• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 3
  • 2
  • Tagged with
  • 18
  • 18
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Informatics Approaches to Linking Mutations to Biological Pathways, Networks and Clinical Data

Singh, Arti 08 July 2011 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The information gained from sequencing of the human genome has begun to transform human biology and genetic medicine. The discovery of functionally important genetic variation lies at the heart of these endeavors, and there has been substantial progress in understanding the common patterns of single-nucleotide polymorphism (SNP) in humans- the most frequent type of variation in humans. Although more than 99% of human DNA sequences are the same across the population, variations in DNA sequence have a major impact on how we humans respond to disease; to environmental entities such as bacteria, viruses, toxins, and chemicals; and drugs and other therapies and thus studying differences between our genomes is vital. This makes SNPs as well other genetic variation data of great value for biomedical research and for developing pharmaceutical products or medical diagnostics. The goal of the project is to link genetic variation data to biological pathways and networks data, and also to clinical data for creating a framework for translational and systems biology studies. The study of the interactions between the components of biological systems and biological pathways has become increasingly important. It is known and accepted by scientists that it as important to study different biological entities as interacting systems, as in isolation. This project has ideas rooted in this thinking aiming at the integration of a genetic variation dataset with biological pathways dataset. Annotating genetic variation data with standardized disease notation is a very difficult yet important endeavor. One of the goals of this research is to identify whether informatics approaches can be applied to automatically annotate genetic variation data with a classification of diseases.
12

Protein Profile and Directed Gene Expression of Developing C2C12 cells

Rashid, Susan Basel 18 September 2015 (has links)
No description available.
13

Multi-omics Data Integration for Identifying Disease Specific Biological Pathways

Lu, Yingzhou 05 June 2018 (has links)
Pathway analysis is an important task for gaining novel insights into the molecular architecture of many complex diseases. With the advancement of new sequencing technologies, a large amount of quantitative gene expression data have been continuously acquired. The springing up omics data sets such as proteomics has facilitated the investigation on disease relevant pathways. Although much work has previously been done to explore the single omics data, little work has been reported using multi-omics data integration, mainly due to methodological and technological limitations. While a single omic data can provide useful information about the underlying biological processes, multi-omics data integration would be much more comprehensive about the cause-effect processes responsible for diseases and their subtypes. This project investigates the combination of miRNAseq, proteomics, and RNAseq data on seven types of muscular dystrophies and control group. These unique multi-omics data sets provide us with the opportunity to identify disease-specific and most relevant biological pathways. We first perform t-test and OVEPUG test separately to define the differential expressed genes in protein and mRNA data sets. In multi-omics data sets, miRNA also plays a significant role in muscle development by regulating their target genes in mRNA dataset. To exploit the relationship between miRNA and gene expression, we consult with the commonly used gene library - Targetscan to collect all paired miRNA-mRNA and miRNA-protein co-expression pairs. Next, by conducting statistical analysis such as Pearson's correlation coefficient or t-test, we measured the biologically expected correlation of each gene with its upstream miRNAs and identify those showing negative correlation between the aforementioned miRNA-mRNA and miRNA-protein pairs. Furthermore, we identify and assess the most relevant disease-specific pathways by inputting the differential expressed genes and negative correlated genes into the gene-set libraries respectively, and further characterize these prioritized marker subsets using IPA (Ingenuity Pathway Analysis) or KEGG. We will then use Fisher method to combine all these p-values derived from separate gene sets into a joint significance test assessing common pathway relevance. In conclusion, we will find all negative correlated paired miRNA-mRNA and miRNA-protein, and identifying several pathophysiological pathways related to muscular dystrophies by gene set enrichment analysis. This novel multi-omics data integration study and subsequent pathway identification will shed new light on pathophysiological processes in muscular dystrophies and improve our understanding on the molecular pathophysiology of muscle disorders, preventing and treating disease, and make people become healthier in the long term. / Master of Science
14

