Spelling suggestions: "subject:"biomass conversion"" "subject:"biomass eonversion""
31 |
Nanofiber immobilized cellulases and hemicellulases for fruit waste beneficiationSwart, Shanna January 2015 (has links)
No description available.
|
32 |
Catalytic Fast Pyrolysis of Biomass in a Bubbling Fluidized Bed Reactor with Gallium Promoted Zsm-5 CatalystShi, Jian 01 January 2012 (has links) (PDF)
The huge energy demand of our society is causing fossil fuel resources to diminish rapidly. Therefore, it is critical to search for alternative energy resources. Biomass is currently both abundant and inexpensive. Biofuels (fuels produced from biomass) have the potential to replace fossil fuels if a cost effective process can be develop to convert biomass into fuels.
Catalytic fast pyrolysis is a technology that can convert biomass into gasoline ranged aromatics in a single step. By heating biomass quickly to an intermediate temperature, biomass will thermally decompose into small molecules which can fit into zeolite catalyst pores. Inside the catalyst pores, these small molecules undergo a series of reactions where aromatics are formed along with olefins, CO, CO2, CH4 and water. Gallium promoted ZSM-5 catalyst has been shown to promote small alkanes aromatization, thus it has the potential to increase aromatic yield in catalytic fast pyrolysis process. The focus of the thesis is to study the behavior of catalyst fast pyrolysis of biomass over Gallium promoted catalyst, and explore various ways to utilize the gas phase olefins to increase the aromatic yield. [CG1]
The effect of reaction parameters (temperature, weight hourly space velocity, and fluidized gas velocity) on catalytic fast pyrolysis of biomass with Ga/ZSM-5 were studied in a fluidized bed reactor using pine saw dust as the biomass feed. The product distribution and hydrocarbon selectivity are shown to be a strong function of temperature and weight hourly space velocity. Compared to ZSM-5 catalyst at the same reaction conditions, Ga/ZMS-5 has been shown to increase the aromatic yield by 40%.
Olefins can be recycled back to the CFP fluidized bed reactor to further increase the aromatic yield. The olefin co-feeding with pine saw dust experiments indicates that co-feeding with propylene can increase the aromatic yield, however, co-feeding with ethylene will cause a decrease in aromatic yield. In both co-feeding experiments, an increase in the amount of coke formed was also observed.
Besides a simple olefin recycle, another possible way to utilize these olefins, while avoiding the high cost to separate them from other gas phase products (CO, CO2 and CH4),is adding a secondary alkylation unit after the fluidized bed reactor. The alkylation unit could provide a way to produce additional ethylbenzene after the main CFP process. Three zeolite catalysts (ZSM-5, Y-zeolite and Beta zeolite) were tested in the alkylation unit, and ZSM-5 catalyst shows the highest activity and selectivity in the alkylation of benzene and ethylene.
|
33 |
Structure and dynamics of lignin in condensed phase for biomass conversionJahan, Nusrat 09 December 2022 (has links)
Lignocellulosic biomass represents the largest potential volume and lowest cost for biofuel and biochemical production. Harnessing the full potential of the lignocellulosic biomass for low-carbon energy requires the knowledge of efficient breakdown and fractionation of its carbohydrates and lignin. Organic solvent pretreatment is recognized as an emerging way ahead because of its inherent advantages, such as the ability to fractionate lignocellulosic biomass into cellulose, lignin, and hemicellulose components with high purity, as well as easy solvent recovery and solvent reuse. Through all-atom MD simulation, we analyze the conformational transition of diverse lignin molecules in varying concentration of Methanol/water , DMSO/water mixtures and neat DMSO , neat methanol and water. From our work, it appears that in 40 mol% DMSO and 40 mol% methanol mixture (’theta solvent’) hardwood lignin(G/S=1.35) conforms random coil like structure, while 60 mol% DMSO and 60 mol% methanol solution (at 300 K) appears to be ’good solvent’ forhardwood lignin since it conforms extended chain like structure. While 80 mol% methanol is proven to be ’theta solvent’ and 80 mol% DMSO is proven to be ’good solvent’ for softwood lignin. We find that, major functional moieties of both lignin preferentially coordinated by methanol and DMSO molecules in increased organic solvents concentration which induces the conformational transition from crumbled globule to coil and prevent self-aggregation of lignin in binary mixtures. Chain dynamics of lignin explain the relaxation and subsequently elongated in addition of organic solvents into water.
