Spelling suggestions: "subject:"biophysik/ biochemie"" "subject:"biophysik/ fitochemie""
1 |
Structural analysis of ion permeation in a non-selective channel mimicking the AMPA receptorMinniberger, Sonja 08 December 2021 (has links)
Ionenkanäle spielen eine wichtige Rolle in vielen physiologischen Prozessen. Während manche Kanäle hochspezifisch für eine Ionensorte sind, sind andere Kanäle weniger selektiv. Tetramere Ionenkanäle weisen eine gemeinsame Grundarchitektur auf, von der nur ionotrope Glutamatrezeptoren (iGluRs) abweichen, deren Struktur im Vergleich zu den anderen invertiert ist. Eine Untergruppe der iGluRs stellen α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid Rezeptoren (AMPARs) dar, welche im Zentralnervensystem von Wirbeltieren die Mehrheit der exzitatorischen Neurotransmission übernehmen. Eine einzelne posttranskriptionelle Veränderung (Glutamin zu Arginin) an der Spitze des Selektivitätsfilters (SF, Q/R Stelle) von AMPAR-Typ 2 (GluA2) macht den Kanal quasi undurchlässig für Ca2+.
Das Ziel dieser Arbeit war das Erstellen einer GluA2-Kanalchimäre mit Hilfe des bakteriellen Kanals NaK. Mutation rund um die Q/R Stelle wurden nicht toleriert von der Chimäre, während C-terminale Mutationen des SF stabil waren und für strukturelle Studien verwendet wurden. Die Entfernung einer Aminosäure im Vergleich zum NaK Wildtyp erzeugte eine Begradigung des SF und eine Erweiterung der wassergefüllten Ausbuchtung. Überraschenderweise kristallisierten die NaK Chimären überwiegend in zweifach symmetrischer Anordnung. Vor allem im SF kam es zu ausgeprägter lokaler Asymmetrie, unabhängig von der Ionenzusammensetzung. Um die Flexibilität des SF näher zu untersuchen, wurden Aminosäuren von NaK in GluA2 integriert und mithilfe von Patch-clamp Elektrophysiologie untersucht. Gleichsam wie in NaK, wurden Mutationen an der Filterspitze nicht toleriert, wohingegen die C-terminale Hälfte problemlos ausgetauscht werden konnte. Die funktionelle Integrität der NaK Chimäre wurde mithilfe von Einzelkanalmessungen in Bilayern überprüft. Zusätzlich wurden, auf Basis der gelösten Strukturen, Molekulardynamiksimulationen durchgeführt, welche einen dynamischen Einblick in den Permeationsmechanismus erlauben. / Ion channels play an important role in many physiological processes, for example the generation of action potentials. While some channels display high selectivity for one ion species, others are more promiscuous. All tetrameric cation channels share the same principal architecture, but the transmembrane domain of ionotropic glutamate receptors (iGluRs) is inverted relative to the other members. A subfamily of iGluRs, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs), mediates the vast majority of excitatory neurotransmission in the vertebrate central nervous system. In AMPA-type 2 iGluRs (GluA2), a single post-transcriptional modification (glutamine to arginine) at the tip of the selectivity filter (SF, Q/R site) renders the channel Ca2+ impermeable. The aim of this thesis was therefore to create an AMPAR pore mimic by using the bacterial channel NaK. Unfortunately, mutations around the Q/R site abolished expression of the NaK-GluA2 chimera, while C-terminal mutations of the SF were stable and could be used for structural studies. The shortening of the SF by one amino acid caused a straightening and opened an extended water-filled vestibule. Strikingly, most of the tested chimeras exhibited twofold symmetry with strong local asymmetry in the mutated part of the SF independent of the ion type present. For functional tests, residues from NaK wt were also swapped into GluA2. N-terminal mutations abolished the current response, whereas C-terminal mutations behaved wt-like. Single-channel bilayer experiments confirmed the functional integrity of the NaK-GluA2 chimera. Additionally, extensive molecular dynamics simulations, based on the solved structures, were carried out alongside.
In summary, it could be demonstrated that the SF of the non-selective NaK-GluA2 chimera is highly flexible and accommodated all tested ions. Ion binding is accompanied by local asymmetric rearrangements, possibly creating an energetically simple way to allow permeation.
|
Page generated in 0.0522 seconds