chimie « click » fluorogéniques permettant le développement de nouveaux outils chimiques et/ou la conception d'édifices bioactifs par l'assemblage des sous-unités fonctionnalisées en présence de la cible biologique. La cycloaddition 1,3-dipolaire des ylures de pyridinium a ainsi été réalisé en conditions physiologiques (H2O, pH neutre, TA), pour la mise en œuvre de réactions de couplages pouvant être biocompatibles. En effet, les ylures de pyridinium ont l'avantage d'être facilement générés in situ à partir des sels correspondants et de mener régiosélectivement, sans catalyseur métallique, à des indolizines fluorescentes après cycloaddition. Pour cela, la synthèse et la réactivité des différents partenaires de la cycloaddition ont été étudiés, tout comme l'optimisation des conditions expérimentales. Tout d'abord, deux types de dipolarophiles se caractérisant par leur caractère déficient en électrons, ont été sélectionnés: les dérivés de l'acide propiolique (amides et esters) obtenus selon une synthèse biocatalysée utilisant les lipases (CAL B), et les alcynes conjugués à des structures hétérocycliques (quinoléine, pyridine). Concernant le dipôle, à partir d'une petite famille de sels de pyridinium (diversement fonctionnalisés) ou de cycles apparentés, l'influence de la nature et de la position des substituants a été évaluée au niveau du pKa, de la réactivité (selon une réaction modèle faisant intervenir le propiolate d'éthyle), et de la fluorescence du cycloadduit. Les résultats expérimentaux, complétés par une approche de chimie théorique, ne nous permettent pas à ce jour d'expliquer la très bonne réactivité à température ambiante des dipôles portant un groupement électro-attracteur en position 4 du sel de pyridinium (sélection des sels de cyano- et acétyl-pyridinium pour nos applications). Enfin, la fonctionnalisation des précurseurs a été effectuée par l'introduction de diverses fonctions réactives dont des amides, pour obtenir une réaction de chimie « click » facilement applicable et généralisable. La preuve de concept est en cours de réalisation au laboratoire, avec la synthèse de molécules dimériques dérivées de la tacrine, pour la conception d'inhibiteurs de l'acétylcholinestérase. La seconde application porte sur la post-fonctionnalisation des indolizines et la synthèse de structures trimériques (plateforme d'assemblage fluorescente) / In the course of investigations aimed at designing fluorescent metal-free click ligations for application in bioconjugation and drug design, we turned our attention to the use of azomethine-ylides as dipoles for [3+2] cycloadditions. In this regard, pyridinium-ylides, generated in situ from suitable pyridinium salts, are of great interest due to their good reactivity with activated alkynes, such as propiolic acid derivatives or conjugated alkynes. In addition, the corresponding fluorescent indolizines are formed in a regioselective manner and any catalyst is required. From the outset, we defined a specific set of requirements for these ligations, most notably that they be biocompatible (i.e. physiological conditions, pH 7, room temperature) and that the starting reagents could be readily functionalized with the reporter group(s) or biomolecule(s) of choice. To this end, we screened a series of pyridinium salts as suitable 1,3-dipoles. The reactivity patterns observed correlate well with the pKa of the pyridinium (ylide formation) and with the electron-withdrawing character of the pyridinium ring substituent. This enabled us to identify the 4-acetyl and 4-cyano pyridinium salts suitable for ligation with propiolic esters and amides in the desired biological conditions. The synthetic strategies used to prepare the “two partners” for this [3+2] cycloaddition are described, and our preliminary results on their applications as “click” reactions are reported in particular the formation of heterodimeric tacrine derivatives (acetylcholinesterase inhibitors) or the design of fluorescent tripodal scaffold useful in chemical biology.
12

Biocatalyse : aldolisation, acylation et oxydation - Applications synthétiques / Biocatalysis : aldolization, acylation and oxidation - Synthetic applications

Hiault, Florence 24 November 2017 (has links)
Les travaux présentés dans ce manuscrit s’inscrivent dans le contexte général de l’essor de la biocatalyse et de son utilisation en synthèse organique. Le thème principal porte sur l’étude et le développement de différentes voies d’accès stéréosélectives à des acides alpha-aminés bêta-hydroxylés substitués. L’utilisation d’un biocatalyseur permettant d’accéder à des acides alpha-aminés bêta-hydroxylés par une aldolisation entre la glycine et divers aldéhydes, en présence de phosphate de pyridoxal, a été étudiée. Des aldéhydes aliphatiques, aromatiques et hétéroaromatiques ont pu être impliqués avec succès comme partenaires électrophiles dans ces réactions qui permettent un excellent contrôle de la configuration du carbone asymétrique créé en alpha du groupe carbonyle mais s’effectuent généralement avec des diastéréosélectivités plus modestes. Par ailleurs, un dédoublement cinétique enzymatique d’esters alpha,bêta-dihydroxylés, précurseurs d’acides alpha-aminés bêta-hydroxylés substitués en alpha, a été étudié. La méthode développée repose sur la monoacylation d’esters alpha,bêta-dihydroxylés, acycliques ou cycliques, en présence d’une lipase et d’un donneur d’acyle. De façon indépendante, la mise au point de séquences réactionnelles monotopes faisant intervenir une étape d’oxydation biocatalytique a été étudiée pour accéder à des composés aminés hautement fonctionnalisés. / The research work presented in this manuscript pertains to the field of biocatalysis and some applications in organic synthesis. The main subject is the development of stereoselective synthetic methods allowing access to substituted alpha-amino beta-hydroxy acids. The use of a biocatalyst enabling the preparation of optically enriched alpha-amino beta-hydroxy acids in a single step from glycine by an aldol reaction, in the presence of pyridoxal phosphate, was investigated. Aliphatic, aromatic and heteroaromatic aldehydes could be successfully used as electrophilic partners in such reactions that allow an excellent control of the stereocenter created at the alpha position of the carbonyl group whereas moderate levels of diastereoselectivity were generally observed. The enzymatic kinetic resolution of acyclic or cyclic alpha,beta-dihydroxy esters, which are precursors of alpha-substituted alpha-amino beta-hydroxy acids, was also achieved by monoacylation in the presence of a lipase and an acyl donor. Independently, a one-pot sequence involving a biocatalytic oxidation was developed to access highly functionalized nitrogen containing compounds.
13

