• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 61
  • 9
  • 9
  • 6
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 126
  • 43
  • 29
  • 23
  • 20
  • 19
  • 18
  • 15
  • 15
  • 15
  • 14
  • 12
  • 12
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Emergent Morphogenetic Design Strategies

Gunter, Dawn 31 May 2010 (has links)
Emergent morphogenetic designs provide a superior architectural response to programmatic, technical, structural, environmental and spatial requirements that conventional unit based architectural forms are too inflexible to fully address. Architecture has reached an exciting stage in its development, where structures are attempting to behave more like nature, which does not function as a static state, but as a complex grouping of symbiotic processes which are constantly evolving to adapt to environmental changes. Digital fabrication and materials engineering have promoted an explosion in formal architectural typologies. By utilizing these digital tools and enhanced materials to embrace a morphogenetic design strategy, architecture can respond rapidly, through multiple permutations to respond to multiple performance criteria. This approach outlines a design process that generates a typology and through multiple reiterations, changes as the design reacts to new performance criteria being added, or the model not adequately meeting the criteria being tested. The terms used to encompass this new design strategy are emergence, evolutionary optimization or morphogenetic design. This strategy utilizes tools in parallel that have been developed independently by different disciplines, including theoretical mathematics, materials engineering, bio-mimicry, environmental studies and digital technologies. The site is a parcel located on Tampa Bay at the outlet of the Hillsborough River, where the existing unit based Tampa Convention Center will be replaced with the new performance based Convention Center. The research methods will be simulation and modeling research. This method will start with a performance based program, and submit the models to multiple permutations. Each performance criteria will be applied to develop an iterative process that re-informs the shape, design, structure and materials, and can be evaluated at the conclusion of the design process, testing the accuracy of the Thesis.
42

Bio-inspired cooperative exploration of noisy scalar fields

Wu, Wencen 16 September 2013 (has links)
A fundamental problem in mobile robotics is the exploration of unknown fields that might be inaccessible or hostile to humans. Exploration missions of great importance include geological survey, disaster prediction and recovery, and search and rescue. For missions in relatively large regions, mobile sensor networks (MSN) are ideal candidates. The basic idea of MSN is that mobile robots form a sensor network that collects information, meanwhile, the behaviors of the mobile robots adapt to changes in the environment. To design feasible motion patterns and control of MSN, we draw inspiration from biology, where animal groups demonstrate amazingly complex but adaptive collective behaviors to changing environments. The main contributions of this thesis include platform independent mathematical models for the coupled motion-sensing dynamics of MSN and biologically-inspired provably convergent cooperative control and filtering algorithms for MSN exploring unknown scalar fields in both 2D and 3D spaces. We introduce a novel model of behaviors of mobile agents that leads to fundamental theoretical results for evaluating the feasibility and difficulty of exploring a field using MSN. Under this framework, we propose and implement source seeking algorithms using MSN inspired by behaviors of fish schools. To balance the cost and performance in exploration tasks, a switching strategy, which allows the mobile sensing agents to switch between individual and cooperative exploration, is developed. Compared to fixed strategies, the switching strategy brings in more flexibility in engineering design. To reveal the geometry of 3D spaces, we propose a control and sensing co-design for MSN to detect and track a line of curvature on a desired level surface.
43

Beyond LEED: Constructing a bridge to biomimicry for Canadian interior design educators

Cash, Karen 11 January 2016 (has links)
Interior designers require advanced sustainable strategies beyond the Leadership in Energy and Environmental Design (LEED) rating system to expand their ecological accountability. Biomimicry is a biology inspired design (BID) methodology that is integrating into U.S. interior design (ID) curricula. This thesis research aims to identify the extent to which biomimicry is taught in Canadian post-secondary ID programs. Through a mixed-methodology research design, this study explored the strategies and lessons learned from North America interior design educators teaching biomimicry. Integrating a science-based problem-solving methodology into design education requires a transition strategy that includes both high-tech and low-tech teaching tools. This study discusses avenues to heighten biomimicry awareness, for Canadian educators, and addresses the challenges that weaving a complex multidisciplinary topic into interior design pedagogy will bring. Future research regarding biomimicry applications from interior design learner and practitioner perspectives would complement this study, and inform biology inspired design curricula development. / February 2016
44

Synthèse catalytique des hydroxyacides en C3 par oxydation chimio-enzymatique du glycérol et du carbonate de glycérol sous atmosphère enrichie en oxygène ou sous air ambiant en milieu aqueux / Catalytic synthesis of C3 hydroxyacids by chemo-enzymatic oxidation of glycerol and glycerol carbonate under oxygen or ambient air in aqueous medium