|
34 |
Bioremediation of Brewery Sludge and Hydrogen Production Using Combined ApproachesGarduno Ibarra, Itzcoatl Rafael 06 January 2023 (has links)
Hydrogen is re-emerging as a serious alternative to fossil fuels. It is a clean gas with high energy density and its combustion only generates water vapour. Nevertheless, the hydrogen industry has a significant carbon footprint since this gas is mostly derived from fossil fuels reforming processes. This project focusses on the development of sustainable alternatives to conventional hydrogen production, in which approaches based on dark fermentation (DF) using an inexpensive residue from the brewery industry as primary feedstock are presented. Firstly, a fungal pre-treatment (FT) was proposed to degrade a high-strength brewery waste slurry (BWS) to obtain an effluent with a lower concentration of chemical oxygen demand (COD) but rich in readily fermentable sugars for the ensuing DF, thus improving hydrogen yields (HY). Secondly, microbial electrolysis and fuel cells (MECs and MFCs) were proposed to assist DF, generating electricity in MFCs while improving HY by MECs. Coupling both microbial electrochemical technologies sequentially after DF did not show any advantage. However, promising results were obtained for electricity and hydrogen production when taking a single-staged approach. Treating BWS directly by MFCs produced 2.0 watts/g COD consumed, while the DF process assisted simultaneously by MECs (DF/MEC) produced 1.6 times more hydrogen than DF alone. An average HY of 2.32 ± 0.06 mol H₂/mol glucose was attained between both DF/MEC and DF after FT, hence approaching the theoretical value of 2.4 mol H₂/mol glucose, representing roughly a 50% improvement compared to DF alone. With an overall COD reduction above 76%, the DF after FT exhibited the highest energy conversion rate per substrate consumed (6.3 kJ/g COD). As valuable by-products obtained, up to 31 g/L of fungal biomass, which is appreciated in many state-of-the-art biomaterials applications, was produced by using BWS. While in the DF/MEC process, 18 g/L of butyric acid were generated, which is three times more than with DF alone. Butyric acid being the precursor to butanol and building block of biodegradable thermoplastics, this result is not without significance. The proposed approaches not only valorize BWS but also validate their economic and environmental attractiveness as promising alternative hydrogen production methods.
|
35 |
Surface characterization of biomass by imaging mass spectrometryJung, Seokwon 13 November 2012 (has links)
Lignocellulosic biomass (e.g., non food-based agricultural resides and forestry wastes) has recently been promoted for use as a source of bioethanol instead of food-based materials (e.g., corn and sugar cane), however to fully realize these benefits an improved understanding of lignocellulosic recalcitrance must be developed. The primary goal of this thesis is to gain fundamental knowledge about the surface of the plant cell wall, which is to be integrated into understanding biomass recalcitrance. Imaging mass spectrometry by TOF-SIMS and MALDI-IMS is applied to understand detailed spatial and lateral changes of major components in the surface of biomass under submicron scale.
Using TOF-SIMS analysis, we have demonstrated a dilute acid pretreated poplar stem represented chemical differences between surface and bulk compositions. Especially, abundance of xylan was observed on the surface while sugar profile data showed most xylan (ca. 90%) removed from the bulk composition. Water only flowthrough pretreated poplar also represented difference chemistry between surface and bulk, which more cellulose revealed on the surface compared to bulk composition. In order to gain the spatial chemical distribution of biomass, 3-dimensional (3D) analysis of biomass using TOF-SIMS has been firstly introduced in the specific application of understanding recalcitrance. MALDI-IMS was also applied to visualize different molecular weight (e.g., DP) of cellulose oligomers on the surface of biomass.