Extraction et caractérisation biochimique des polyphénol oxydases de champignons et leur application en biocatalyse supportée / Extraction and biochemical caracterization of polyphenol oxidases from mushrooms and their application in biocatalysis

Gouzi, Hicham 06 June 2014 (has links)
Ce travail concerne l'extraction d'enzymes de la famille des polyphénol oxydases à partir de champignons, leur caractérisation biochimique et leur immobilisation dans des matrices solides. Ces enzymes ont tout d'abord été extraites du champignon de Paris (Agaricus bisporus) puis partiellement purifiées. Une étude de leur activité enzymatique, de leur domaine de stabilité et de leur comportement thermique a été effectuée, ainsi que l'identification d'inhibiteurs. Cette approche a été étendue à la polyphénol oxydase de la truffe de désert (Terfezia leonis Tul.). Ces deux enzymes ont ensuite été piégées dans des gels de silice pour le dosage de la dopamine par un biocapteur optique et dans un gel d'alginate pour la dégradation du phénol. / This work is devoted to the extraction of enzymes belonging to the polyphenol oxidase family from mushrooms, their biochemical characterization and their immobilization in solid hosts. These enzymes were first extracted from Paris mushrooms (Agaricus bisporus) and partially purified. A study of their enzymatic activity, stability conditions and thermal behavior was performed, together with the identification of inhibitors. A similar approach was applied to polyphenol oxidase extracted from desert truffle (Terfezia leonis Tul.). These enzymes were then trapped in silica gels for dopamine determination using an optical biosensor and in an alginate gel for phenol degradation.
14

Modifications enzymatiques de la composition de mélanges naturels complexes utilisés en parfumerie / Tuning of complex natural product's properties used in fragrances by enzymatic treatment

Bouges, Hélène 19 April 2018 (has links)
Dans le domaine de la chimie des parfums, l’optimisation des propriétés biologiques et sensorielles de substances naturelles complexes, via la biocatalyse, présente un fort intérêt. Dans un contexte de chimie durable, ces travaux de recherche sont dédiés aux développements de modifications enzymatiques de composés purs, d’extraits et d’huiles essentielles de l’industrie des arômes et parfums. Une étude bibliographique a ainsi été consacrée à la composition des matières premières naturelles, leurs propriétés et les principales voies de biosynthèse des composés présents dans les substances naturelles complexes, ainsi que quelques éléments de réglementation. Dans un premier volet, selon un procédé de chimie durable, le but a été de rendre des produits naturels plus sains tout en conservant leurs propriétés et leur « naturalité ». La détoxification en atranol et en chloroatranol de l’extrait de mousse de chêne a été effectué menant à des absolues de mousse de chêne modifiées par biocatalyse conservant leur qualité odorante. Dans le cadre d’un projet collaboratif public-privé, des protocoles de suivis de transformations biocatalytiques ont été établis et mis en œuvre. Dans un troisième volet, des méthodologies de chimie durable ont été mises à profit afin de proposer de nouveaux ingrédients grâce à l’utilisation de procédés biotechnologiques procédant selon le principe d’économie circulaire. Le caractère naturel a été conservé et la méthode a permis de réaliser des transformations fines et ciblées pour développer des facettes olfactives intéressantes. / In the field of flavor and fragrance industry, the optimization of natural flavoring essential oils and extracts’ properties by biocatalysis is really interesting. In a context of sustainable chemistry, this research project is dedicated to the development of pure compounds, extracts and essential oils by enzymatic modifications. In this way, a bibliographic study has been carried out on the composition of the natural raw materials, their properties and the main biosynthetic pathways of the compounds present in the natural complex substances and some regulation elements. In the first place, according to a process of sustainable chemistry, the goal is to make healthier natural products while keeping their properties and their "naturalness". The detoxification in atranol and chloroatranol of the oak moss extract was carried out with the oak moss absolute by biocatalysis preserving their olfactory quality. Through an academic /industrial collaboration, protocols for monitoring biocatalytic transformations were established and implemented. In a third part, sustainable chemistry methodologies were used to propose new ingredients through the use of biotechnological processes based on the circular economy principle. The natural character has been preserved and the method allowed targeted transformations to develop interesting olfactory facets.
15