Amouroux, Mathilde 01 June 2017 (has links)
Les besoins actuels en produits de fertilisation et notamment pour le traitement des carences chez le végétal sont en constante augmentation. Cependant, de plus en plus soucieuse de l’environnement, les industries productrices de ces compléments alimentaires souhaitent proposées des solutions de traitements plus durables tant au niveau de leur production que de leur devenir une fois épandue dans la parcelle. Par ailleurs, il a été établi que les cellules végétales peuvent être considérées comme de vraies usines à molécules. Les hydroxyacides en C3 fabriqués par la machinerie cellulaire présentent par exemple de nombreuses propriétés de chélation et de transport. La présence de fonction hydroxyles et carboxyliques leur confèrent en effet la capacité de pouvoir enserrer des métaux et de permettre leur déplacement entre tous les compartiments des cellules, mais aussi entre les différents organes de la plante. Par ailleurs, la présence de ces mêmes molécules au sein des réactions biologiques (respiration, photosynthèse) font d’elles des métabolites assimilables et donc potentiellement dégradables. Les travaux de cette thèse ont donc eu pour objectif de mettre en place une catalyse chimio-enzymatique afin de produire les molécules les plus semblables aux hydroxyacides en C3 végétaux. Dans cette démarche de biomimétisme, nous avons mis au point un protocole de fabrication d’hydroxyacides à partir de glycérol et de carbonate de glycérol dans des conditions similaires au milieu vivant : dans l’eau, à des températures faibles et à pression atmosphérique. Nous avons ainsi réussi à synthétiser des hydroxyacides tel que l’acide glycérique, le 2-oxo1,3-dioxolan-4-carboxylique et l’hémiacétal du carbonate de glycérol. Les travaux de thèse ont également permis de mettre au point une méthode analytique complète pour la visualisation et la quantification de la majorité des hydroxyacides en C3 élaborés selon ce protocole opératoire. Cette méthode regroupe des techniques de caractérisations globales telles que l’Infra-rouge, l’HPLC, l’HPIC, et des analyses plus fines comme la LCMS de haute résolution et la RMN 1D et 2D. Nous avons par ailleurs optimisé la synthèse des hydroxyacides en C3 à partir du glycérol et du carbonate de glycérol grâce à la mise en place d’un plan d’expérience. Les molécules fabriquées présenteraient des propriétés de complexants susceptibles d’être utilisés en agronomie dans le but de remplacer les chélatants actuels issues de réactions plus polluantes de la pétrochimie et générant des substances nocives pour la santé des sols agricoles une fois appliqués. / The current need for fertilization products, and particulary for the treatment of plant deficiencies, is constantly increasing. However, more and more environmentally concerned, industries producing these food complements aim at finding more sustainable treatment solutions both in preparing these substances and in controlling their degradation once on crops. Moreover, it is established that plant cells can be considered as true molecular factories. For example, the C3 hydroxy acids produced by the cellular machinery have many chelating and transport properties. The presence of hydroxyl and carboxylic functions give them the ability to enclose the metals and to allow their displacement through all the compartments of the cells and also through the different organs of the plant. Moreover, as they are involved in biological reactions (respiration, photosynthesis), these molecules can potentially be used in cellular metabolism or degraded. The work presented herein has been designed with the aim of producing the most similar hydroxy C 3 –acids’s plant molecules by establishing a chemo-enzymatic catalysis. Inspired by biological and chemical natural processes, we have developed a protocol for manufacturing hydroxy acids from glycerol and glycerol carbonate under natural conditions ie in water, at low temperature and at atmospheric pressure. We have also produced hydroxy acids such as glyceric acid, 2-oxo1,3-dioxolan-4-carboxylic acid and glycerol carbonate hemiacetal. The thesis also allowed us to develop a complete analytical method for the observation and the quantification of the majority of C3 hydroxy acids, produced according to our operating protocol. This method combines global characterization techniques such as HPLC, HPIC and more complex analyses such as HR-LCMS and 1D and 2D NMR. We have also optimized the synthesis of C3 hydroxyacids from glycerol and glycerol carbonate through the implementation of an experimental design. Our bioinspired molecules are potential complexing agents that could be used in agronomy, in order to replace the current chelating molecules obtained from petrochemistry, known for having harmful impact on agricultural soils.
45

Identification and development of novel optics for concentrator photovoltaic applications