|
36 |
Biomass-fuelled PEM FuelCell systems for small andmedium-sized enterprisesGuan, Tingting January 2015 (has links)
Biomass-fuelled proton exchange membrane fuel cells (PEMFCs) offer asolution for replacing fossil fuel for hydrogen production. Through using thebiomass-derived hydrogen as fuel, PEMFCs may become an efficient andsustainable energy system for small and medium-sized enterprises. The aim ofthis thesis is to evaluate the performance and potential applications of biomassfuelledPEMFC systems which are designed to convert biomass to electricity andheat. Biomass-fuelled PEMFC systems are simulated by Aspen plus based ondata collected from experiments and literature.The impact of the quality of the hydrogen-rich gas, anode stoichiometry, CH4content in the biogas and CH4 conversion rate on the performance of the PEMFCis investigated. Also, pinch technology is used to optimize the heat exchangernetwork to improve the power generation and thermal efficiency.For liquid and solid biomass, anaerobic digestion (AD) and gasification (GF),respectively, are relatively viable and developed conversion technologies. ForAD-PEMFC, a steam reformer is also needed to convert biogas to hydrogen-richgas. For 100 kWe generation, the GF-PEMFC system yields a good technicalperformance with 20 % electrical efficiency and 57 % thermal efficiency,whereas the AD-PEMFC system only has 9 % electrical efficiency and 13 %thermal efficiency. This low efficiency is due to the low efficiency of theanaerobic digester (AD) and the high internal heat consumption of the AD andthe steam reformer (SR). For the environmental aspects, the GF-PEMFC systemhas a high CO2 emissions offset factor and the AD-PEMFC system has anefficient land-use.The applications of the biomass-fuelled PEMFC systems are investigated on adairy farm and an olive oil plant. For the dairy farm, manure is used as feedstockto generate biogas through anaerobic digestion. A PEMFC qualified for 40 %electrical efficiency may generate 360 MWh electricity and 680 MWh heat peryear to make a dairy farm with 300 milked cows self-sufficient in a sustainableway. A PEMFC-CHP system designed for an olive oil plant generating annual 50000 m3 solid olive mill waste (SOMW) and 9 000 m3 olive mill waste water(OMW) is simulated based on experimental data from the Biogas2PEM-FCproject1. After the optimization of the heat exchanger network, the PEMFC-CHP system can generate 194 kW electricity which corresponds to 62 % of the totalelectricity demand of the olive oil plant.The economic performance of the PEMFC and biogas-fuelled PEMFC areassessed roughly including capital, operation & maintenance (O&M) costs of thebiogas plant and the PEMFC-CHP, the cost of heat and electricity, and the valueof the digestate as fertilizer. / <p>QC 20151109</p>
|
37 |
Estudo do aproveitamento do resíduo da lavoura cafeeira como fonte de biomassa na produção de hidrogênio / Study using waste from coffee plantations as a source of biomass for hydrogenORSINI, ROSELY dos R. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:35:15Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:09:42Z (GMT). No. of bitstreams: 0 / Tese (Doutoramento) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
|
38 |
Estudo do aproveitamento do resíduo da lavoura cafeeira como fonte de biomassa na produção de hidrogênio / Study using waste from coffee plantations as a source of biomass for hydrogenORSINI, ROSELY dos R. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:35:15Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:09:42Z (GMT). No. of bitstreams: 0 / O aproveitamento da palha do café por meio da conversão térmica apresenta-se com uma alternativa para o problema ambiental de descarte e queimadas a céu aberto, evitando a emissão dos gases poluentes na atmosfera, mais conhecidos como gases do efeito estufa (GEE), agregando valor aos resíduos. A palha do café, também conhecida como casca do café, foi utilizada in natura, e submetida à pirólise em reator de leito fixo, em escala laboratorial. Os experimentos foram realizados em sistema de bateladas, uma vez que o equipamento é totalmente fechado; a massa de palha do café utilizada foi de 54g e parâmetros como pressão de alimentação do gás de aquecimento (5,5 Kgf/cm2), taxa de aquecimento (20 °C/min), temperatura de operação do reator de pirólise (Tmáx = 708 0C) e rendimento gravimétrico tanto da fase sólida quanto da fase líquida, foram estudados definindo as melhores condições de controle do processo. Várias caracterizações utilizando as seguintes técnicas: análise imediata, análise elementar, análise térmica (TG/DTG e DSC) e GC/MS foram realizadas com a palha do café, para que fossem inferidos parâmetros de partida para a pirólise da biomassa. Os produtos sólido (cinzas), líquido (bio-óleo) e gasoso foram coletados avaliando-se os rendimentos e relacionando-os com os parâmetros previamente estabelecidos, sendo submetidos a análises com o objetivo de obter informações que possam contribuir para a sua melhor utilização. Quanto à caracterização dos produtos sólidos, os mesmos apresentaram alto poder calorífico, podendo ser utilizado como combustível. A fração liquida é composta basicamente de hidrocarbonetos oxigenados e aromáticos, caracterizando o bio-óleo como insumo para indústria química. O hidrogênio, objetivo deste trabalho, foi obtido em frações significativas e os resultados mostraram que a temperatura, bem como a taxa de aquecimento influem no rendimento do mesmo. / Tese (Doutoramento) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
|
39 |
A lignocellulolytic enzyme system for fruit waste degradation : commercial enzyme mixture synergy and bioreactor designGama, Repson January 2014 (has links)
