• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 127
  • 29
  • 13
  • 10
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 237
  • 35
  • 30
  • 28
  • 23
  • 22
  • 17
  • 16
  • 14
  • 14
  • 13
  • 12
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

The biochemistry of feed efficiency, energy metabolism, and mitochondrial function, an animal and molecular approach / Bioquímica da eficiência alimentar, metabolismo energético e função mitocondrial, uma abordagem animal e molecular

Baldassini, Welder Angelo 11 August 2017 (has links)
Energetic efficiency is important for health (e.g. genesis of obesity in humans), socio-economically important for meat production systems (e.g. feed cost to produce high quality protein) and important for the environment (e.g. use of natural resources and production of green house gases for meat production). Mitochondria are organelles that play an essential role in cellular metabolism and homeostasis related to energy utilization. These processes involve several proteins to ensure continuous availability of energy to the cells. The Shc proteins play a key role in substrate oxidation and energy metabolism. Additionally, the mitochondrial uncoupling proteins (UCPs) participate in physiological processes that may account for variation in energy expenditures in tissues. However, the mechanisms behind energy expenditure in animals are largely unknown. Thus, in order to study the energy metabolism and mitochondria function, studies using a nutritional, biochemical and molecular approaches were conducted with mice and cattle. The purpose of the first study was to determine if Shc proteins influence the metabolic response to acute (5-7 days) feeding of a high fat diet (HFD). To this end, whole animal energy expenditure and substrate oxidation were measured in the Shc knockout (ShcKO) and wild-type (WT) male mice consuming either a control or HFD diet. The activities of enzymes of glycolysis, the citric acid cycle, electron transport chain (ETC), and &beta;-oxidation were investigated in liver and skeletal muscle. The study showed that ShcKO increases (P < 0.05) energy expenditure (EE) adjusted for either total body weight or lean mass. This change in EE could explain the decrease in weight gain observed in ShcKO versus WT mice fed an HFD. Thus, our results indicate that Shc proteins should be considered as potential targets for developing interventions to mitigate weight gain on HFD by stimulating EE. Although decreased levels of Shc proteins influenced the activity of some enzymes in response to high fat feeding, such as increasing the activity of acyl-CoA dehydrogenase, it did not produce concerted changes in enzymes of glycolysis, citric acid cycle or the ETC. However, the physiological significance of these changes in enzyme activities remains to be determined. The purpose of experiment 2 was to study the association among heat production, blood parameters and mitochondrial DNA (mtDNA) copy number in Nellore bulls with high and low residual feed intake (RFI). The RFI values were obtained by regression of dry mater intake (DMI) in relation to average daily gain and mid-test metabolic body weight. Thus, 18 animals (9 in each group) were individually fed in a feedlot for 98 days. The heart rate (HR) of bulls was monitored for 4 consecutive days and used to calculate the estimated heat production (EHP). Electrodes were fitted to bulls with stretch belts and oxygen consumption was obtained using a facemask connected to the gas analyzer and HR was simultaneously measured for 15 minutes period. Daily EHP was calculated multiplying oxygen pulse (O2P) by the average HR, assuming 4.89 kcal/L of O2. Blood parameters such as hematocrit, hemoglobin, and glucose were assayed between 45 and 90 days. Immediately after slaughter, liver, muscle and adipose tissues (subcutaneous and visceral fat) were collected and, subsequently, mtDNA copy number per cell was quantified in tissues by quantitative real-time PCR. The proteome of hepatic tissue and levels of mitochondrial UCPs were also investigated. We found similar EHP and O2 consumption between RFI groups, while low RFI bulls (more efficient in feed conversion) shown lower HR, hemoglobin and hematocrit percentage (P < 0.05), confirming previous data from our group. In addition, 71 protein spots in liver were differentially expressed (P < 0.05) and no differences were detected for UCPs levels between RFI groups. Finally, there was no association between amounts of mtDNA and the RFI