Shanks, Katie May Agnes January 2017 (has links)
Concentrating photovoltaic (CPV) systems are a key step in expanding the use of solar energy. Solar cells can operate at increased efficiencies under higher solar concentration and replacing solar cells with optical devices to capture light is an effective method of decreasing the cost of a system without compromising the amount of solar energy absorbed. CPV systems are however still in a stage of development where new designs, methods and materials are still being created in order to reach a low levelled cost of energy comparable to standard silicon based photovoltaic (PV) systems. This work outlines the different types of concentration photovoltaic systems, their various design advantages and limitations, and noticeable trends. Comparisons on materials, optical efficiency and optical tolerance (acceptance angle) are made in the literature review as well as during theoretical and experimental investigations. The subject of surface structure and its implications on concentrator optics has been discussed in detail while highlighting the need for enhanced considerations towards material and hence the surface quality of optics. All of the findings presented contribute to the development of higher performance CPV technologies. Specifically high and ultrahigh concentrator designs and the accompanied need for high accuracy high quality optics has been supported. A simulation method has been presented which gives attention to surface scattering which can decrease the optical efficiency by 10-40% (absolute value) depending on the material and manufacturing method. New plastic optics and support structures have been proposed and experimentally tested including the use of a conjugate refractive-reflective homogeniser (CRRH). The CRRH uses a reflective outer casing to capture any light rays which have failed total internal reflection (TIR) due to non-ideal surface topography. The CRRH was theoretically simulated and found to improve the optical efficiency of a cassegrain concentrator by a maximum of 7.75%. A prototype was built and tested where the power output increase when utilising the CRRH was a promising 4.5%. The 3D printed support structure incorporated for the CRRH however melted under focused light, which reached temperatures of 226.3°C, when tested at the Indian Institute of Technology Madras in Chennai India. The need for further research into prototyping methods and materials for novel optics was also demonstrated as well as the advantages of broadening CPV technology into the fields of biomimicry. The cabbage white butterfly was proven to concentrate light onto its thorax using its highly reflective and lightweight wings in a basking V-shape not unlike V-trough concentrators. These wings were measured to have a unique structure consisting of ellipsoidal pterin beads aligned in ladder like structures on each wing scale which itself is then tiled in a roof like pattern on the wing. Such structures of a reflective material may be the answer to lightweight materials capable of increasing the power to weight ratio of CPV technology greatly. Experimental testing of the large cabbage white wings with a silicon solar cell confirmed a 17x greater power to weight ratio in comparison to the same set up with reflective film instead of the wings. An ultrahigh design was proposed taking into account manufacturing considerations and material options. The geometrical design was of 5800x of which an optical efficiency of either ~75% with state of the art optics should produce and effective concentration of ~4300x. Relatively standard quality optics on the other hand should give an optical efficiency of ~55% and concentration ratio ~3000x. A prototype of the system is hypothesised to fall between these two predictions. Ultrahigh designs can be realised if the design process is as comprehensive as possible, considering materials, surface structure, component combinations, anti-reflective coatings, manufacturing processes and alignment methods. Most of which have been addressed in this work and the accompanied articles. Higher concentration designs have been shown to have greater advantages in terms of the environmental impact, efficiency and cost effectiveness. But these benefits can only be realised if designs take into account the aforementioned factors. Most importantly surface structure plays a big role in the performance of ultrahigh concentrator photovoltaics. One of the breakthroughs for solar concentrator technology was the discovery of PMMA and its application for Fresnel lenses. It is hence not an unusual notion that further breakthroughs in the optics for concentrator photovoltaic applications will be largely due to the development of new materials for its purpose. In order to make the necessary leaps in solar concentrator optics to efficient cost effective PV technologies, future novel designs should consider not only novel geometries but also the effect of different materials and surface structures. There is still a vast potential for what materials and hence surface structures could be utilised for solar concentrator designs especially if inspiration is taken from biological structures already proven to manipulate light.
46

Nature Inspired Interior Design Principles in the Hot Arid Climate of Saudi Arabia

January 2016 (has links)
abstract: Biomimicry is an approach that entails understanding the natural system and designs and mimicking them to create new non-biological systems that can solve human problems. From bio-based material development to biologically inspired designs, architects and designers excelled in highlighting the fascination of integrating the biomimetic thinking process into the modern design that provides more comfortable space in which to live. This thesis explores how historical sustainable strategies from Islamic traditional architecture incorporated natural design system that could now be appropriately applied to interior architecture. In addition, it explores the current existing problems in this field and the possibilities of biomimetic sustainable solutions for existing buildings in the hot dry climate regions of Saudi Arabia. The author concentrates on examining Islamic traditional architecture where the past architects incorporated certain aspects of nature in their construction and through using local resources, built buildings that mitigated heat and provided protection from cold. As a result of completing this research, it was found that there are common characteristics between the traditional Islamic architecture elements and system solutions found in some natural organisms. Characteristics included, for example, evaporative cooling, stuck effect, and avoiding heat gain. However, in the natural world, there is always opportunities to further explore more about the impacts of biomimicry and natural strategies applicable to enhance interior environments of buildings. / Dissertation/Thesis / Masters Thesis Design 2016
47