Studies into sources of alternative liquid transport fuel energy have identified agro-industrial wastes, which are lignocellulosic in nature, as a potential feedstock for biofuel production against the background of depleting nonrenewable fossil fuels. In South Africa, large quantities of apple and other fruit wastes, called pomace, are generated from fruit and juice industries. Apple pomace is a rich source of cellulose, pectin and hemicellulose, making it a potential target for utilisation as a lignocellulosic feedstock for biofuel and biorefinery chemical production. Lignocellulosic biomass is recalcitrant in nature and therefore its degradation requires the synergistic action of a number of enzymes such as cellulases, hemicellulases, pectinases and ligninases. Commercial enzyme cocktails, containing some of these enzymes, are available and can be used for apple pomace degradation. In this study, the degradation of apple pomace using commercial enzyme cocktails was investigated. The main focus was the optimisation of the release of sugar monomers that could potentially be used for biofuel and biorefinery chemical production. There is no or little information reported in literature on the enzymatic degradation of fruit waste using commercial enzyme mixtures. This study first focused on the characterisation of the substrate (apple pomace) and the commercial enzyme cocktails. Apple pomace was found to contain mainly glucose, galacturonic acid, arabinose, galactose, lignin and low amounts of xylose and fructose. Three commercial enzyme cocktails were initially selected: Biocip Membrane, Viscozyme L (from Aspergillus aculeatus) and Celluclast 1.5L (a Trichoderma reesei ATCC 26921 cellulase preparation). The selection of the enzymes was based on activities declared by the manufacturers, cost and local availability. The enzymes were screened based on their synergistic cooperation in the degradation of apple pomace and the main enzymes present in each cocktail. Viscozyme L and Celluclast 1.5L, in a 50:50 ratio, resulted in the best degree of synergy (1.6) compared to any other combination. The enzyme ratios were determined on Viscozyme L and Celluclast 1.5L based on the protein ratio. Enzyme activity was determined as glucose equivalents using the dinitrosalicylic acid (DNS) method. Sugar monomers were determined using Megazyme assay kits. There is limited information available on the enzymes present in the commercial enzyme cocktails. Therefore, the main enzymes present in Viscozyme L and Celluclast 1.5L were identified using different substrates, each targeted for a specific enzyme and activity. Characterisation of the enzyme mixtures revealed a large number of enzymes required for apple pomace degradation and these included cellulases, pectinases, xylanases, arabinases and mannanases in different proportions. Viscozyme L contained mainly pectinases and hemicellulases, while Celluclast 1.5L displayed largely cellulase and xylanase activity, hence the high degree of synergy reported. The temperature optimum was 50ºC for both enzyme mixtures and pH optima were observed at pH 5.0 and pH 3.0 for Viscozyme L and Celluclast 1.5L, respectively. At 37ºC and pH 5.0, the enzymes retained more that 90% activity after 15 days of incubation, allowing the enzymes to be used together with less energy input. The enzymes were further characterised by determining the effect of various compounds, such as alcohols, sugars, phenolic compounds and metal ions at various concentrations on the activity of the enzymes during apple pomace hydrolysis. Apart from lignin, which had almost no effect on enzyme activity, all the compounds caused inhibition of the enzymes to varying degrees. The most inhibitory compounds were some organic acids and metal ions, as well as cellobiose and xylobiose. Using the best ratio for Viscozyme L and Celluclast 1.5L (50:50) for the hydrolysis of apple pomace, it was observed that synergy was highest at the initial stages of hydrolysis and decreased over time, though the sugar concentration increased. The type of synergy for optimal apple pomace hydrolysis was found to be simultaneous. There was no synergy observed between Viscozyme L and Celluclast 1.5L with ligninases - laccase, lignin peroxidase and manganese peroxidase. Hydrolysing apple pomace with ligninases prior to addition of Viscozyme L and Celluclast 1.5L did not improve degradation of the substrate. Immobilisation of the enzyme mixtures on different supports was performed with the aim of increasing stability and enabling reuse of the enzymes. Immobilisation methods were selected based on the chemical properties of the supports, availability, cost and applicability on heterogeneous and insoluble substrate like apple pomace. These methods included crosslinked enzyme aggregates (CLEAs), immobilisation on various supports such as nylon mesh, nylon beads, sodium alginate beads, chitin and silica gel beads. The immobilisation strategies were unsuccessful, mainly due to the low percentage of immobilisation of the enzyme on the matrix and loss of activity of the immobilised enzyme. Free enzymes were therefore used for the remainder of the study. Hydrolysis conditions for apple pomace degradation were optimised using different temperatures and buffer systems in 1 L volumes mixed with compressed air. Hydrolysis at room temperature, using an unbuffered system, gave a better performance as compared to a buffered system. Reactors operated in batch mode performed better (4.2 g/L (75% yield) glucose and 16.8 g/L (75%) reducing sugar) than fed-batch