Synthèse biocatalytique de macrocycles planaires chiraux

Gagnon, Christina 08 1900 (has links)
Les macrocycles représentent une catégorie chimique unique en chimie organique et ils possèdent des applications dans les industries pharmaceutique et agrochimique, en parfumerie, et dans les matériaux. Une propriété importante des macrocycles est la possibilité de démontrer de la chiralité planaire menant à des atropoisomères distincts aux propriétés uniques. Très peu de techniques générales existent pour le contrôle de l’atropoisomérisme au sein des macrocycles, rendant leur synthèse un véritable défi. Nous avons accompli le premier exemple d’une synthèse biocatalytique énantio- et atroposélective de p-cyclophanes planaires chiraux. En utilisant une lipase immobilisée commercialement disponible (CALB) et des matériaux de départ pro-chiraux simples, nous avons été en mesure de générer 23 différentes structures avec des rendements entre 11 et 88 %. Des analyses SFC ont permis l’évaluation de l’énantioenrichissement des différents macrocycles, étant compris entre 96 et >99 % ee. Surtout, les macrocycles planaires chiraux ayant des substituants de type halogène ou borylé peuvent subir de la diversification moléculaire au-delà des limites tolérées par l’enzyme. Notre découverte ouvre la porte à l’utilisation de biocatalyseurs pour le contrôle de l’atropoisomérisme lors de la formation de structures macrocycliques. / Macrocycles represent a unique chemotype in organic chemistry, with applications ranging from pharmaceuticals, agrochemicals, aromachemicals and material science. An important property of macrocycles is the possibility of displaying planar chirality yielding distinct atropisomeric structures with unique properties. Very few generalized techniques capable of controlling atropisomerism in macrocycles exist, rendering their synthesis extremely challenging. We have achieved the first example of enantio- and atroposelective biocatalytic synthesis of planar chiral p-cyclophanes. Employing a commercially available immobilized lipase (CALB) and simple pro-chiral starting materials, we were able to generate 23 different structures with yields ranging from 11 to 88 %. SFC analysis permitted evaluation of the enantioenrichment of the different macrocycles, which ranged from 96 to >99 % ee. Importantly, planar chiral macrocycles having halogen or borylated substituents are capable of molecular diversification outside the boundaries of what may be tolerated by the enzyme. Our discovery paves the way for the use of biocatalysts in the control of atropisomerism during macrocycle formation.
16

Immobilization of cytochrome P450 BM3 from Bacillus megaterium on magnetic nanoparticles to develop an effective biocatalyst for hydroxylation reactions