phenotypes, suggesting that mitochondrial abundance in liver, muscle, and adipose tissue was similar between efficient and inefficient groups. However, additional studies to confirm this hypothesis are needed. / A eficiência energética é importante para a saúde humana (gênese da obesidade), sistemas de produção de carne (custo dos alimentos para produzir proteínas de alta qualidade) e para o meio ambiente (uso de recursos naturais e mitigação de gases de efeito estufa). As mitocôndrias são organelas que desempenham papel central no metabolismo e homeostase relacionada a utilização da energia. Nas células, diversas proteínas são importantes para melhorar a eficiência energética. Como exemplos, as proteínas de sinalização Shc são fundamentais na oxidação de substratos e metabolismo energético e, nas mitocôndrias, existem as proteínas desacopladoras (UCPs), que participam do gasto energético e produção de calor. Entretanto, os mecanismos que controlam o gasto energético nos animais ainda é bastante desconhecido. Assim, para estudar o metabolismo energético e a função das mitocôndrias foram conduzidos dois estudos utilizando-se estratégias nutricionais, bioquímicas e moleculares com camundongos (1) e bovinos (2). Objetivou-se, no estudo 1, determinar se as proteínas Shc influenciam a resposta metabólica à alimentação contendo dieta rica em gordura (HFD) por 7 dias. Enzimas da via glicolítica, ciclo de Krebs, cadeia transportadora de elétron (CTE) e &beta;-oxidação foram analisadas no fígado e músculo de camundongos com baixa expressão de Shc (knockout ou ShcKO) e comuns (wild-type ou WT) submetidos à uma dieta controle ou à HFD. O gasto energético foi medido por câmara calorimétrica de respiração nos animais. O genótipo ShcKO apresentou maior gasto energético (P < 0.05) ajustado para o peso corporal total ou massa magra. Essa mudança poderia explicar o menor ganho de peso observado no genótipo ShcKO comparado ao WT quando consumindo a HFD. Esses resultados sugerem que as proteínas Shc podem contribuir no desenvolvimento de estratégias para mitigar o ganho de peso. Embora a redução dos níveis de Shc (ShcKO) tenha modificado a atividade de enzimas da &beta;-oxidação em resposta a HFD, tal condição não produziu mudanças semelhantes na via glicolítica, ciclo de Krebs ou CTE. Por isso, mais estudos são necessários para compreender a significância fisiológica dessas alterações. No experimento 2, objetivou-se estudar a associação entre produção de calor, variáveis sanguíneas e número de cópias de DNA mitocondrial (mtDNA) em bovinos Nelore agrupados pelo consumo alimentar residual (CAR). O CAR foi obtido por regressão do consumo de matéria seca em relação ao ganho de peso diário e peso metabólico do teste de desempenho (fase de crescimento). Assim, 18 bovinos (9 alto CAR versus 9 baixo CAR) foram confinados em baias individuais por 98 dias (fase de terminação). Os batimentos cardíacos (BC) dos bovinos foram monitorados por quatro dias consecutivos e, então, utilizados para o cálculo da produção de calor estimada (PCe). O consumo e pulso de oxigênio (O2) foram obtidos por meio de analisador de gás conectado à uma máscara facial, com medição simultânea dos BC por 15 minutos. A PCe diária foi calculada por multiplicação do pulso de O2 pela média dos BC, assumindo-se a constante 4.89 kcal/L de O2. Foram analisadas variáveis sanguíneas como hematócrito, hemoglobina e glicose (alto vs. baixo CAR). Imediatamente após o abate dos animais, amostras de fígado, músculo e tecido adiposo foram coletadas para determinação do mtDNA por PCR em tempo real. Adicionalmente, o proteoma do tecido hepático e os níveis de UCPs nos tecidos foram também investigados. Não houve diferença para PCe e consumo de O2 (P > 0.05) entre os grupos experimentais, entretanto, os animais baixo CAR (mais eficientes em conversão alimentar) demonstraram menor BC, concentração de hemoglobina e percentagem de hematócrito (P < 0.05), confirmando resultados previamente observados em nossos estudos. No fígado, 71 spots proteicos foram diferentes (P < 0.05) entre os grupos alto e baixo CAR, mas nenhuma diferença foi observada para os níveis de UCPs no músculo, fígado ou tecido adiposo. Por fim, não existiu diferença (P > 0.05) entre o número de cópias do mtDNA por célula entre os fenótipos estudados, sugerindo que o número de mitocôndrias e possivelmente a fosforilação oxidativa foi semelhante entre os grupos de animais eficientes e ineficientes. Contudo, são necessários estudos adicionais para confirmar essa hipótese.
132

