• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 126
  • 8
  • 6
  • 1
  • Tagged with
  • 141
  • 134
  • 77
  • 76
  • 76
  • 76
  • 76
  • 76
  • 76
  • 76
  • 76
  • 76
  • 76
  • 76
  • 76
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

The Role of Cyclooxygenase-2 in Models of Epilepsy and Traumatic Brain Injury : Effects of Selective Cyclooxygenase-2 Inhibitors

Kunz, Tina January 2002 (has links)
<p>Cyclooxygenase-2 (COX-2) catalyses prostaglandin synthesis from arachidonic acid during inflammation. COX-2 is expressed in the normal brain and is induced in neurological disorders. There is evidence that COX-2 is involved in secondary events leading to cell death in the brain. The first objective was to study the expression of COX-2 in the brain after kainate (KA)-induced limbic seizures and brain trauma caused by controlled cortical contusion (CCC) and fluid percussion injury (FPI). COX-2 mRNA and protein were strongly induced by limbic seizures in the hippocampus, amygdala and piriform cortex. CCC and FPI resulted in an upregulation of COX-2 mainly in the dentate gyrus and cortex, with differences in expression levels in these regions between the models. The second objective was to evaluate the effects of selective COX-2 inhibitors on delayed cell death. Limbic seizures induced cell death in parts of the hippocampus, amygdala and functionally connected regions. Treatment with the selective COX-2 inhibitor rofecoxib 8 h after KA injection significantly reduced hippocampal cell death. Pre-treatment with the COX-2 inhibitor nimesulide augmented acute seizures with increased mortality and thus the effect of nimesulide on delayed cell death could not be evaluated. Effects of rofecoxib on trauma-induced cell death were studied in the FPI model. FPI induced delayed cell death mainly in the ipsilateral cortex and bilaterally in the dentate gyrus. Rofecoxib treatment, starting directly after injury was caused, had no protective effect against cell death. </p><p>The results suggest that COX-2 inhibition may be both detrimental and beneficial and largely dependent on the time schedule of treatment. COX-2 inhibitors might thus be of value as a neuroprotective treatment approach, provided that the role of COX-2 and the time course of effects of its metabolites in the brain are elucidated.</p>
52

Drug Transport and Metabolism in Rat and Human Intestine

Berggren, Sofia January 2006 (has links)
<p>One of the aims of this thesis was to investigate the involvement of efflux proteins, such as the P-glycoprotein (Pgp), in the drug transport in different regions of the rat and the human intestine. The intestinal extrusion of intracellularly formed CYP3A4 metabolites, including whether this extrusion might be mediated by Pgp, was also studied. The model drugs used were local anaesthetics (LA), which have been evaluated for inflammatory bowel disease, such as ropivacaine, lidocaine and bupivacaine. The intestinal permeability to LAs was found to be high throughout all intestinal regions of the rat and human intestine. Results from the Ussing chamber model indicated only minor efflux involvement as the drug permeability was higher in the serosa to mucosa transport direction than in the opposite direction. However, the involvement of efflux in the absorption of LAs could not be verified using in situ single-pass perfusion of rat jejunum. The extrusion of the ropivacaine metabolite, 2´,6´-pipecoloxylidide (PPX), was polarized to the mucosal reservoir of the Ussing chamber for both rat and human intestinal samples, and was probably not caused by any Pgp involvement. The expression levels of CYP3A4 and efflux transporters were consistent with the enzymes’ activity in human intestine. PPX formation was mediated by CYP3A4 in human intestine, and cyp2c and cyp2d in rat intestine. Species differences were observed, as PPX was formed in rat colon, but not human colon. In conclusion, the permeability of ropivacaine, lidocaine and bupivacaine was not subjected to efflux transport of significance for their intestinal uptake. The transport of ropivacaine metabolites to the mucosal compartment was probably not mediated by Pgp. The Ussing chamber model showed consistent results with those from intestinal microsomes as far as intestinal metabolism is concerned, making it a suitable model for investigations of the interplay of efflux and metabolism. </p>
53