Bahrami, Atieh 18 April 2019 (has links)
Les catalyseurs chimiques sont utilisés dans différents procédés de synthèse. Cependant, la pollution qu'ils causent sur l'environnement n’est pas prise en considération. Les procédés de synthèse chimique nécessitent généralement un grand volume de solvants organiques, produisant d’énormes quantités de déchets chimiques, souvent toxiques et non dégradables. Le remplacement des catalyseurs chimiques par des biocatalyseurs (enzymes) pourrait donc bénéficier de leur nature écologique et de leur grande sélectivité envers les produits désirés. Néanmoins, la faible activité et stabilité des enzymes ainsi que leurs coûts élevés sont des obstacles majeurs au développement des systèmes enzymatiques. Par conséquent, des études axées sur le développement de systèmes biocatalytiques plus actifs, stables et rentables, pouvant ouvrir les portes vers un environnement plus vert, sont très souhaitables. Parmi les enzymes qui catalysent des réactions d’importance dans de nombreux procédés de synthèse, le cytochrome P450 BM3 issu de Bacillus megaterium fait l'objet de cette thèse. L'enzyme est capable d’hydroxyler les liaisons C–H des acides gras (C₁₂-C₂) à température ambiante et pH physiologique. Pour cette réaction, BM3 n'a besoin que d’oxygène et de deux électrons habituellement obtenus de son cofacteur naturel, le NADPH. Cependant, pour engager cette enzyme dans les réactions d'hydroxylation, quelques obstacles importants doivent être surmontés : (i) le cofacteur coûteux (NADPH), devrait être remplacé par une source d'électrons moins chère ou régénérée, (ii) la stabilité enzymatique devrait être améliorée et (iii) l'enzyme devrait être facilement récupérable du milieu de réaction pour être réutilisée. Dans ce contexte, cette étude propose pour la première fois l'immobilisation d'un BM3 sur des nanoparticules magnétiques (NMP) d’oxyde de fer. Ce système enzymatique bénéficie (i) de la préférence de l'enzyme pour les cofacteurs NADH et BNAH (moins chers que le NADPH), (ii) de la réutilisation facile du biocatalyseur et (iii) d’une stabilité significative de l’enzyme lors du stockage. Les NMP synthétisées ont été fonctionnalisées pour permettre l’immobilisation de l'enzyme par adsorption ou liaison covalente. Par conséquent, les BM3-NMP adsorbées / réticulées ou liées de façon covalente ont été obtenues en immobilisant P450 BM3 (R966D / W1046S) sur Ni²⁺-PMIDA-NMP ou sur des NMP activés par glutaraldéhyde, respectivement. / L'activité de l’enzyme immobilisée a été comparée avec celle de l’enzyme libre dans la réaction d'hydroxylation du 10-pNCA comme substrat modèle. L'acide myristique a également été utilisé comme substrat modèle pour confirmer la capacité d’hydroxylation sélective de l’enzyme sur les atomes de carbone ω-1, -2 ou -3. Pour les mêmes conditions opératoires, le BM3 adsorbé / réticulé a montré plus de 85% de l'activité de l’enzyme libre, alors que pour les BM3-NMP liées de manière covalente cela représente 60%. La séparation facile des NMP du milieu réactionnel à l’aide d’un aimant a permis de réutiliser le système enzymatique cinq fois consécutives. Après 5 cycles de réaction, l'enzyme réticulée a conservé 100% de son activité initiale. Compte tenu que le recyclage de l’enzyme libre n’est pas faisable, ce résultat est d’une importance considérable dans les applications pratiques. De plus, la stabilité de l’enzyme pendant un mois de stockage à 4 ºC a été évaluée pour chaque système de BM3. Les résultats ont montré que l’enzyme libre n’était plus active après seulement une semaine de stockage dans ces conditions. L'enzyme réticulée n'a montré qu'une activité relative de 41% après un mois de stockage, mais pour le BM3 fixée de façon covalente, la valeur correspondante a été de 80%. La cinétique de l'hydroxylation du 10-pNCA en présence de l’enzyme libre ou immobilisée a été également étudiée. Sur la base des données expérimentales, un modèle de Hill (coefficient de Hill égal à 2) a été obtenu pour l'enzyme libre. Il a été démontré que les mêmes paramètres cinétiques sont capables de prédire le comportement du système BM3-adsorbé et BM3-réticulé dans la réaction d’hydroxylation, étant donné sa similarité avec celui de l’enzyme libre. En conclusion, les résultats de cette thèse ont montré qu'un système enzymatique actif, stable et rentable peut être obtenu en immobilisant le BM3 sur des NMP fonctionnalisées. Il bénéficie autant des avantages de l'enzyme que du support. Ainsi, l'immobilisation sur des NMP d’une enzyme spécialement conçue pour remplacer le couteux NADPH par des cofacteurs moins chers mais efficaces (NADH et BNAH) offre en même temps une amélioration significative de sa stabilité et facilite son recyclage. / MNPs have been synthesized and surface functionalized to attach the enzyme via two different methods, adsorption and covalent binding. Moreover, glutaraldehyde was used to treat the adsorbed enzyme molecules on MNPs (crosslinking-adsorption). Therefore, adsorbed, crosslinked-adsorbed, or covalently bound BM3-MNPs were obtained by immobilizing P450 BM3 on synthesized Ni²⁺-functionalized MNPs or glutaraldehyde pre-activated MNPs, respectively. The immobilized enzyme activity was compared to its free counterpart in hydroxylation reaction of 10-pNCA (10-(4-Nitrophenoxy) decanoic acid) as a substrate model. Myristic acid was also used as a substrate model to confirm the enzyme selective hydroxylation at ω-1, -2, or -3 carbon positions. The effect of cofactor (NADH and its analogue, BNAH) on the enzyme activity was also investigated. The adsorbed/crosslinked-adsorbed BM3 showed more than 85% of the free enzyme activity while the covalently bound BM3-MNPs presented 60% of the free enzyme activity under the same reaction conditions. An important feature of BM3-MNPs system is the possibility of recycling the biocatalyst. Facile separation of the magnetic nanoparticles from the reaction medium by applying a magnet provided the opportunity of reusing the enzymatic system for five times. After 5 cycles of reaction, the crosslinked-adsorbed enzyme retained 100% of its initial activity. Although the covalently bound enzyme showed, only half of the crosslinked-adsorbed enzyme activity, its storage stability was more significant. Taking into account that the enzyme reuse is an essential concern in many large-scale applications and the free BM3 cannot be recovered and reused, this result is noteworthy. Storage stability tests revealed that the free enzyme became inactive after one-week while the crosslinked-adsorbed enzyme and the covalently attached BM3 on MNPs showed 41% and 80% relative activity after one month, respectively. Finally, the steady-state kinetics of 10-pNCA hydroxylation by free and immobilized BM3 was investigated. Based on the experimental data, a non-Michaelis-Menten, Hill model (Hill coefficient of 2) was obtained for the free enzyme which could also predict the adsorbed and crosslinked-adsorbed BM3-MNPs system performance. This sigmoidal behavior was found to be independent of enzyme concentration and type of cofactor. However, since the enzyme activity was only 60% of the free enzyme for covalently bound BM3, further studies are necessary for a better understanding of this system. In summary, the results of this thesis show that an active, stable, and cost-effective BM3-MNPs system can be obtained by immobilizing an engineered BM3 on functionalized MNPs. Such systems benefit from the advantages of both enzyme and support. An engineered enzyme can fulfill the desired targets including the replacement of costly NADPH by less-expensive, yet effective cofactors namely NADH and BNAH. Furthermore, immobilization of this enzyme on MNPs improves its stability and facilitates the recycling process. / Chemical catalysts are used in different synthetic processes from lab to industrial scales. High reaction yields usually achieved by this type of processes favor their application in many industries without considering the pollution they cause to the environment. Chemical synthesis processes usually require a high volume of organic solvents and produce tons of chemical wastes which are often toxic and not degradable. Replacing conventional catalysts by biocatalysts (enzymes) can benefit from their environmentally friendly nature and high selectivity toward the desired products. Although the advantages of biocatalysts over chemical catalysts have been proven, the application of enzymes in an industrial level is still not considerable. The enzyme low activity, stability, and high cost are the main concerns in developing large-scale enzymatic systems. Therefore, in the context of a greener environment, studies focusing on the development of more active, stable, and cost-effective enzymatic systems are in great demand. Among several enzymes that can catalyze essential synthesis reactions, cytochrome P450 BM3 from Bacillus megaterium is the subject of this thesis. This enzyme hydroxylates the saturated and unsaturated C–H bonds of medium to long chain fatty acids at room temperature and physiological pH. For this reaction, BM3 only needs molecular oxygen and two electrons usually obtained from its natural cofactor, NADPH. However, to engage this enzyme in hydroxylation reactions, some important obstacles should be overcome: (i) the costly cofactor (NADPH) should be replaced by a cheaper source of electrons or regenerated, (ii) the enzyme stability should be improved, and (iii) the enzyme should be easily recovered from the reaction medium to be reused. In this context, this study proposes for the first time the immobilization of an optimized BM3 mutant on functionalized iron oxide magnetic nanoparticles (MNPs). This enzymatic system benefits from (i) the enzyme preference towards cofactors like the reasonably priced NADH and the very cheap BNAH, (ii) facile recovery and reuse of the biocatalyst (enzyme-MNPs), and (iii) the enzyme significant storage stability.
17