Effets biologiques et mécanisme d'action du peptide FEE cyclique / Biological effects and mechanism of action of cyclic FEE peptide

Le Foll, Nathalie 23 November 2016 (has links)
Pas de résumés / No abstract
133

Acute and temporal responses of brain–derived neurotrophic factor and Interleukin-6 to high and low repetition resistance training programs

Unknown Date (has links)
The purpose of this study was to determine if resistance exercise altered peripheral BDNF concentration. Eighteen trained male subjects were split into two groups performing varied repetition ranges. DUP-HR and DUP-LR groups trained 3x/week for 8 weeks, and were equated for total volume (repetitions X sets X intensity). Plasma BDNF and interleukin-6 (IL-6) levels were measured prior to and immediately following the first exercise session of weeks 1, 2, 4 and 6. Pre-exercise levels were also assessed prior to the second and third sessions of week 1 and 6. Lastly, resting levels were measured before and after training intervention. No group differences (p>0.05) were detected for either biomarker. An acute BDNF elevation (p=0.018) was detected only in the final week of training. IL-6 elevations were detected at all acute measurements (p<0.01). BDNF and IL-6 percentage change correlated significantly (p<0.05) in week-1. No chronic alterations were observed (p>0.05). / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2015 / FAU Electronic Theses and Dissertations Collection
134

Temporal response of creatine kinase and fibroblast growth factor-21 to high and low repetition resistance training programs

Unknown Date (has links)
The purpose of this study was to examine the acute and temporal response of CK- MM and FGF-21 to 3-day/wk. different repetition-range, volume-equated resistance training programs over 8-weeks in previously trained males. Sixteen trained, college- aged males were counterbalanced into high (DUP-HR) or low (DUP-LR) repetition groups. Subjects performed the squat and bench press 3x/wk. for 8 weeks. Blood samples were collected at various intervals throughout the study. Trained individuals did not elicit significant acute or chronic changes in CK-MM or FGF-21 following training and the lack of change was present in both groups. Additionally, neither biomarker correlated with changes in 1RM strength. There was a very strong correlation between acute mean (r=0.95) and acute percentage change (r=0.97) increase from pre training to post training in week #1. Additionally, a moderate correlation in percentage change was observed (r=0.59) of both biomarkers from pre training to 48 hours post training in week #2. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2015 / FAU Electronic Theses and Dissertations Collection
135

Structure and function of lipid droplet-associated mitochondria in brown adipose tissue

Benador, Ilan Yaacov 24 October 2018 (has links)
Mitochondria play a central role in lipid metabolism and pathology in obesity and type 2 diabetes mellitus. Mitochondria have been shown to associate with lipid droplets (LDs) in multiple tissues but the functional role of these peridroplet mitochondria (PDM) is unknown. This work reveals that PDM have unique protein composition and cristae structure, and remain adherent to the LD in the tissue homogenate. We developed an approach to isolate PDM based on their adherence to LDs. Comparison of purified PDM to cytoplasmic mitochondria reveals that (1) PDM have increased pyruvate oxidation, electron transport, and ATP synthesis capacities. (2) PDM have reduced beta oxidation capacity and depart from LDs upon activation of brown adipose tissue thermogenesis and beta oxidation. (3) PDM support LD expansion as Perilipin 5-induced recruitment of mitochondria to LDs increases ATP-dependent triacylglyceride synthesis. (4) PDM maintain a distinct protein composition due to uniquely low fusion-fission dynamics. We conclude that PDM represent a segregated mitochondrial population with unique structure and function that supports triacylglyceride synthesis. We suggest that increased mitochondrial recruitment to LDs may be part of a generalized adaptive response in physiological conditions that require LD expansion, such as post-prandial lipid synthesis and storage. Furthermore, PDM-mediated LD expansion may play a role in muscle and liver injury from lipotoxicity in conditions of nutrient excess, such as obesity and hyperlipidemia. A better understanding of PDM and LD biology may therefore lead to new therapies for lipotoxic tissue injury and insulin resistance. / 2020-10-24T00:00:00Z
136

Acúmulo da ribonucleoproteína heterogênea nuclear K em câncer de cabeça e pescoço: estudos mitocondriais / Accumulation of heterogeneous nuclear ribonucleoprotein K in head and neck cancer: mitochondrial studies