The Role of Cyclooxygenase-2 in Models of Epilepsy and Traumatic Brain Injury : Effects of Selective Cyclooxygenase-2 Inhibitors

Kunz, Tina January 2002 (has links)
Cyclooxygenase-2 (COX-2) catalyses prostaglandin synthesis from arachidonic acid during inflammation. COX-2 is expressed in the normal brain and is induced in neurological disorders. There is evidence that COX-2 is involved in secondary events leading to cell death in the brain. The first objective was to study the expression of COX-2 in the brain after kainate (KA)-induced limbic seizures and brain trauma caused by controlled cortical contusion (CCC) and fluid percussion injury (FPI). COX-2 mRNA and protein were strongly induced by limbic seizures in the hippocampus, amygdala and piriform cortex. CCC and FPI resulted in an upregulation of COX-2 mainly in the dentate gyrus and cortex, with differences in expression levels in these regions between the models. The second objective was to evaluate the effects of selective COX-2 inhibitors on delayed cell death. Limbic seizures induced cell death in parts of the hippocampus, amygdala and functionally connected regions. Treatment with the selective COX-2 inhibitor rofecoxib 8 h after KA injection significantly reduced hippocampal cell death. Pre-treatment with the COX-2 inhibitor nimesulide augmented acute seizures with increased mortality and thus the effect of nimesulide on delayed cell death could not be evaluated. Effects of rofecoxib on trauma-induced cell death were studied in the FPI model. FPI induced delayed cell death mainly in the ipsilateral cortex and bilaterally in the dentate gyrus. Rofecoxib treatment, starting directly after injury was caused, had no protective effect against cell death. The results suggest that COX-2 inhibition may be both detrimental and beneficial and largely dependent on the time schedule of treatment. COX-2 inhibitors might thus be of value as a neuroprotective treatment approach, provided that the role of COX-2 and the time course of effects of its metabolites in the brain are elucidated.
54

Drug Transport and Metabolism in Rat and Human Intestine

Berggren, Sofia January 2006 (has links)
One of the aims of this thesis was to investigate the involvement of efflux proteins, such as the P-glycoprotein (Pgp), in the drug transport in different regions of the rat and the human intestine. The intestinal extrusion of intracellularly formed CYP3A4 metabolites, including whether this extrusion might be mediated by Pgp, was also studied. The model drugs used were local anaesthetics (LA), which have been evaluated for inflammatory bowel disease, such as ropivacaine, lidocaine and bupivacaine. The intestinal permeability to LAs was found to be high throughout all intestinal regions of the rat and human intestine. Results from the Ussing chamber model indicated only minor efflux involvement as the drug permeability was higher in the serosa to mucosa transport direction than in the opposite direction. However, the involvement of efflux in the absorption of LAs could not be verified using in situ single-pass perfusion of rat jejunum. The extrusion of the ropivacaine metabolite, 2´,6´-pipecoloxylidide (PPX), was polarized to the mucosal reservoir of the Ussing chamber for both rat and human intestinal samples, and was probably not caused by any Pgp involvement. The expression levels of CYP3A4 and efflux transporters were consistent with the enzymes’ activity in human intestine. PPX formation was mediated by CYP3A4 in human intestine, and cyp2c and cyp2d in rat intestine. Species differences were observed, as PPX was formed in rat colon, but not human colon. In conclusion, the permeability of ropivacaine, lidocaine and bupivacaine was not subjected to efflux transport of significance for their intestinal uptake. The transport of ropivacaine metabolites to the mucosal compartment was probably not mediated by Pgp. The Ussing chamber model showed consistent results with those from intestinal microsomes as far as intestinal metabolism is concerned, making it a suitable model for investigations of the interplay of efflux and metabolism.
55

Physiologically based pharmacokinetic modeling in risk assessment - Development of Bayesian population methods