Solvants de type eutectiques profonds : nouveaux milieux réactionnels aux réactions de lipophilisation biocatalysées par les lipases ? / Deep eutectic solvents : New media for lipase-catalyzed reactions ?

Durand, Erwann 19 December 2013 (has links)
Très récemment, les solvants de type « mélanges eutectiques profonds (MEP)» ont été décrits comme une alternative sérieuse et économiquement plus réaliste aux liquides ioniques. En effet, ces solvants qui consistent en un mélange d'un sel organique (ammonium ou phosphonium) et d'un donneur de liaison hydrogène peuvent également être liquides à température ambiante, non volatils et présentant une excellente stabilité thermique. De plus, contrairement aux liquides ioniques, ces nouveaux solvants sont très facilement préparés et leur innocuité ainsi que leur bonne biodégradabilité sont sensiblement améliorées. Dans le domaine des procédés enzymatiques, si la biocatalyse en milieu liquide ionique est très documentée, il n'existe que très peu de publications décrivant des réactions de biotransformation en MEP. Concernant les lipases en particulier, outre leurs applications dans le biofaçonnement des corps gras, ces enzymes sont également utilisées dans des réactions dites de lipophilisation pour la synthèse de nouvelles molécules à haute valeur ajoutée (tensioactifs, antioxydant lipophilisés). Au travers cette étude nous nous sommes investis à tester le potentiel des MEP en tant que nouveaux milieux réactionnels « verts » pour la synthèse lipasique. Ce travail n'a pas eu comme objectif de faire l'éloge de ces solvants pour leur utilisation dans le domaine de la biocatalyse, mais surtout d'évaluer leur capacité à favoriser ou non des synthèses lipasiques. Par ailleurs, nous nous sommes engagés à essayer de comprendre, d'un point de vue fondamental, l'organisation supramoléculaire de ce type de milieux pour déterminer les paramètres qui influencent le plus la réactivité et la stabilité enzymatique dans ce type d'environnement. Les variations des conditions réactionnelles (solvants et biocatalyseurs) ont permis de mettre en évidence la très nette supériorité de deux MEP (Chlorure de cholinium:Urée et Chlorure de cholinium:glycérol) pour la réalisation de réactions d'alcoolyses biocatalysées par la lipase B de Candida antarctica. Toutefois, les résultats ont montré que les réactions de biotransformations de composés phénoliques dans ces MEP sont extrêmement difficiles à réaliser sans l'addition d'eau. De profondes études (pH, activité thermodynamique de l'eau, activité et stabilité de la lipase, composition du solvant, etc.) réalisées sur des mélanges du type MEP-eau ont permis de finement adapter les conditions de réaction pour optimiser la catalyse enzymatique dans ce type de solvant. Compte tenu des difficultés rencontrées pour la lipophilisation de composés phénoliques, nous sommes toutefois parvenus à synthétiser toute une gamme de dérivés lipophiles d'acides férulique et coumarique de C4 à C16 (chaîne aliphatique) avec des rendements élevés. / With the emergence of the green chemistry concept in the 90s, many studies have been dedicated to the discovery of new reactions media both suitable and efficient for chemical/enzyme catalysis. Up to now, the main efforts have focused on the development of ionic liquids. However, recently a novel class of solvent called "deep eutectic mixtures (DES)", have been described as a serious alternative and economically stronger than ionic liquids. Such solvents are formed by mixing an organic salt (ammonium or phosphonium) with a hydrogen-bond donor. Just like ionic liquid, DES may also be liquid at room temperature, non-volatile and have excellent thermal stability. However, unlike most ionic liquids, these new solvents are biodegradable, inexpensive, and very easy to prepare. In the field of biocatalysis, whereas the studies in ionic liquid are deeply documented, the published papers describing biotransformation reactions in DES are very low, especially in lipase-catalyzed processing, where these enzymes may be used in so-called "lipophilisation reactions", for the synthesis of new molecules with high added value (surfactants or lipophilized antioxidants).The main objective of this work was to assess and test the potential of DES as new "green" reaction media for lipase-catalyzed synthesis. On a fundamental point of view, this study provides valuable information to understand how the different components involved in these mixtures could contribute to their functional properties in order to enhance their use in various applications. Changes in reaction conditions (solvents and biocatalysts) allowed us to highlight the clear superiority of two DES (chloride cholinium:Urea and chloride cholinium:glycerol) to carry out lipase-catalyzed reactions using the lipase B from Candida antarctica as biocatalyst. However, our results showed that the biotransformations of dissolved substrates (such as phenolic compounds) in DES are extremely difficult to achieve without the addition of water. Studying DES-water mixtures (pH, thermodynamic activity of water, activity and stability of lipase, mixtures composition, etc ...) we were able to fine-tune the reaction conditions to optimize the performance of the lipasic catalysis. Thus, given the difficulties encountered when performing lipase-catalyzed reactions with substrates of two different polarities, it was still possible to synthesize high yields of a full range of lipophilic derivatives of ferulic and coumaric acids from C4 to C16 (aliphatic chain).
18