Garcia, Cristiana Bernadelli 03 April 2014 (has links)
A ribonucleoproteína heterogênea nuclear K (hnRNP K) é uma proteína envolvida em processos de expressão gênica e tem sido proposta como ligante de RNAs mensageiros mitocondriais. Apesar de ser considerada um marcador de pior prognóstico no câncer de cabeça e pescoço, o papel da hnRNP K nesta doença ainda é pouco conhecido. O objetivo deste trabalho foi estudar o envolvimento da hnRNP K na mitocôndria com ênfase na bioenergética e na identificação de novos potenciais ligantes de hnRNP K. As linhagens celulares utilizadas foram de carcinoma de cabeça e pescoço (HN13 e CAL 27) com silenciamento de RNA para hnRNP K e células HEK293 com super-expressão de hnRNP K. O efeito do acúmulo celular da hnRNP K na cadeia transportadora de elétrons mitocondrial foi avaliado por meio da atividade dos complexos mitocondriais I, II e V em células HN13. A redução do nível de hnRNP K usando RNA de interferência promoveu uma diminuição da atividade dos complexos nas células HN13, indicando o envolvimento da proteína na eficiência do transporte de elétrons na cadeia respiratória mitocondrial. Células HEK293 com super-expressão da hnRNP K (HEK293/hnRNP K) e as linhagens HN13 e CAL 27 com silenciamento e redução estável de hnRNP K foram utilizadas para determinar o papel de hnRNP K no potencial de membrana mitocondrial, níveis de ATP, produção de lactato e consumo de oxigênio. Células HEK293/hnRNP K comparadas ao controle apresentaram maior nível de ATP, menor potencial de membrana mitocondrial, menor consumo de oxigênio e maior produção de lactato. As células HN13 com redução da hnRNP K apresentaram níveis mais baixos de ATP, com menor liberação de lactato para o meio extracelular e maior consumo de oxigênio. Esses resultados sugerem que o acúmulo da proteína hnRNP K tem ação importante na mitocôndria por alterar o metabolismo bioenergético celular de fosforilação oxidativa para glicólise anaeróbica. A estratégia de co-imunoprecipitação usando anticorpos para hnRNP K, digestão de proteínas com tripsina e cromatografia líquida acoplada a espectrômetria de massa foi usada para encontrar novos potenciais ligantes de hnRNP K. A análise dos dados com o software SEPro identificou 57 proteínas candidatas a ligantes da hnRNP K. Três proteínas foram validadas por co-IP e Western blotting: o fator de transcrição mitocondrial PTCD3, YB1 e PSF. Propomos que a hnRNP K apresenta função na energética mitocondrial, e provavelmente, a sua interação com PTCD3 participa desta função. / Heterogeneous nuclear ribonucleoprotein K (hnRNP K) is a protein involved in gene expression processes, which has been proposed to bind mitochondrial mRNAs. Despite it to be considered a prognostic marker in cancer, the hnRNPK role in this disease is unknown. We addressed the involvement of hnRNP K in mitochondria with emphasis on bioenergetics and identification of new potential ligands of hnRNP K. The cell lines used were from head and neck squamous cell carcinoma (HN13 and CAL 27) with RNA silencing for hnRNP K , and HEK293 cells with overexpression of hnRNP K. The effects of cellular accumulation of hnRNP K in mitochondrial electron chain carriers were assessed by the activity of mitochondrial complexes I, II and V in HN13 cells. Reduced levels of hnRNP K using RNA interference promoted a decrease in the activity of the complexes in HN13 cells, indicating the involvement of the protein in the efficiency of the electron transport in mitochondrial respiratory chain. HEK293 cells with overexpression of hnRNP K (HEK293/hnRNP K) and HN13 and CAL 27 cells with silencing and stable reduction of hnRNP K were used to determine the role of hnRNP K in mitochondrial membrane potential, ATP levels, lactate production and oxygen consumption. HEK293/hnRNP K, compared to control cells, showed higher levels of ATP, reduced mitochondrial membrane potential, lower oxygen consumption and higher production of lactate. HN13 cells with reduced hnRNP K had lower ATP levels, with lower release of lactate to the extracellular medium and higher oxygen consumption. These results suggest that accumulation of hnRNP K protein plays a role in mitochondria by changing the cellular energetic metabolism from oxidative phosphorylation to glycolysis. The strategy of co-immunoprecipitation using antibodies for hnRNP K, protein digestion with trypsin, and liquid chromatography, coupled to mass spectrometer, were used to search for new potential ligands of hnRNP K. Data analysis with software SEPro identified 57 candidate proteins binding to hnRNP K. Three proteins were validated by co-IP and Western blotting: the mitochondrial transcription factor PTCD3, YB1, and PSF. We propose that hnRNP K plays a role in the mitochondrial energetics, and probably its interaction with PTCD3 participates in this function.
137

Activity patterns in small mammals, with special reference to their use of natural resources

Miller, Richard S. January 1952 (has links)
No description available.
138

Predicting the impact of a northern pike (Esox lucius) invasion on endangered June sucker (Chasmistes liorus) and sport fishes in Utah Lake, UT