DEVELOPMENT OF A MODULAR SOFTWARE SYSTEM FOR MODELING AND ANALYZING BIOLOGICAL PATHWAYS

KRISHNAN, RAJESH 08 October 2007 (has links)
No description available.
15

Kernel Methods for Genes and Networks to Study Genome-Wide Associations of Lung Cancer and Rheumatoid Arthritis

Freytag, Saskia 08 January 2014 (has links)
No description available.
16

Using n-layer graph models for representing and transforming knowledge on biological pathways

Hammoud, Zaynab 23 March 2021 (has links)
No description available.
17

A signal transduction score flow algorithm for cyclic cellular pathway analysis, which combines transcriptome and ChIP-seq data

Isik, Zerrin, Ersahin, Tulin, Atalay, Volkan, Aykanat, Cevdet, Cetin-Atalay, Rengul 08 April 2014 (has links) (PDF)
Determination of cell signalling behaviour is crucial for understanding the physiological response to a specific stimulus or drug treatment. Current approaches for large-scale data analysis do not effectively incorporate critical topological information provided by the signalling network. We herein describe a novel model- and data-driven hybrid approach, or signal transduction score flow algorithm, which allows quantitative visualization of cyclic cell signalling pathways that lead to ultimate cell responses such as survival, migration or death. This score flow algorithm translates signalling pathways as a directed graph and maps experimental data, including negative and positive feedbacks, onto gene nodes as scores, which then computationally traverse the signalling pathway until a pre-defined biological target response is attained. Initially, experimental data-driven enrichment scores of the genes were computed in a pathway, then a heuristic approach was applied using the gene score partition as a solution for protein node stoichiometry during dynamic scoring of the pathway of interest. Incorporation of a score partition during the signal flow and cyclic feedback loops in the signalling pathway significantly improves the usefulness of this model, as compared to other approaches. Evaluation of the score flow algorithm using both transcriptome and ChIP-seq data-generated signalling pathways showed good correlation with expected cellular behaviour on both KEGG and manually generated pathways. Implementation of the algorithm as a Cytoscape plug-in allows interactive visualization and analysis of KEGG pathways as well as user-generated and curated Cytoscape pathways. Moreover, the algorithm accurately predicts gene-level and global impacts of single or multiple in silico gene knockouts. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
18

A signal transduction score flow algorithm for cyclic cellular pathway analysis, which combines transcriptome and ChIP-seq data

Isik, Zerrin, Ersahin, Tulin, Atalay, Volkan, Aykanat, Cevdet, Cetin-Atalay, Rengul January 2012 (has links)
Determination of cell signalling behaviour is crucial for understanding the physiological response to a specific stimulus or drug treatment. Current approaches for large-scale data analysis do not effectively incorporate critical topological information provided by the signalling network. We herein describe a novel model- and data-driven hybrid approach, or signal transduction score flow algorithm, which allows quantitative visualization of cyclic cell signalling pathways that lead to ultimate cell responses such as survival, migration or death. This score flow algorithm translates signalling pathways as a directed graph and maps experimental data, including negative and positive feedbacks, onto gene nodes as scores, which then computationally traverse the signalling pathway until a pre-defined biological target response is attained. Initially, experimental data-driven enrichment scores of the genes were computed in a pathway, then a heuristic approach was applied using the gene score partition as a solution for protein node stoichiometry during dynamic scoring of the pathway of interest. Incorporation of a score partition during the signal flow and cyclic feedback loops in the signalling pathway significantly improves the usefulness of this model, as compared to other approaches. Evaluation of the score flow algorithm using both transcriptome and ChIP-seq data-generated signalling pathways showed good correlation with expected cellular behaviour on both KEGG and manually generated pathways. Implementation of the algorithm as a Cytoscape plug-in allows interactive visualization and analysis of KEGG pathways as well as user-generated and curated Cytoscape pathways. Moreover, the algorithm accurately predicts gene-level and global impacts of single or multiple in silico gene knockouts. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.

Page generated in 0.0479 seconds