Jonsson, Fredrik January 2001 (has links)
In risk assessment of risk chemicals, variability in susceptibility in the population is an important aspect. The health hazard of a pollutant is related to the internal exposure to the chemical, i.e. the target dose, rather than the external exposure. The target dose may be calculated by physiologically based pharmacokinetic (PBPK) modeling. Furthermore, variability in target dose may be estimated by introducing variability in the physiological, anatomical, and biochemical parameters of the model. Data on these toxicokinetic model parameters may be found in the scientific literature. Since the early seventies, a large number of experimental inhalation studies of the kinetics of several volatiles in human volunteers have been performed at the National Institute for Working Life in Solna. To this day, only very limited analyses of these extensive data have been performed. A Bayesian analysis makes it possible to merge a priori knowledge from the literature with the information in experimental data. If combined with population PBPK modeling, the Bayesian approach may yield posterior estimates of the toxicokinetic parameters for each subject, as well as for the population. One way of producing these estimates is by so-called Markov-chain Monte Carlo (MCMC) simulation. The aim of the thesis was to apply the MCMC technique on previously published experimental data. Another objective was to assess the reliability of PBPK models in general by the combination of the extensive data and Bayesian population techniques. The population kinetics of methyl chloride, dichloromethane, toluene and styrene were assessed. The calibrated model for dichloromethane was used to predict cancer risk in a simulated Swedish population. In some cases, the respiratory uptake of volatiles was found to be lower than predicted from reference values on alveolar ventilation. The perfusion of fat tissue was found to be a complex process that needs special attention in PBPK modeling. These results provide a significant contribution to the field of PBPK modeling of risk chemicals. Appropriate statistical treatment of uncertainty and variability may increase confidence in model results and ultimately contribute to an improved scientific basis for the estimation of occupational health risks.
56

In vivo Pharmacokinetics of Two New Thrombin Inhibitor Prodrugs : Emphasis on Intestinal and Hepatobiliary Disposition and the Influence of Interacting Drugs

Matsson, Elin January 2010 (has links)
Biliary excretion is an important elimination route for many drugs and metabolites. For such compounds, it is important to know the extent of excretion and drug exposure in the bile, e.g., for the risk assessment of drug interactions, liver toxicity and the effects of genetic variants. In this thesis, duodenal aspiration of bile was performed in healthy volunteers and complemented with experiments in an in vivo model in pigs to increase the understanding of the intestinal and hepatobiliary disposition of two direct thrombin inhibitors. The compounds investigated, ximelagatran and AZD0837, are both prodrugs that require bioactivation to exert their pharmacological effect. Upon co-administration with erythromycin and ketoconazole, respectively, altered plasma exposure to ximelagatran and AZD0837 and their respective metabolites has been observed. The main objective of this thesis was to characterize the biliary excretion of the compounds, and investigate whether this elimination route explains the observed drug-drug interactions. High plasma-to-bile AUC ratios were observed, in particular for ximelagatran, its active metabolite melagatran, and AR-H067637, the active metabolite of AZD0837. These high ratios indicate the involvement of active transporters in the biliary excretion of the compounds, which is important since transporters constitute possible sites for drug interactions. The effects of erythromycin and ketoconazole on the plasma exposure of the prodrugs and metabolites were confirmed in both the pig and the clinical studies. The changes seen in plasma for ximelagatran and its metabolites were partly explained by reduced biliary clearance. Inhibited CYP3A4 metabolism likely caused the elevated plasma levels of AZD0837, whereas reduced biliary clearance was seen for AR-H067637 suggesting an effect on its excretion into bile. In summary, the studies led to mechanistic insights in the hepatobiliary disposition of ximelagatran and AZD0837, and demonstrate the value of combined clinical and animal studies for the investigation of the biliary drug excretion.
57