Reynolds, Jamie 01 May 2017 (has links)
Invasive species introductions are associated with negative economic and environmental impacts, including reductions in native species populations. Successful invasive species populations often grow rapidly and a new food web equilibrium is established. Invasive, predatory northern pike (Esox lucius; hereafter pike) were detected in 2010 in Utah Lake, UT, a highly-degraded ecosystem home to the endemic, endangered June sucker (Chasmistes liorus). Here we test whether pike predation could hinder the restoration efforts of June sucker using the number of June sucker consumed by pike at various population densities as our metric. More specifically, we considered pike density at which the population could consume all June sucker stocked a critical threshold. Currently the number of naturally recruited June sucker is drastically lower than the number stocked. Thus, the metric we used to determine whether the pike population could hinder the June sucker restoration efforts is the number of pike that could consume the number of June sucker stocked. We combined pike growth and foraging observations with an energy-budget, bioenergetics consumption model to quantify lake-wide pike predation on June sucker. We also used an age-structured density dependent population model to estimate the pike population growth trajectory under various mitigation scenarios. Of 125 pike, we found an average pike consumes 0.8-1.0% June sucker and 40% sport fish. According to our bioenergetics model simulations, a population of adult pike at a very high density (60 pike per hectare) has the potential to consume nearly 6 million age-0 June sucker per year, which is likely more June sucker consumed than exist in the environment. In addition, our model suggests that an adult pike density greater than 1.5 pike per hectare has the potential to consume all June sucker stocked annually. Our age-structured population model suggests the pike population will reach equilibrium around 2026 at between 8 and 12 adult pike per hectare with the potential to consume between 0.8 and 1.2 million age-0 June sucker per year, respectively. The growing pike population could hamper restoration efforts and threaten endangered June sucker, a population with a mere 2,000 adults, in jeopardy of extinction. Our findings not only inform pike management efforts, but also highlight the importance of allocating resources toward habitat restoration to provide refuge for juvenile June sucker from predation, preventing the spread of aquatic invasive species, and the need for aquatic invasive species education.
139

DNA damage and disruption of cellular bioenergetics contribute to the anti-cancer effects of pharmacological ascorbate

Buranasudja, Visarut 01 December 2018 (has links)
The clinical potential of pharmacological ascorbate (P-AscH-; IV delivery achieving mM concentrations in blood) as an adjuvant in cancer therapy is being re-evaluated. At mM concentrations, P-AscH- is thought to exhibit anti-cancer activity via generation of a flux of H2O2 in tumors, which leads to oxidative distress. Here, we use cell culture models of pancreatic cancer, MIA PaCa-2, PANC-1, and 339 cells, to examine the effects of P-AscH- on DNA damage, and downstream consequences, including changes in bioenergetics. We have found that the high flux of H2O2 produced by P-AscH- induces both nuclear and mitochondrial DNA damage. In response to this DNA damage, we observed that poly (ADP-ribose) polymerase-1 (PARP-1) is hyperactivated, as determined by increased formation of poly (ADP-ribose) polymer. Using our unique absolute quantitation, we found that the P-AscH--mediated the overactivation of PARP-1, which results in consumption of NAD+, and subsequently depletion of ATP (potential energy crisis) leading to mitotic cell death. Time-course studies with MIA PaCa-2 cells showed that the level of NAD+ and ATP were reduced by 80% immediately after a 1-h exposure to P-AscH- (4 mM; 14 pmol cell-1); both species returned to near basal levels within 24 h. In parallel with these metabolic and energetic restorations, the lesions in nuclear DNA were removed within 3 h; however, even after 24 h, lesions in mitochondrial DNA were only partially repaired. We have also found that the Chk1 pathway has a major role in the maintenance of genomic integrity following treatment with P-AscH-. Hence, combinations of P-AscH- and Chk1 inhibitors could have the potential to improve outcomes of cancer treatment. Hyperactivation of PARP-1 and DNA repair are ATP-consuming processes. Using a Seahorse XF96 Analyzer, we observed no changes in OCR or ECAR/PPR following treatment with P-AscH-. OCR and ECAR/PPR together indicate the rate of production of intracellular ATP; therefore, the rate of production is unchanged after challenge with P-AscH-. Thus, the severe decrease in ATP is due solely to increased demand. Genetic deletion and pharmacological inhibition of PARP-1 preserved both NAD+ and ATP; however, the toxicity of P-AscH- remained. These data indicate that loss of NAD+ and ATP are secondary factors in the toxicity of P-AscH-, and damage to DNA is the primary factor. These preclinical findings can guide the best use of P-AscH- as an adjuvant in cancer therapy.
140

The bioenergetics of the juvenile Yabbie (Cherax destructor Clark) / Richard Musgrove.

Musgrove, Richard January 1994 (has links)
Includes bibliographical references. / xi, 138, [131] leaves : ill. ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.)--University of Adelaide, Dept. of Zoology, 1994?

Page generated in 0.0601 seconds