• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Expression of SLC transporters in Chronic Lymphocytic Leukaemia cells and their interaction with cytostatics / Expression of SLC transporters in Chronic Lymphocytic Leukaemia cells and their interaction with cytostatics

Gupta, Shivangi 12 October 2009 (has links)
No description available.
2

Efeito da atorvastatina sobre a atividade funcional e expressão de transportadores de membrana do tipo ABC e SLC / Effect of atorvastatin on the activity and expression of ABC and SLC membrane transporters.

Rodrigues, Alice Cristina 12 September 2008 (has links)
Os transportadores de membrana do tipo ATP Binding Cassette (ABC) e solute carriers (SLC) regulam a homeostase intracelular de fármacos, modificando a biodisponibilidade e possivelmente a eficácia terapêutica. A variabilidade na resposta a hipolipemiantes, como as vastatinas, tem sido associada a vários fatores genéticos e ambientais. Com a finalidade de avaliarmos os mecanismos de regulação da expressão dos transportadores pela atorvastatina, a expressão de RNAm de transportadores ABC (ABCB1, ABCG2 e ABCC2) e SLC (SLCO1B1, SLCO2B1 e SLC22A1) foi avaliada por RT-PCRq em células mononucleares do sangue periférico (CMSP) de 18 indivíduos normolipidêmicos (NL) e 22 pacientes hipercolesterolêmicos (HC) tratados com atorvastatina (10mg/dia/4 semanas). A possível associação entre o polimorfismo ABCB1 C3435T e a expressão de RNAm também foi avaliada. Os estudos in vitro foram realizados com as células das linhagens HepG2 e Caco-2. Foram avaliados os efeitos da atorvastatina na ativação de fatores de transcrição (NF-kappaB, NF-Y, c-jun, SP-1 e PXR) por ensaio de mobilidade eletroforética retardada em gel de poliacrilamida (EMSA) e na meia-vida do RNAm do gene ABCB1 por RT-PCRq, e a expressão e atividade funcional da proteína ABCB1 por Western blot, imunohistoquimica e citometria de fluxo. A proteina ABCB1 foi localizada por imunohistoquimica na membrana apical do canalículo biliar das celulas HepG2 e na membrana apical das Caco-2. O tratamento das células HepG2 com atorvastatina causou redução da expressão de RNAm do gene ABCB1 e aumento na expressão dos genes ABCG2 e ABCC2. Esses efeitos foram dose e tempo dependentes. O tratamento com atorvastatina das células Caco-2 não modificou a expressão dos transportadores de efluxo após 30 a 120 min. Nas células HepG2, as concentrações de 10 e 20 M de atorvastatina causaram diminuição da expressão de ABCB1 (0 &#181;M: 1,00 ± 0,06; 10 &#181;M: 0,69 ± 0,25, p< 0,05; 20 &#181;M: 0,69 ± 0,06, p< 0,05). A atividade da ABCB1, avaliada pelo efluxo de Rh123, mostrou-se estar reduzida em 41% nas células HepG2, após tratamento com atorvastatina 20 &#181;M. Embora a diminuição da expressão do ABCB1 não tenha sido decorrente de uma menor ativação transcricional, avaliada indiretamente por EMSA, estudos de mecanismos de regulação pós-transcricionais, revelaram que a atorvastatina diminui a estabilidade de RNAm do gene ABCB1. Esse resultado parece estar de acordo com o ocorrido nas CMSP, já que o tratamento com atorvastatina diminuiu a expressão de RNAm do gene ABCB1 nos indivíduos HC. Essa modulação, no entanto não está associada à presença do polimorfismo ABCB1 C3435T. Em relação aos transportadores de captação, a expressão do SLC22A1 nas células Caco-2 diminui após tratamento com atorvastatina por 30 min e não foi modificada nas células HepG2. Já o gene SLCO2B1 encontrou-se muito aumentado após 24 h de tratamento nas células HepG2. Estudos in vivo nas CMSP, mostrou que a expressão de mRNA basal dos transportadores nos HC foi 10 vezes maior que nos NL e diminuiu após tratamento com atorvastatina nos HC. Com os resultados obtidos podemos sugerir que diferenças no efeito da atorvastatina nos tipos celulares podem ser em decorrência da expressão tecido-específica de fatores de transcrição. No modelo de hepatócito, HepG2, a atorvastatina é um