reactors (3.2 g/L (66%) glucose and 14.6 g/L (72.7% yield) reducing sugar) over 100 h using Viscozyme L and Celluclast 1.5L. Supplementation of β- glucosidase activity in Viscozyme L and Celluclast 1.5L with Novozyme 188 resulted in a doubling of the amount of glucose released. The main products released from apple pomace hydrolysis were galacturonic acid, glucose and arabinose and low amounts of galactose and xylose. These products are potential raw materials for biofuel and biorefinery chemical production. An artificial neural network (ANN) model was successfully developed and used for predicting the optimum conditions for apple pomace hydrolysis using Celluclast 1.5L, Viscozyme L and Novozyme 188. Four main conditions that affect apple pomace hydrolysis were selected, namely temperature, initial pH, enzyme loading and substrate loading, which were taken as inputs. The glucose and reducing sugars released as a result of each treatment and their combinations were taken as outputs for 1–100 h. An ANN with 20, 20 and 6 neurons in the first, second and third hidden layers, respectively, was constructed. The performance and predictive ability of the ANN was good, with a R² of 0.99 and a small mean square error (MSE). New data was successfully predicted and simulated. Optimal hydrolysis conditions predicted by ANN for apple pomace hydrolysis were at 30% substrate (wet w/v) and an enzyme loading of 0.5 mg/g and 0.2 mg/mL of substrate for glucose and reducing sugar, respectively, giving sugar concentrations of 6.5 mg/mL and 28.9 mg/mL for glucose and reducing sugar, respectively. ANN showed that enzyme and substrate loadings were the most important factors for the hydrolysis of apple pomace.
|
40 |
An investigation into the synergistic association between the major Clostridium cellulovorans cellulosomal endoglucanase and two hemicellulases on plant cell wall degradationBeukes, Natasha January 2008 (has links)
The cellulosome is a multimeric enzyme complex that has the ability to metabolise a wide variety of carbonaceous compounds. Cellulosomal composition may vary according to the microbe’s nutritional requirement and allows for the anaerobic degradation of complex substrates. The complex substrates of interest in this research study were sugarcane bagasse and pineapple fibre waste, as they represent two important lignocellulosic, South African agricultural crops. The effective degradation of complex plant biomass wastes may present a valuable source of renewable compounds for the production of a variety of biofuels, for example bioethanol, and a variety of biocomposites of industrial importance. The identification of renewable energy sources for the production of biofuels is becoming increasingly important, as a result of the rapid depletion of the fossil fuels that are traditionally used as energy sources. An effective means of completely degrading lignocellulose biomass still remains elusive due to the complex heterogeneity of the substrate structure, and the fact that the effective degradation of the substrate requires a consortium of enzymes. The cellulosome not only provides a variety of enzymes with varying specificities, but also promote a close proximity between the catalytic components (enzymes). The close proximity between the enzymes promotes the synergistic degradation of complex plant biomass for the production of valuable energy products. Previous synergy studies have focused predominantly on the synergistic associations between cellulases; however, the synergy between hemicellulases has occasionally been documented. This research project established the synergistic associations between two Clostridium cellulovorans hemicellulases that may be incorporated into the cellulosome and a cellulosomal endoglucanase that is conserved in all cellulosomes. This research study indicated that there was indeed a synergistic degradation of the complex plant biomass (sugarcane bagasse and pineapple fibre). The degrees of synergy and the ratio of the enzymes varied between the two complex substrates. The initial degradation of the bagasse required the presence of all the enzymes and proceeded at an enhanced rate under sulphidogenic conditions; however, there was a low production of fermentable sugars. The low quantity of fermentable sugars produced by the degradation of the bagasse may be related to the chemical composition of the substrate. The sugarcane contains a high percentage of lignin forming a protective layer around the holocellulose, thus the glycosidic bonds are shielded extensively from enzymatic attack. In comparison, the initial degradation of the pineapple fibre required the action of hemicellulases, and proceeded at an enhanced rate under sulphidogenic conditions. The initial degradation of the pineapple fibre produced a substantially larger quantity of fermentable sugars in comparison to the bagasse. The higher production of fermentable sugars from the degradation of the pineapple fibre may be explained by the fact that this substrate may have a lower percentage of lignin than the bagasse, thus allowing a larger percentage of the glycosidic bonds to be exposed to enzymatic attack. The data obtained also indicated that the glycosidic bonds from the hemicellulosic components of the pineapple fibre shielded the glycosidic bonds of the cellulose component. The identification of the chemical components of the different substrates may allow for the initial development of an ideal enzyme complex (designer cellulosome) with enzymes in an ideal ratio with optimal synergy that will effectively degrade the complex plant biomass substrate.
|
Page generated in 0.0859 seconds