Pharmacometric Models for Antibacterial Agents to Improve Dosing Strategies

Nielsen, Elisabet I January 2011 (has links)
Antibiotics are among the most commonly prescribed drugs. Although the majority of these drugs were developed several decades ago, optimal dosage (dose, dosing interval and treatment duration) have still not been well defined. This thesis focuses on the development and evaluation of pharmacometric models that can be used as tools in the establishment of improved dosing strategies for novel and already clinically available antibacterial drugs. Infectious diseases are common causes of death in preterm and term newborn infants. A population pharmacokinetic (PK) model for gentamicin was developed based on data from a prospective study. Body-weight and age (gestational and post-natal age) were found to be major factors contributing to variability in gentamicin clearance and therefore important patient characteristics to consider for improved dosing regimens. A semi-mechanistic pharmacokinetic-pharmacodynamic (PKPD) model was also developed, to characterize in vitro bacterial growth and killing kinetics following exposure to six antibacterial drugs, representing a broad selection of mechanisms of action and PK as well as PD characteristics. The model performed well in describing a wide range of static and dynamic drug exposures and was easily applied to other bacterial strains and antibiotics. It is, therefore, likely to find application in early drug development programs. Dosing of antibiotics is usually based on summary endpoints such as the PK/PD indices. Predictions based on the PKPD model showed that the commonly used PK/PD indices were well identified for all investigated drugs, supporting that models based on in vitro data can be predictive of antibacterial effects observed in vivo. However, the PK/PD indices were sensitive to the study conditions and were not always consistent between patient populations. The PK/PD indices may therefore extrapolate poorly across sub-populations. A semi-mechanistic modeling approach, utilizing the type of models described here, may thus have higher predictive value in a dose optimization tailored to specific patient populations.
58

Developmental Aspects of Drug Transport Across the Blood-Brain Barrier

Bengtsson, Jörgen January 2009 (has links)
The developmental aspect of drug transport across the blood-brain barrier (BBB) was investigated. Microdialysis was used to study unbound morphine BBB transport at different ages in sheep. An in vitro study was performed to find differentially expressed genes in brain capillary-rich fractions of the brain in rats of different ages. Microdialysis and brain-to-plasma ratios were used to study the contribution of breast cancer resistance protein (Bcrp) to the transport of nitrofurantoin (NTF) across the BBB of rats during development as well as in adult rats and mice. A method of analysing morphine and its metabolites in plasma and microdialysis samples was developed and validated. The in vivo recovery of deuterated morphine, used as a calibrator in microdialysis experiments, was not affected by the presence of morphine in the tissue. A net influx of morphine was observed in premature lambs and adult sheep, in contrast to the efflux seen in other species. This influx decreased with age, indicating that the morphine transport across the BBB changes with age. In contrast, the transport of the morphine metabolite morphine-3-glucuronide (M3G) did not change with age. Microarray data indicated that several active transporters are differentially expressed with age. Moreover, the mRNA expression levels of Abcg2 (Bcrp) and Slc22a8 (organic anion transporter 3) changed with age when quantified using real-time polymerase chain reaction. In contrast, the expression of Abcb1 (P-glycoprotein) and occludin (a tight junction protein) did not change with age. In rats, the brain distribution of NTF decreased with age due to increased protein binding in plasma. The concentration ratio of unbound NTF across the BBB was low in the adult rat, due to intra-brain metabolism and/or efflux by other transporters. Bcrp did not appear to have a significant contribution in the developing rat or in knock-out mice compared to wild-type controls with regard to NTF BBB transport. In conclusion, in vitro studies showed that the expression levels of some genes changed with age, presumably affecting subsequent drug distribution to the brain. Further, in vivo studies showed that distribution across the BBB changed with age for morphine but not for M3G or NTF.
59

Padronização das condições para cultura de células Caco-2 visando à obtenção de membranas viáveis ao estudo da permeabilidade in vitro da rifampicina / Standardization of culture Caco-2 cells conditions to obtain viable membranes to study the in vitro permeability of rifampicin