PNA-Polypeptide Assembly in a 3D DNA Nanocage for Building Artificial Catalytic Centers

January 2014 (has links)
abstract: Proteins and peptides fold into dynamic structures that access a broad functional landscape, however, designing artificial polypeptide systems continues to be a great chal-lenge. Conversely, deoxyribonucleic acid (DNA) engineering is now routinely used to build a wide variety of two dimensional and three dimensional (3D) nanostructures from simple hybridization based rules, and their functional diversity can be significantly ex-panded through site specific incorporation of the appropriate guest molecules. This dis-sertation describes a gentle methodology for using short (8 nucleotide) peptide nucleic acid (PNA) linkers to assemble polypeptides within a 3D DNA nanocage, as a proof of concept for constructing artificial catalytic centers. PNA-polypeptide conjugates were synthesized directly using microwave assisted solid phase synthesis or alternatively PNA linkers were conjugated to biologically expressed proteins using chemical crosslinking. The PNA-polypeptides hybridized to the preassembled DNA nanocage at room tempera-ture or 11 ⁰C and could be assembled in a stepwise fashion. Time resolved fluorescence anisotropy and gel electrophoresis were used to determine that a negatively charged az-urin protein was repelled outside of the negatively charged DNA nanocage, while a posi-tively charged cytochrome c protein was retained inside. Spectroelectrochemistry and an in-gel luminol oxidation assay demonstrated the cytochrome c protein remained active within the DNA nanocage and its redox potential decreased modestly by 10 mV due to the presence of the DNA nanocage. These results demonstrate the benign PNA assembly conditions are ideal for preserving polypeptide structure and function, and will facilitate the polypeptide-based assembly of artificial catalytic centers inside a stable DNA nanocage. A prospective application of assembling multiple cyclic γ-PNA-peptides to mimic the oxygen-evolving complex (OEC) catalytic active site from photosystem II (PSII) is described. In this way, the robust catalytic capacity of PSII could be utilized, without suffering the light-induced damage that occurs by the photoreactions within PSII via triplet state formation, which limits the efficiency of natural photosynthesis. There-fore, this strategy has the potential to revolutionize the process of designing and building robust catalysts by leveraging nature's recipes, and also providing a flexible and con-trolled artificial environment that might even improve them further towards commercial viability. / Dissertation/Thesis / Ph.D. Bioengineering 2014
48

Biomimética e artefatos para ambientes aquáticos: estratégias de leveza e resistência inspiradas na estrutura celular do agave

ARAÚJO, Rodrigo Barbosa de 21 December 2015 (has links)
Submitted by Fabio Sobreira Campos da Costa (fabio.sobreira@ufpe.br) on 2017-04-04T12:22:08Z No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) BIOMIMÉTICA E ARTEFATOS PARA AMBIENTES AQUÁTICOS - Estratégia de leveza e resistencia inspiradas na estrutura celular do ~1.pdf: 9452656 bytes, checksum: 5fc75ab99d22907c133d82009ac24b3d (MD5) / Made available in DSpace on 2017-04-04T12:22:08Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) BIOMIMÉTICA E ARTEFATOS PARA AMBIENTES AQUÁTICOS - Estratégia de leveza e resistencia inspiradas na estrutura celular do ~1.pdf: 9452656 bytes, checksum: 5fc75ab99d22907c133d82009ac24b3d (MD5) Previous issue date: 2015-12-21 / A biomimética visa o estudo das estratégias da natureza, tendo-a como princípio e inspiração para solução de problemas de design e outras áreas. Esta pesquisa é uma abordagem alternativa para processos de geração de soluções no design de estruturas de pranchas de surf. Atualmente os materiais e processos produtivos destes artefatos ainda estão distantes dos aspectos ecológicos e de um ciclo de vida de produto sustentável. Existem algumas alternativas, onde as pranchas são fabricadas com materiais orgânicos, como por exemplo, o Agave, porém ainda com processos ultrapassados, contrários às estratégias da natureza, que atuam num optimum de economia de matéria e energia, dentro de um ciclo de vida sustentável bem definido. Com base na metodologia DesignLens (Biomimicry Institute 3.8), os ensinamentos da natureza aliados à tecnologia representam potencial de inovação em design e sustentabilidade. Quando processos de design paramétrico foram incorporados à fabricação digital, se permitiu atingir um nível de materialização muito próximo das estratégias da natureza. Verificou-se que a aplicação de tecnologias digitais tem grande relevância para o futuro das áreas de projeto, principalmente quando alinhadas aos princípios de sistemas biológicos. Esta pesquisa obteve parte da validação através da impressão 3D de uma secção de uma prancha de surf como exemplo de aplicação, dentre muitas alternativas para as estratégias do Agave em estruturas. / Biomimetics aims study of the strategies of nature, having it as a principle and inspiration for design and troubleshooting other áreas. This research is an alternative approach to the processes of generation of solutions in the surfboards design. Currently the materials and production processes of these artifacts are still distant from ecological aspects and a sustainable product life cycle. There are some alternatives, where the boards are made with organic materials, as for example, Agave, but with outdated processes, contrary to nature, strategies that work in an optimum of economy of matter and energy, within a sustainable life cycle. Based on the DesignLens methodology (Biomimicry Institute 3.8), the teachings of nature coupled with technology represent potential for innovation in design and sustainability. When parametric design processes have been incorporated into the digital fabrication, if allowed to reach a level of materialization very close of the strategies of nature. The application of digital technologies has great relevance to the future of the project areas, especially when aligned to the principles of biological systems. This research obtained part of the validation through the 3D printing of a section of a surfboard as an example of application, among many alternatives for the strategies of Agave in structures.
49