inibidor do transporte mediado pela ABCB1 e é capaz de diminuir a síntese e a função da ABCB1, via aumento da degradação de RNAm do gene ABCB1. Em conseqüência ocorre uma redução do efluxo pelo sistema biliar, causando aumento da concentração intracelular. Ainda, podemos concluir que em CMSP o colesterol pode ser o responsável pela modulação dos genes dos transportadores de membrana e que isso pode implicar em diferenças na eficácia da atorvastatina. / Specific membrane transporters have a significant impact on drug absorption and disposition. Most of them belong to two super-families, ABC (ATP-binding cassette) and SLC (solute-linked carrier). Statins are important therapeutic agents in the management of hypercholesterolemia, and considerable inter-individual variation exists in response to its therapy. The effects of atorvastatin expression of efflux (ABCG2 and ABCC2) and uptake (SLCO1B1, SLCO2B1 and SLC22A1) drug transporters were investigated by qPCR in Caco-2 and HepG2 cell lines and in peripheral blood mononuclear cells (PBMCs) of eighteen normolipidemic (NL) and twenty two hypercholesterolemic (HC) individuals treated with atorvastatin (10mg/day/4 weeks). The possible involvement of ABCB1 C3435T polymorphism in ABCB1 mRNA expression was also evaluated. In vitro studies with the cell lines HepG2 and Caco-2 were also performed. The effect of atorvastatin on the activation of the promoter of ABCB1 by transcription factors (NF-kappaB, NF-Y, c-jun, SP-1, and PXR) was evaluated by electrophoretic mobility shift assay (EMSA), and ABCB1 mRNA half-life were measured by PCRq. The expression and functional activity of ABCB1 were investigated by Western blot, imunohistochemistry and flow cytometry. Immunohystochemical analysis revealed that ABCB1 is located at the apical membrane of the bile canaliculi in HepG2, and in apical membrane of Caco-2 cells. Atorvastatin treatment of HepG2 cells caused a decreased in ABCB1 and an increase in ABCC2 and ABCG2 transcript levels. These effects were time and dose-dependent. Treatment of Caco-2 cells did not present any differences in efflux transporters mRNA levels. Treatment of HepG2 cells with 10 and 20 M atorvastatin caused a reduction on ABCB1 expression (0 &#181;M: 1,00 ± 0,06; 10 &#181;M: 0,69 ± 0,25, p< 0,05; 20 &#181;M: 0,69 ± 0,06, p< 0,05), and a 41% decrease in ABCB1-mediated efflux of Rhodamine123 (p < 0.01). Although reduced ABCB1 mRNA expression was not due to any repressor protein suppressing ABCB1 promoter activation, mRNA stability studies revealed that mRNA stability of ABCB1 was markedly decreased by atorvastatin treatment (2h versus 7h for control). In agrrement with these results, in PBMCs of HC individuals, atorvastatin treatment also reduced ABCB1 mRNA expression. However, the down-regulation was not associated with the presence of 3435T allele. For the uptake transporters, atorvastatin decreased SLC22A1 transcript levels after 30min-treatment and it was not regulated in HepG2. On the other hand, SLCO2B1 was up-regulated after 24h-treatment of HepG2 cells. In vivo studies with PBMCs revealed that during hypercholesterolemia all the drug transporters analyzed were increased almost 10-fold (p< 0.05), and after atorvastatin therapy the efflux and uptake transporters transcript levels were all down-regulated. These findings suggest that atorvastatin exhibits differential effects on mRNA expression of drug transporters depending on the cell type, which may be related to tissue-specific expression of transcription factors. Atorvastatin leads to decreased ABCB1 function and synthesis in HepG2 cells by increasing degradation of ABCB1 mRNA. Therefore, inhibition of ABCB1 may reduce atorvastatin elimination via bile, increasing its cellular concentrations. We also may suggest that in PBMCs cholesterol modulates mRNA expression of drug transporters, and this may contribute to the variability of response to atorvastatin.
3