José Eduardo Gonçalves 29 April 2010 (has links)
A permeabilidade através do epitélio intestinal tem se tornado um importante aspecto a ser determinado nas avaliações biofarmacotécnicas envolvendo fármacos e medicamentos. A técnica mais empregada para essa determinação in vitro é aquela que utiliza a cultura de células Caco-2. Entretanto, ainda são discutíveis as condições para a realização desses experimentos, uma vez que a padronização das mesmas é fator fundamental para a confiabilidade dos resultados. Nesta tese, foram avaliadas as condições para realização dos estudos de permeabilidade através de membranas de células Caco-2 para a rifampicina, principal fármaco utilizado no tratamento da tuberculose. Para tanto, foram investigados fatores tais como a citotoxicidade da rifampicina em diferentes concentrações, a influência da concentração do fármaco sobre a permeabilidade, do pH de realização dos experimentos e da presença de proteínas do muco intestinal, além da influência de proteínas plasmáticas. Foi também investigado o potencial indutor da rifampicina sobre a expressão da glicoproteína-P (Pgp) e seu impacto na permeabilidade da própria rifampicina. Os estudos foram desenvolvidos utilizando membranas de células Caco-2 provenientes da American Type Culture Collection (ATCC) cultivadas em placas Transwel®, a quantificação da fração permeada foi por cromatografia líquida de alta eficiência com métodos validados. A análise da indução da expressão da Pgp foi realizada por PCR-RT. Demonstrou-se que as concentrações da rifampicina (10,0; 25,0 e 50,0 &#181;g/mL) não ocasionaram danos às células Caco-2 no estudo de citotoxicidade pela técnica que emprega o sal do brometo de 3-(4,5-dimetil-2-tiazoli)-2,5-difenil-2H-tetrazólio (MTT). As concentrações de rifampicina (5,0; 10,0 e 25,0 &#181;g/mL) não resultaram em valores estatisticamente diferentes de permeabilidade aparente (Papp) em células Caco-2 nas condições do estudo. A rifampicina apresentou valor de Papp significativamente maior em pH 6,8 dentre os valores de pH avaliados (5,8 ; 6,8; 7,4). A presença de muco simulado e de soro fetal bovino não resultou em valores de permeabilidade significativamente distintos do resultado obtido sem a sua adição ao experimento. A expressão da Pgp em células Caco-2 é induzida pela adição da rifampicina (10&#181;g/mL), ocasionando diminuição da sua permeabilidade por mecanismo de efluxo. Pelos resultados de permeabilidade obtidos em todas as condições avaliadas, a rifampicina pode ser considerada um fármaco de alta permeabilidade de acordo com o Sistema de Classificação Biofarmacêutica. / The permeability through the intestinal epithelium has become an important aspect to be determined in evaluations involving drugs and pharmaceutical products. The most common technique for this determination in vitro is one that uses the culture of Caco-2 cells. Nevertheless, the conditions for carrying out such experiments are still questionable, since the standardization of them is essential to the reliability of the results. In this thesis, we evaluate the conditions for the studies of permeability of rifampicin through membranes of Caco-2 cells, the main drug used in the treatment of tuberculosis. To this end, we examined factors such as cytotoxicity of rifampicin at different concentrations, the influence of drug concentration on the permeability, as well as the pH of the experiments, the presence of proteins of intestinal mucus, and the influence of plasma proteins. It was also investigated the potential of rifampicin on the expression of P-glycoprotein (Pgp) and its impact on the permeability of rifampicin itself. The studies were developed using membranes of Caco-2 cells from American Type Culture Collection (ATCC) grown on plates Transwel®, and the quantification of the fraction of drug permeated was obtained by high performance liquid chromatography with validated methods. The analysis of induction of expression of Pgp was performed by RT-PCR. It was demonstrated that the concentrations of rifampicin (10,0; 25,0 and 50,0 &#181;g/mL) did not cause damage to Caco-2 cells in the study of the cytotoxicity technique that uses a bromide salt of 3 - (4,5-dimethyl-2 - thiazol) -2,5-diphenyl-2H-tetrazolium (MTT). The concentrations of rifampicin (5,0; 10,0 and 25,0 &#181g/mL) did not result in statistically different values of apparent permeability (Papp) in Caco-2 cells under the conditions of the study. Rifampicin showed a value of Papp significantly higher at pH 6.8 in comparison with other measured pH values (5,8 and 7,4). The presence of mucus simulated and fetal calf serum did not result in permeability values significantly different from the result obtained without its addition to the experiment. The expression of P-gp in Caco-2 cells is induced by the addition of rifampicin (10 &#181;g/ml), decreasing its permeability by efflux mechanism. Taking into account the results of permeability obtained in all conditions, the rifampicin can be considered a high permeability drug according to the biopharmaceutical classification system.
60