Elaboration de matériaux biofonctionnels par chimie intégrative / Biofunctionnal materials made by integrative chemistry

Roucher, Armand 07 December 2018 (has links)
Bien que les matériaux poreux soient nombreux dans la nature, la synthèse en laboratoirede matériaux présentant une porosité multi-échelle ou hiérarchisée est toujours délicate. Enutilisant la matière molle (émulsions concentrées, auto-assemblages, mésophases lyotropes, etc)et le procédé sol-gel, il est possible d’obtenir une grande variété de matériaux monolithiques, àporosité hiérarchisée, composés d’un squelette silicique. La porosité de ces matériaux peut êtreoptimisée en jouant avec la nature de l’émulsion, le tensioactif utilisé, ou avec l’ajout d’agentd’extérieur comme le sel. En combinant ces méthodes, des matériaux possédant une mésoporositéhexagonale ont été obtenus. Grâce à leur surface riche en silanols, ces matériaux poreux ont étéfonctionnalisés par greffage post-synthèse de molécules organiques. Dès lors, l’immobilisationd’entités biologiques comme les enzymes au sein de la structure poreuse a permis d’utiliser cesmatériaux pour des réactions d’hydrolyse, de synthèse ou de décoloration en milieu aqueux dansune approche de « chimie verte ». Enfin, des micro-organismes ont été piégés dans ces matériauxporeux qui ont été recouverts d’une coque en silice. Les micro-organismes peuvent s’y développersans restriction et leur croissance est très différente de celle observée dans les cultures classiques.La coque en silice, formée en surface, est donc imperméable au passage des bactéries (taillemicrométrique) mais perméable à la diffusion des substrats et des réactifs. Cette diffusion a étémise à profit pour réaliser des réactions enzymatiques en cascade. Ces matériaux se positionnentcomme des biocatalyseurs très prometteurs pour de nombreuses applications. / Although porous materials are numerous in nature, the laboratory synthesis of materials withmulti-scale or hierarchical porosity is always difficult. By using soft matter (concentrated emulsions,self-assemblies, lyotropic mesophases, etc.) and the sol-gel process, it is possible to obtaina wide variety of monolithic materials with hierarchical porosity composed of a silicic skeleton.The porosity of these materials can be optimized by playing with the nature of the emulsion,the surfactant used, or with the addition of external agents such as salt. By combining these methods,materials with hexagonal mesoporosity have been obtained. Thanks to their silanol-richsurface, these porous materials have been functionalized by post-synthesis grafting of organicmolecules. Therefore, the immobilization of biological entities such as enzymes within the porousstructure has made it possible to use these materials for hydrolysis, synthesis or discolorationreactions in aqueous media in a "green chemistry" approach. Finally, microorganisms were trappedin these porous materials which were covered with a silica shell. Microorganisms can growthere without restriction and their growth is very different from that observed in conventionalcultures. The silica shell formed on the surface is therefore impermeable to the passage of bacteria(micrometric size) but permeable to diffusion of substrates and reagents. This diffusion wasused to carry out cascade enzymatic reactions. These materials are positioned as very promisingbiocatalysts for many applications.
19

Enlightening structural determinants of reaction and substrate specificities of lipases/acyltransferases : an efficient strategy for their improvement by protein engineering / Recherche des déterminants structuraux des spécificités de réaction et de substrat des lipases/acyltransférases en vue de leur optimisation par ingénierie des protéines