In vivo Pharmacokinetics of Two New Thrombin Inhibitor Prodrugs : Emphasis on Intestinal and Hepatobiliary Disposition and the Influence of Interacting Drugs

Matsson, Elin January 2010 (has links)
Biliary excretion is an important elimination route for many drugs and metabolites. For such compounds, it is important to know the extent of excretion and drug exposure in the bile, e.g., for the risk assessment of drug interactions, liver toxicity and the effects of genetic variants. In this thesis, duodenal aspiration of bile was performed in healthy volunteers and complemented with experiments in an in vivo model in pigs to increase the understanding of the intestinal and hepatobiliary disposition of two direct thrombin inhibitors. The compounds investigated, ximelagatran and AZD0837, are both prodrugs that require bioactivation to exert their pharmacological effect. Upon co-administration with erythromycin and ketoconazole, respectively, altered plasma exposure to ximelagatran and AZD0837 and their respective metabolites has been observed. The main objective of this thesis was to characterize the biliary excretion of the compounds, and investigate whether this elimination route explains the observed drug-drug interactions. High plasma-to-bile AUC ratios were observed, in particular for ximelagatran, its active metabolite melagatran, and AR-H067637, the active metabolite of AZD0837. These high ratios indicate the involvement of active transporters in the biliary excretion of the compounds, which is important since transporters constitute possible sites for drug interactions. The effects of erythromycin and ketoconazole on the plasma exposure of the prodrugs and metabolites were confirmed in both the pig and the clinical studies. The changes seen in plasma for ximelagatran and its metabolites were partly explained by reduced biliary clearance. Inhibited CYP3A4 metabolism likely caused the elevated plasma levels of AZD0837, whereas reduced biliary clearance was seen for AR-H067637 suggesting an effect on its excretion into bile. In summary, the studies led to mechanistic insights in the hepatobiliary disposition of ximelagatran and AZD0837, and demonstrate the value of combined clinical and animal studies for the investigation of the biliary drug excretion.
4

Efeito da atorvastatina sobre a atividade funcional e expressão de transportadores de membrana do tipo ABC e SLC / Effect of atorvastatin on the activity and expression of ABC and SLC membrane transporters.