Amyloid-β and lysozyme proteotoxicity in Drosophila : Beneficial effects of lysozyme and serum amyloid P component in models of Alzheimer’s disease and lysozyme amyloidosis

Bergkvist, Liza January 2017 (has links)
In the work presented this thesis, two different conditions that are classified as protein misfolding diseases: Alzheimer's disease and lysozyme amyloidosis and proteins that could have a beneficial effect in these diseases, have been studied using Drosophila melanogaster, commonly known as the fruit fly. The fruit fly has been used for over 100 years to study and better understand fundamental biological processes. Although the fruit fly, unlike humans, is an invertebrate, many of its central biological mechanisms are very similar to ours. The first transgenic flies were designed in the early 1980s, and since then, the fruit fly has been one of the most widely used model organisms in studies on the effects of over-expressed human proteins in a biological system; one can regard the fly as a living, biological test tube. For  most proteins, it is necessary that they fold into a three-dimensional structure to function properly. But sometimes the folding goes wrong; this may be due to mutations that make the protein unstable and subject to misfolding. A misfolded protein molecule can then aggregate with other misfolded proteins. In Alzheimer's disease, which is the most common form of dementia, protein aggregates are present in the brains of patients. These aggregates are composed of the amyloid-β (Aβ) peptide, a small peptide of around 42 amino acids which is cleaved from the larger, membrane-bound, protein AβPP by two different enzymes, BACE1 and γ-secretase. In the first part of this thesis, two different fly models for Alzheimer’s disease were used: the Aβ fly model, which directly expresses the Aβ peptide, and the AβPP-BACE1 fly model, in which all the components necessary to produce the Aβ peptide in the fly are expressed in the fly central nervous system (CNS). The two different fly models were compared and the results show that a significantly smaller amount of the Aβ peptide is needed to achieve the same, or an even greater, toxic effect in the AβPP-BACE1 model compared to the Aβ model. In the second part of the thesis, these two fly models for Alzheimer’s disease were again used, but now to investigate whether lysozyme, a protein involved in our innate immune system, can counteract the toxic effect of Aβ generated in the fly models. And indeed, lysozyme is able to save the flies from Aβ-induced toxicity. Aβ and lysozyme were found to interact with each other in vivo. The second misfolding disease studied in this thesis is lysozyme amyloidosis. It is a rare, dominantly inherited amyloid disease in which mutant variants of lysozyme give rise to aggregates, weighing up to several kilograms, that accumulate around the kidneys and liver, eventually leading to organ failure. In the third part of this thesis, a fly model for lysozyme amyloidosis was used to study the effect of co-expressing the serum amyloid P component (SAP), a protein that is part of all protein aggregates found within this disease class. SAP is able to rescue the toxicity induced by expressing the mutant variant of lysozyme, F57I, in the fly's CNS. To further investigate how SAP was able to do this, double-expressing lysozyme flies, which exhibit stronger disease phenotypes than those of the single-expressing lysozyme flies previously studied, were used in the fourth part of this thesis. SAP was observed to reduce F57I toxicity and promote F57I to form aggregates with more distinct amyloid characteristics. In conclusion, the work included in this thesis demonstrates that: i) Aβ generated from AβPP processing in the fly CNS results in higher proteotoxicity compared with direct expression of Aβ from the transgene, ii) lysozyme can prevent Aβ proteotoxicity in Drosophila and could thus be a potential therapeutic molecule to treat Alzheimer’s disease and iii) in a Drosophila model of lysozyme amyloidosis, SAP can prevent toxicity from the disease-associated lysozyme variant F57I and promote formation of aggregated lysozyme morphotypes with amyloid properties; this is important to take into account when a reduced level of SAP is considered as a treatment strategy for lysozyme amyloidosis.

Page generated in 0.0445 seconds