• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 57
  • 18
  • 8
  • 7
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 102
  • 102
  • 24
  • 21
  • 18
  • 16
  • 13
  • 12
  • 11
  • 11
  • 11
  • 10
  • 9
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Catalytic Conversion of Undesired Organic Compounds to Syngas in Biomass Gasification and Pyrolysis Applications

H. Moud, Pouya January 2017 (has links)
Reliable energy supply is a major concern and crucial for development of the global society. To address the dependency on fossil fuel and the negative effects of this reliance on climate, there is a need for a transition to cleaner sources. An attractive solution for replacing fossil-based products is renewable substitutes produced from biomass. Gasification and pyrolysis are two promising thermochemical conversion technologies, facing challenges before large-scale commercialization becomes viable. In case of biomass gasification, tar is often and undesired by-product. An attractive option to convert tar into syngas is nickel-based catalytic steam reforming (SR). For biomass pyrolysis, catalytic SR is in early stages of investigation as a feasible option for bio-crude conversion to syngas. The focus of the thesis is partly dedicated to describe research aimed at increasing the knowledge around tar reforming mechanisms and effect of biomass-derived impurities on Ni-based tar reforming catalyst downstream of gasifiers. The work focuses on better understanding of gas-phase alkali interaction with Ni-based catalyst surface under realistic conditions. A methodology was successfully developed to enable controlled investigation of the combined sulfur (S) and potassium (K) interaction with the catalyst. The most striking result was that K appears to lower the sulfur coverage and increases methane and tar reforming activity. Additionally, the results obtained in the atomistic investigations are discussed in terms of naphthalene adsorption, dehydrogenation and carbon passivation of nickel. Furthermore, the thesis describes research performed on pyrolysis gas pre-conditioning at a small-industrial scale, using an iron-based catalyst. Findings showed that Fe-based materials are potential candidates for application in a pyrolysis gas pre-conditioning step before further treatment or use, and a way for generating a hydrogen-enriched gas without the need for bio-crude condensation. / Tillförlitlig energiförsörjning är en stor utmaning och avgörande för utvecklingen av det globala samhället. För att ta möta beroendet av fossil råvara och de negativa effekter som detta beroende medför för klimatet finns ett stort behov av en övergång till renare energiråvaror. En attraktiv lösning är att ersätta nuvarande fossil råvara med produkter från biomassa. Förgasning och pyrolys är två lovande teknologier för termokemisk omvandling av biomassa. Kommersialisering av dessa teknologier är inte helt problemfritt. I fallet förgasning så behöver, bl.a. oönskade tyngre kolväten (tjära) hanteras innan den producerade orenade produktgasen kan användas i syntesgastillämpningar. Ett effektivt alternativ för detta är gaskonditionering vid höga temperaturer, baserade på katalytisk ångreformering med en nickelkatalysator. Katalytisk ångreformering är en möjlig teknik för omvandling av bioråvara, producerad från pyrolys av biomassa, till syntesgas. Avhandlingen fokuserar delvis på att beskriva den forskning som utförts för att öka kunskapen kring mekanismer för tjärreformering och effekterna av föroreningar från biomassan på en nickelkatalysator nedströms förgasare. Arbetet bidrar till en bättre förståelse av hur alkali i form av kalium (K) i gasfasen upptas, jämviktas och växelverkar med ytan hos nickelkatalysatorn under fullt realistiska förhållanden. Inledningsvis utvecklades en metod för att möjliggöra kontrollerade studier av den kombinerade effekten av S och K, vilken inkluderar exakt dosering av alkali till en produktgas, eliminering av transienter i katalysatoraktiviteten samt katalysatorkarakterisering. Det mest lovande resultatet är att K både sänker ytans svavelinnehåll och ökar aktiviteten för omvandlingen av metan och tjära. För att ytterligare fördjupa kunskaperna i mekanismerna för tjärnedbrytning utfördes experimentella och teoretiska ytstudier på en enkristallnickelyta med naftalen som modellförening. Resultat avseende naftalenadsorption, dehydrogenering av naftalen och kolpassivering av nickelytan diskuteras. Därutöver så beskriver avhandlingen den forskning som utförts inom förkonditionering av pyrolysgas med en järnkatalysator för varsam deoxygenering av biooljan och vätgasproduktion. Detta utfördes vid en småskalig industriell anläggning. De experimentella studierna visar att den undersökta järnkatalysatorn resulterar i en vätgasberikad gas och att den är en potentiell kandidat för tillämpning i ett förkonditioneringssteg. / <p>QC 20170830</p>
102

Laser-based Diagnostics and Numerical Simulations of Syngas Combustion in a Trapped Vortex Combustor

Krishna, S January 2015 (has links) (PDF)
Syngas consisting mainly of a mixture of carbon monoxide, hydrogen and other diluents, is an important fuel for power generation applications since it can be obtained from both biomass and coal gasification. Clean coal technologies require stable and efficient operation of syngas-fired gas turbines. The trapped vortex combustor (TVC) is a relatively new gas turbine combustor concept which shows tremendous potential in achieving stable combustion under wide operating conditions with low emissions. In the present work, combustion of low calorific value syngas in a TVC has been studied using in-situ laser diagnostic techniques and numerical modeling. Specifically, this work reports in-situ measurements of mixture fraction, OH radical concentration and velocity in a single cavity TVC, using state-of-the art laser diagnostic techniques such as Planar Laser-induced Fluorescence (PLIF) and Particle Image Velocimetry (PIV). Numerical simulations using the unsteady Reynolds-averaged Navier-Stokes (URANS) and Large Eddy Simulation (LES) approaches have also been carried out to complement the experimental measurements. The fuel-air momentum flux ratio (MFR), where the air momentum corresponds to that entering the cavity through a specially-incorporated flow guide vane, is used to characterize the mixing. Acetone PLIF experiments show that at high MFRs, the fuel-air mixing in the cavity is very minimal and is enhanced as the MFR reduces, due to a favourable vortex formation in the cavity, which is corroborated by PIV measurements. Reacting flow PIV measurements which differ substantially from the non-reacting cases primarily because of the gas expansion due to heat release show that the vortex is displaced from the centre of the cavity towards the guide vane. The MFR was hence identified as the controlling parameter for mixing in the cavity. Quantitative OH concentration contours showed that at higher MFRs 4.5, the fuel jet and the air jet stream are separated and a flame front is formed at the interface. As the MFR is lowered to 0.3, the fuel air mixing increases and a flame front is formed at the bottom and downstream edge of the cavity where a stratified charge is present. A flame stabilization mechanism has been proposed which accounts for the wide MFRs and premixing in the mainstream as well. LES simulations using a flamelet-based combustion model were conducted to predict mean OH radical concentration and velocity along with URANS simulations using a modified Eddy dissipation concept model. The LES predictions were observed to agree closely with experimental data, and were clearly superior to the URANS predictions as expected. Performance characteristics in the form of exhaust temperature pattern factor and pollutant emissions were also measured. The NOx emissions were found to be less than 2 ppm, CO emissions below 0.2% and HC emissions below 700 ppm across various conditions. Overall, the in-situ experimental data coupled with insight from simulations and the exhaust measurements have confirmed the advantages of using the TVC as a gas turbine combustor and provided guidelines for stable and efficient operation of the combustor with syngas fuel.

Page generated in 0.1415 seconds