Alice Cristina Rodrigues 12 September 2008 (has links)
Os transportadores de membrana do tipo ATP Binding Cassette (ABC) e solute carriers (SLC) regulam a homeostase intracelular de fármacos, modificando a biodisponibilidade e possivelmente a eficácia terapêutica. A variabilidade na resposta a hipolipemiantes, como as vastatinas, tem sido associada a vários fatores genéticos e ambientais. Com a finalidade de avaliarmos os mecanismos de regulação da expressão dos transportadores pela atorvastatina, a expressão de RNAm de transportadores ABC (ABCB1, ABCG2 e ABCC2) e SLC (SLCO1B1, SLCO2B1 e SLC22A1) foi avaliada por RT-PCRq em células mononucleares do sangue periférico (CMSP) de 18 indivíduos normolipidêmicos (NL) e 22 pacientes hipercolesterolêmicos (HC) tratados com atorvastatina (10mg/dia/4 semanas). A possível associação entre o polimorfismo ABCB1 C3435T e a expressão de RNAm também foi avaliada. Os estudos in vitro foram realizados com as células das linhagens HepG2 e Caco-2. Foram avaliados os efeitos da atorvastatina na ativação de fatores de transcrição (NF-kappaB, NF-Y, c-jun, SP-1 e PXR) por ensaio de mobilidade eletroforética retardada em gel de poliacrilamida (EMSA) e na meia-vida do RNAm do gene ABCB1 por RT-PCRq, e a expressão e atividade funcional da proteína ABCB1 por Western blot, imunohistoquimica e citometria de fluxo. A proteina ABCB1 foi localizada por imunohistoquimica na membrana apical do canalículo biliar das celulas HepG2 e na membrana apical das Caco-2. O tratamento das células HepG2 com atorvastatina causou redução da expressão de RNAm do gene ABCB1 e aumento na expressão dos genes ABCG2 e ABCC2. Esses efeitos foram dose e tempo dependentes. O tratamento com atorvastatina das células Caco-2 não modificou a expressão dos transportadores de efluxo após 30 a 120 min. Nas células HepG2, as concentrações de 10 e 20 M de atorvastatina causaram diminuição da expressão de ABCB1 (0 &#181;M: 1,00 ± 0,06; 10 &#181;M: 0,69 ± 0,25, p< 0,05; 20 &#181;M: 0,69 ± 0,06, p< 0,05). A atividade da ABCB1, avaliada pelo efluxo de Rh123, mostrou-se estar reduzida em 41% nas células HepG2, após tratamento com atorvastatina 20 &#181;M. Embora a diminuição da expressão do ABCB1 não tenha sido decorrente de uma menor ativação transcricional, avaliada indiretamente por EMSA, estudos de mecanismos de regulação pós-transcricionais, revelaram que a atorvastatina diminui a estabilidade de RNAm do gene ABCB1. Esse resultado parece estar de acordo com o ocorrido nas CMSP, já que o tratamento com atorvastatina diminuiu a expressão de RNAm do gene ABCB1 nos indivíduos HC. Essa modulação, no entanto não está associada à presença do polimorfismo ABCB1 C3435T. Em relação aos transportadores de captação, a expressão do SLC22A1 nas células Caco-2 diminui após tratamento com atorvastatina por 30 min e não foi modificada nas células HepG2. Já o gene SLCO2B1 encontrou-se muito aumentado após 24 h de tratamento nas células HepG2. Estudos in vivo nas CMSP, mostrou que a expressão de mRNA basal dos transportadores nos HC foi 10 vezes maior que nos NL e diminuiu após tratamento com atorvastatina nos HC. Com os resultados obtidos podemos sugerir que diferenças no efeito da atorvastatina nos tipos celulares podem ser em decorrência da expressão tecido-específica de fatores de transcrição. No modelo de hepatócito, HepG2, a atorvastatina é um inibidor do transporte mediado pela ABCB1 e é capaz de diminuir a síntese e a função da ABCB1, via aumento da degradação de RNAm do gene ABCB1. Em conseqüência ocorre uma redução do efluxo pelo sistema biliar, causando aumento da concentração intracelular. Ainda, podemos concluir que em CMSP o colesterol pode ser o responsável pela modulação dos genes dos transportadores de membrana e que isso pode implicar em diferenças na eficácia da atorvastatina. / Specific membrane transporters have a significant impact on drug absorption and disposition. Most of them belong to two super-families, ABC (ATP-binding cassette) and SLC (solute-linked carrier). Statins are important therapeutic agents in the management of hypercholesterolemia, and considerable inter-individual variation exists in response to its therapy. The effects of atorvastatin expression of efflux (ABCG2 and ABCC2) and uptake (SLCO1B1, SLCO2B1 and SLC22A1) drug transporters were investigated by qPCR in Caco-2 and HepG2 cell lines and in peripheral blood mononuclear cells (PBMCs) of eighteen normolipidemic (NL) and twenty two hypercholesterolemic (HC) individuals treated with atorvastatin (10mg/day/4 weeks). The possible involvement of ABCB1 C3435T polymorphism in ABCB1 mRNA expression was also evaluated. In vitro studies with the cell lines HepG2 and Caco-2 were also performed. The effect of atorvastatin on the activation of the promoter of ABCB1 by transcription factors (NF-kappaB, NF-Y, c-jun, SP-1, and PXR) was evaluated by electrophoretic mobility shift assay (EMSA), and ABCB1 mRNA half-life were measured by PCRq. The expression and functional activity of ABCB1 were investigated by Western blot, imunohistochemistry and flow cytometry. Immunohystochemical analysis revealed that ABCB1 is located at the apical membrane of the bile canaliculi in HepG2, and in apical membrane of Caco-2 cells. Atorvastatin treatment of HepG2 cells caused a decreased in ABCB1 and an increase in ABCC2 and ABCG2 transcript levels. These effects were time and dose-dependent. Treatment of Caco-2 cells did not present any differences in efflux transporters mRNA levels. Treatment of HepG2 cells with 10 and 20 M atorvastatin caused a reduction on ABCB1 expression (0 &#181;M: 1,00 ± 0,06; 10 &#181;M: 0,69 ± 0,25, p< 0,05; 20 &#181;M: 0,69 ± 0,06, p< 0,05), and a 41% decrease in ABCB1-mediated efflux of Rhodamine123 (p < 0.01). Although reduced ABCB1 mRNA expression was not due to any repressor protein suppressing ABCB1 promoter activation, mRNA stability studies revealed that mRNA stability of ABCB1 was markedly decreased by atorvastatin treatment (2h versus 7h for control). In agrrement with these results, in PBMCs of HC individuals, atorvastatin treatment also reduced ABCB1 mRNA expression. However, the down-regulation was not associated with the presence of 3435T allele. For the uptake transporters, atorvastatin decreased SLC22A1 transcript levels after 30min-treatment and it was not regulated in HepG2. On the other hand, SLCO2B1 was up-regulated after 24h-treatment of HepG2 cells. In vivo studies with PBMCs revealed that during hypercholesterolemia all the drug transporters analyzed were increased almost 10-fold (p< 0.05), and after atorvastatin therapy the efflux and uptake transporters transcript levels were all down-regulated. These findings suggest that atorvastatin exhibits differential effects on mRNA expression of drug transporters depending on the cell type, which may be related to tissue-specific expression of transcription factors. Atorvastatin leads to decreased ABCB1 function and synthesis in HepG2 cells by increasing degradation of ABCB1 mRNA. Therefore, inhibition of ABCB1 may reduce atorvastatin elimination via bile, increasing its cellular concentrations. We also may suggest that in PBMCs cholesterol modulates mRNA expression of drug transporters, and this may contribute to the variability of response to atorvastatin.
5