Jan, Anne-Hélène 15 December 2016 (has links)
Les lipases/acyltransférases homologues à CpLIP2 de Candida parapsilosis forment un groupe phylogénétique marqué (au moins 56% d’identité entre les séquences protéiques) . Elles partagent le phénotype d’une activité significative d’acyltransfert, et ce, même dans un milieu aqueux avec une forte activité thermodynamique de l’eau (aW > 0.95), mais diffèrent dans leurs spécificités de substrats. L’identification et la caractérisation de nouvelles lipases/acyltransférases, CalLAc8 et CalLAc5 de Candida albicans et CduLAc de Candida dublininensis, ont apporté de nouveaux éclaircissements sur les relations structure/fonction au sein de cette famille particulière. Dans un premier temps, une définition claire et une méthodologie simple pour évaluer la capacité des enzymes lipolytiques à catalyser l’acyltransfert ont été élaborées. Puis, une stratégie d’ingénierie des protéines, basée sur une analyse comparative des structures 3D et de la mutagénèse dirigée, a été appliquée dans le but d’identifier les déterminants structuraux impliqués dans l’activité d’acyltransfert et la spécificité de substrat des lipases/acyltransférases. Il a été démontré que le caractère hydrophobe d’une cavité située sous le site actif était déterminant pour l’activité de transfert en favorisant les nucléophiles moins polaires que l’eau dans l’étape de désacylation du mécanisme catalytique. Ainsi, des mutants améliorés de plusieurs enzymes sauvages ont pu être élaborés. En parallèle, des enzymes chimériques ont été construites sur la base d’échanges rationnels de sous-domaines (corps principal, chapeau et volet C-terminal). Leur caractérisation a confirmé le rôle du chapeau dans la spécificité de substrat et le rôle principal de « l’acyltransfer pocket » dans la capacité d’acyltransfert. Une potentielle protéine ancestrale de la famille PaleoLAc a également été conçue pour trouver de nouveaux résidus clés et donner un aperçu de l’histoire évolutive de la spécificité de substrats. / Lipases/acyltransferases homologous to CpLIP2 from Candida parapsilosis constitute a consistent phylogenetic subgroup with at least 56% identity. They share the phenotype of a significant acyltransfer activity, even in aqueous media with a high thermodynamic activity of water (aW > 0.95), but are divergent in their substrate specificities. The identification and the characterization of new lipases/acyltransferases, CalLAc8 and CalLAc5 from Candida albicans and CduLAc from Candida dublininensis, brought new enlightenments to the structure/function relationships in this peculiar family. After the elaboration of a clear definition and a simple methodology to assess the acyltransferase character of lipolytic enzymes, a rational design strategy, based on comparative 3D structure analysis and site-directed mutagenesis, was applied to find structural determinants of the acyltransfer ability and the substrate specificities of lipases/acyltransferases. It was evidenced that the hydrophobicity of a cavity located under the active site was determinant for the acyltransfer activity. This allowed the improvement of the acyltransfer activity of several natural enzymes. In parallel, chimeric enzymes with rational exchanges of protein subdomains (main core, cap and C-term flap) were designed, and their characterization confirmed the role of the cap in the substrates specificity and the main role of the acyltransfer pocket in the acyltransfer ability. A putative ancestral protein of the family PaleoLAc was also designed to find new key residues and to give insights on the evolutionary history of the substrate specificities.
20

Illuminating biomolécules : shedding light on the utility of labeling using transglutaminases