Hållbara materialkonstruktioner med hjälp av biomimicry

Sjöqvist, Jennie January 2020 (has links)
Vi behöver minska vår materialkonsumtion, idag gör vi av med mer resurser än vad vi har tillgång till. I den här studien har först en materialkonstruktion tagits fram och därefter ett produktkoncept för konstruktionen. För att ta fram materialkonstruktionen har biomimicry använts. Biomimicry är designmetoder för att lösa designproblem med inspiration från naturen. Naturen använder sig av så lite material som möjligt. Materialkonstruktionen är inspirerad av växtceller. Konstruktionen har två hierarkier som går i två olika riktningar, en riktning som går längs med och en riktning som går i djupled.För att hitta ett produktkoncept för materialkonstruktionen har material driven design (MDD) använts. MDD är en experimentell metod för att lära känna ett material och förstå dess användningsområde. Produktkonceptet är en stapelbar pall.För att minska på resurser används 3d-printning. 3d-printning är en additiv teknik och minskar på så sätt materialåtgång. Dessutom kan allt material lätt återanvändas eftersom det bara behövs ett material.Produkten kan produceras lokalt vilket minskar på transporter. PLA har använts som material i den här studien. / We need to reduce our material consumption, today we are wasting more resources than we have access to. In this study, a material construction was first developed and then a product concept for the construction. Biomimicry has been used to develop the material construction. Biomimicry are design methods for solving design problems with inspiration from nature. Nature uses as little material as possible. The material construction is inspired by plant cells. The construction has two hierarchies that go in two different directions.To find a product concept for the construction, material driven design (MDD) has been used. MDD is an experimental method used to get to know a material and understand its application. The product concept is a stackable pallet.To reduce resources, 3D printing is used. 3D printing is an additive technology and thus reduces material consumption. In addition, all material can be easily reused as only one material is needed.The product can be produced locally, which reduces on transport. PLA has been used as material in this study.
50

Investigating the Effect of an Upstream Spheroid on Tandem Hydrofoils

Guerra, Joel Tynan 01 December 2018 (has links)
This thesis documents a series of three dimensional unsteady Reynolds Averaged Navier-Stokes CFD simulations used to investigate the influence of an upstream prolate spheroid body on tandem pitching hydrofoils. The model is validated by performing separate CFD simulations on the body and pitching hydrofoils and comparing results to existing experimental data. The simulations were run for a range of Strouhal numbers (0.2-0.5) and phase differences (0-π). Results were compared to identical simulations without an upstream body to determine how the body affects thrust generation and the unsteady flow field. The combined time-averaged thrust increases with Strouhal number, and is highest when the foils pitch out of phase with each other. At intermediate phase differences between φ = 0 and φ = π the leading foil produces significantly more thrust than the trailing foil, peaking at φ = π/2. For St = 0.5 this difference is 21.7%. Results indicate that adding an upstream prolate spheroid body does not significantly alter thrust results, though it does provide a small (nearly negligible) boost. Vorticity from the body is pulled downstream from the pitching foils, which interacts with the vortex generation when the vortex being generated is of the same sign as the body vorticity. This body vorticity does not affect the vorticity magnitude of the downstream vortex pairs.

Page generated in 0.0626 seconds