Nature et conséquences des interactions entre transporteurs membranaires et pesticides / Nature and consequences of interactions between membrane transporters and pesticides

Chedik, Lisa 06 December 2017 (has links)
Les pyréthrinoïdes et les organophosphorés sont des pesticides très utilisés, à l’origine d’une imprégnation forte de la population, exposée à ces contaminants principalement via l’alimentation. De plus en plus d’études scientifiques suggèrent des liens entre l’exposition à ces composés et des maladies chroniques ou des troubles du développement de l’enfant. Paradoxalement, leur devenir biologique chez l’homme est mal connu. Certaines études suggèrent que ces insecticides sont susceptibles d’intéragir avec les transporteurs membranaires ABC et SLC, protéines localisées au niveau d’interfaces hémato-tissulaires qui prennent en charge de nombreux substrats endogènes, médicaments et contaminants de l’environnement. L’objectif de notre étude a été de caractériser les effets d’insecticides des familles des pyréthrinoïdes et des organophosphorés sur l’activité de nombreux transporteurs ABC et SLC prenant en charge des médicaments (P-gp, BCRP, MRPs, OATP-1B1,-2B1,-1B3, OCT1-3, OAT1, OAT3, MATE1 et MATE2K) par une approche in vitro. Nous nous sommes également attachés à caractériser par des expérimentations in vitro et in silico, les mécanismes des interactions et les éléments structuraux des pesticides à l’origine de ces effets. Nous avons montré que de nombreux organophosphorés et pyréthrinoïdes étaient capables d’inhiber des transporteurs d’efflux (MRP, BCRP, P-gp) et d’influx (OATP1B1, OAT3, MATE1, OCT1-2) et de stimuler l’activité de certains OATPs. Les pesticides testés inhibaient très fortement l’activité des transporteurs de cations (OCT1 et OCT2) et ont pu bloquer le transport de catécholamines médiés par ces protéines. Une approche qSAR a permis de définir des paramètres physicochimiques associés aux effets modulateurs des pesticides et une approche d’amarrage moléculaire (docking) a mise en évidence les sites de liaisons de la P-gp impliquées dans ces interactions. Les conséquences des modulations de l’activité des transporteurs, en termes d’effets toxiques et d’interactions médicamenteuses, restent à définir pour les populations exposées à de fortes doses de pesticides. Toutefois, la contribution des interactions observées aux effets toxiques de ces insecticides est peu probable car nécessitant des concentrations nettement supérieures à celles atteintes dans le cadre d’une exposition environnementale de la population générale. / The general population is chronically exposed to pyrethroids and organophosphorus insecticides, mainly through alimentation. Several epidemiological studies have found an association between non-occupational exposure to these pesticides and chronic diseases and developmental disorders. Paradoxically, their biological fate in humans is poorly understood. Some studies suggest that these insecticides could interact with ABC and SLC membrane transporters. These membrane proteins, located at blood-tissue interfaces (liver, kidney, intestine ...), handle many endogenous substrates, drugs and pollutants. The objective of our study was to characterize, using an in vitro approach, the effects of pyrethroid and organophosphorus insecticides on the activity of numerous ABC and SLC human drug-transporters (P-gp, BCRP, MRPs, OATP-1B1, -2B1, -1B3, OCT1-3, OAT1, OAT3, MATE1 and MATE2K). We have also tried to analyze the mechanisms of interactions and the structural requirements for insecticides-mediated modulation of drug transporters activities using in vitro and in silico approach. We have shown that many organophosphorus and pyrethroids are able to inhibit ABC (MRP, BCRP, P-gp) and SLC (OATP1B1, OAT3, MATE1, OCT1-2) transporters and can stimulate the activity of some OATPs. Moreover, the tested pesticides inhibited very strongly the activity of OCT1 and OCT2 and blocked catecholamine transport mediated by these transporters. A qSAR approach allowed to define physicochemical parameters associated with the modulating effects of pesticides and a molecular docking approach revealed the P-gp binding sites involved in these interactions. The consequences of transporter activitie modulation, in terms of toxic effects and drug interactions, remain to be defined for populations exposed to high doses of pesticides, occurring notably in response to poisoning. However the alterations of these transporter activities by insecticides are unlikely to contribute to organophosphorus or pyrethroids toxicities of chronic low-dose exposure.

Page generated in 0.0915 seconds