Rachel, Natalie 04 1900 (has links)
Le développement des technologies de recombinaison en biologie moléculaire fut un point tournant pour les sciences biologiques. Depuis cette découverte, diverses avancées extraordinaires qui ont un impact direct sur les humains ont pu être accomplies dans les domaines de recherches qui découlent de cette technologie. L’étude des enzymes produites en utilisant cette technique est le fondement de leurs applications éventuellement accessibles. À cet effet, la biocatalyse est un sous-domaine de l’enzymologie en développement continuel. Les chimistes et ingénieurs utilisent les composantes de systèmes biologiques ou même des systèmes complets afin de complémenter ou remplacer des méthodologies existantes. Cette thèse étudie la famille d’enzymes transglutaminase (TGase) comme biocatalyseur afin d’explorer et d’étendre l’ubiquité et les innovations rendues possibles grâce aux enzymes. Les TGases sont des enzymes versatiles. Leur homologue bactérien, la transglutaminase bactérienne (MTG), est couramment utilisé à l’échelle industrielle pour la transformation alimentaire. Depuis une dizaines d’années, de nombreux efforts ont été faits afin de trouver de nouvelles applications des TGases. En premier lieu, une revue des accomplissements, progrès et défis reliés au développement des TGases sera décrite. Les TGases sont intrinsèquement des catalyseurs de la formation de lien isopeptidiques entre une glutamine et une lysine. Par ce fait, elles ont été initialement testées dans cette thèse pour la synthèse de peptides. Une forme de l’enzyme TGase de mammifères fut en mesure de générer les composés dipeptidiques Gly-Xaa et D-Ala-Gly avec une faible conversion. La MTG possède plusieurs caractéristiques qui font de cette enzyme un candidat intéressant pour le développement de biotechnologies. Elle est stable, non dépendante d’un cofacteur et connait peu de compétition pour sa réaction catalytique inverse. La majeure partie de cette thèse porte exclusivement sur l’utilisation de la MTG. Nous avons développé et caractérisé une réaction chimio-enzymatique en un seul pot pour la conjugaison de peptides et protéines. La présence de glutathion en quantité suffisante permet de contourner l’incompatibilité de la MTG avec le cuivre et ouvre la porte à l’utilisation de la réaction de cycloaddition entre un alcyne et un azoture catalysée par le cuivre, afin d’effectuer le marquage fluorescent de protéines. L’utilisation d’autres méthodes de chimie « click » sans métaux fut aussi étudiée afin d’incorporer divers substrats protéiques. Le marquage de protéines avec la MTG fut investigué de manière combinatoire. Précisément, la ligation de Staudinger, la cycloaddition azoture-alcyne promue par la tension de cycle, ainsi que la ligation de tetrazine (TL) ont été testées. Différents niveaux de conversion ont été atteints, le plus prometteur étant celui obtenu avec la TL. Une étude par cristallographie a été effectuée afin d’élucider comment les substrats contenant une glutamine interagissent avec la MTG. Une méthode de purification alternative de la MTG a été développée afin d’atteindre ce but. Une discussion sur les stratégies et défis est présentée. Finalement, la conjugaison entre un système contenant la MTG comme biocatalyseur de marquage, le domaine B1 de la protéine G (GB1) comme substrat et d’un fluorophore contenant une amine comme sonde fut étudié. Comme deux des constituants de ce système sont des protéines, l’ingénierie d’enzyme peut être entreprise afin d’améliorer leurs propriétés. Une banque de 24 variantes de GB1 fut construite grâce à une approche semi-rationnelle afin d’investiguer quels facteurs sont déterminants pour la sélectivité de la MTG envers la glutamine. Chaque variante étudiée comportait une seule glutamine à une position variable afin d’évaluer l’impact des éléments de structure secondaire où se retrouve la glutamine. L’efficacité pour le marquage a pu être améliorée d’au moins un ordre de grandeur pour huit des substitutions étudiées. Comme chacune des structures secondaires fut marquée, il fut démontré que la MTG n’en préfère pas une en particulier. De plus, la réactivité de la MTG envers la variante I6Q-GB1 fut augmentée en créant des mutations dans son site actif. Ces résultats permettent de comprendre d’avantage la sélectivité de la MTG envers la glutamine, tout en démontrant le potentiel de cette enzyme à être modifiée afin d’être améliorée. / The development of recombinant molecular biology technologies was a turning point for the biological sciences, which has since evolved into dozens upon dozens of different subfields and contributed to extraordinary advances for humans. At the core of many of these advances are the enzymes produced by these techniques, with efforts to understand their form and function laying the groundwork for their application. One of these continuously advancing subfields rooted in enzymology is biocatalysis, in which chemists and engineers embrace biological components and systems to complement, or even replace, existing methodologies. This thesis seeks to further contribute to the advancement and ubiquity of enzymes to be incorporated into future innovations. To this end, transglutaminase (TGase) is the biocatalyst selected for study. TGases are versatile enzymes, with the bacterial homolog, microbial transglutaminase (MTG) being readily used in industrial processes for years, particularly for food processing. An abundance of efforts seeking to apply TGases to other processes have been made within the last decade. We commence by reviewing the accomplishments, progress, and challenges to developing TGase towards new goals. TGase naturally catalyzes the formation of isopeptide bonds utilizing a glutamine and lysine substrates, and one of its first unconventional applications we investigated was for peptide synthesis. We determined the ability and specificity of one form of TGase for various amino acid-derived substrates, observing the formation of Gly-Xaa and D-Ala-Gly dipeptide products, albeit at a low conversion. MTG exhibits several characteristics that make it an appealing candidate for biotechnological development, such as its independence from a cofactor, little competition for its reverse catalytic reaction, and increased stability relative to mammalian TGases. Therefore, the remainder of this thesis pertains exclusively to MTG. We developed and extensively characterized a one-pot chemoenzymatic peptide and protein conjugation scheme. The presence of sufficient glutathione circumvents the incompatibility of the copper-catalyzed azide-alkyne cycloaddition with MTG owing to the presence of copper. We ultimately utilized this chemoenzymatic conjugation scheme for fluorescent protein labeling. We continue to expand upon combinatorial methods to undertake protein labeling by investigating to what extent metal-free click chemistries can be utilized in combination with MTG. Specifically, the Staudinger ligation, strain-promoted azide-alkyne cycloaddition, and tetrazine ligation (TL) were assayed on protein substrates to reveal varying levels of effective conjugation, with the TL being the most promising of the three. The details surrounding the manner in which MTG interacts with its glutamine-containing substrate remains unclear. To address this knowledge gap, we sought to pursue crystallography studies, which required the development a modified purification strategy. We discuss the strategies we investigated and the challenges surrounding such efforts. Finally, we present a conjugation system consisting of MTG as the labeling biocatalyst, the B1 domain of Protein G (GB1) as a substrate, and a small-molecule amine belonging to a recently developed class of fluorophores as a probe. As two components of this system are proteins, enzyme engineering can be applied to further improve their properties. A semi-rational approach was used to generate a 24-member GB1 library to probe the structural determinants of MTG’s glutamine selectivity. Each variant contained a single glutamine at varying positions covering all secondary structure elements, and assayed for reactivity. Eight substitutions resulting in an increased labeling efficiency of at least an order of magnitude were distributed throughout all secondary structure elements, indicating that MTG does not favor one preferentially. In addition, introducing point mutations within MTG’s active site also resulted in increased reactivity towards variant I6Q-GB1. Our results contribute further to understanding the nature of MTG’s glutamine selectivity, while simultaneously demonstrating the potential enzyme engineering has to improve and adjust this system.

Page generated in 0.038 seconds