• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 148
  • 56
  • 54
  • 45
  • 28
  • 18
  • 18
  • 13
  • 9
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 446
  • 74
  • 70
  • 42
  • 42
  • 41
  • 40
  • 40
  • 37
  • 31
  • 28
  • 27
  • 26
  • 25
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

NOVEL APPROACHES TO STRYCHNOS AND ASPIDOSPERMA ALKALOIDS

Zhao, Senzhi January 2015 (has links)
All Strychnos and Aspidosperma alkaloids possess a core pyrrolo[2,3-d]carbazole ABCE tetracycle. In order to develop an efficient and divergent methodology for the synthesis of Strychnos alkaloids, a streamlined synthetic sequence to the ABCE tetracycle has been developed. It features a Mitsunobu activation of an N-hydroxyethyl gramine intermediate and subsequent intramolecular aza-Baylis-Hillman reaction. This method was first applied in the total synthesis of (±)-alstolucine B. Additional key steps in the synthesis included (1) chemoselective intermolecular and intramolecular Michael additions and (2) a Swern indoline oxidation. The second application of this method was in the first total synthesis of (-)-melotenine A, a novel rearranged Aspidosperma alkaloid with potent biological activity. Additional key steps in the synthesis included (1) a Piers annulation of a vinyl iodide and a methyl ketone to prepare the D ring and (2) a site-selective intermolecular vinylogous aldol reaction / Chemistry
132

NBN-Doped Bis-Tetracene and Peri-Tetracene: Synthesis and Characterization

Fu, Yubin, Chang, Xiao, Yang, Huan, Dmitrieva, Evgenia, Gao, Yixuan, Ma, Ji, Huang, Li, Liu, Junzhi, Lu, Hongliang, Cheng, Zhihai, Du, Shixuan, Gao, Hong-Jun, Feng, Xinliang 17 May 2024 (has links)
Combining solution-based and surface-assisted synthesis, we demonstrate the first synthesis of NBN-doped bis-tetracene (NBN-BT) and peri-tetracene (NBN-PT). The chemical structures are clearly elucidated by high-resolution scanning tunneling microscopy (STM) in combination with noncontact atomic force microscopy (nc-AFM). Scanning tunneling spectroscopy (STS) characterizations reveal that NBN-BT and NBN-PT possess higher energy gaps than bis-tetracene and peri-tetracene. Interestingly, NBN-BT can undergo stepwise one-electron oxidation and convert into its corresponding radical cation and then to its dication. The energy gap of the NBN-BT dication is similar to that of bis-tetracene, indicating their isoelectronic relationship. Moreover, a similar energy gap between the NBN-PT dication and peri-tetracene can be predicted by DFT calculations. This work provides a novel synthesis along with characterizations of multi-NBN-doped zigzag-edged peri-acenes with tunable electronic properties.
133

Di-(2-Ethylhexyl)-Phthalate (DEHP) Causes Impaired Adipocyte Function and Alters Serum Metabolites

Klöting, Nora, Hesselbarth, Nico, Gericke, Martin, Kunath, Anne, Biemann, Ronald, Chakaroun, Rima, Kosacka, Joanna, Kovacs, Peter, Kern, Matthias, Stumvoll, Michael, Fischer, Bernd, Rolle-Kampczyk, Ulrike, Feltens, Ralph, Otto, Wolfgang, Wissenbach, Dirk K., von Bergen, Martin, Blüher, Matthias 18 February 2016 (has links) (PDF)
Di-(2-ethylhexyl)-phthalate (DEHP), an ubiquitous environmental contaminant, has been shown to cause adverse effects on glucose homeostasis and insulin sensitivity in epidemiological studies, but the underlying mechanisms are still unknown. We therefore tested the hypothesis that chronic DEHP exposure causes impaired insulin sensitivity, affects body weight, adipose tissue (AT) function and circulating metabolic parameters of obesity resistant 129S6 mice in vivo. An obesity-resistant mouse model was chosen to reduce a potential obesity bias of DEHP effects on metabolic parameters and AT function. The metabolic effects of 10-weeks exposure to DEHP were tested by insulin tolerance tests and quantitative assessment of 183 metabolites in mice. Furthermore, 3T3-L1 cells were cultured with DEHP for two days, differentiated into mature adipocytes in which the effects on insulin stimulated glucose and palmitate uptake, lipid content as well as on mRNA/protein expression of key adipocyte genes were investigated.We observed in female mice that DEHP treatment causes enhanced weight gain, fat mass, impaired insulin tolerance, changes in circulating adiponectin and adipose tissue Pparg, adiponectin and estrogen expression. Serum metabolomics indicated a general increase in phospholipid and carnitine concentrations. In vitro, DEHP treatment increases the proliferation rate and alters glucose uptake in adipocytes. Taken together, DEHP has significant effects on adipose tissue (AT) function and alters specific serum metabolites. Although, DEHP treatment led to significantly impaired insulin tolerance, it did not affect glucose tolerance, HOMA-IR, fasting glucose, insulin or triglyceride serum concentrations. This may suggest that DEHP treatment does not cause impaired glucose metabolism at the whole body level.
134

Targeting Cancer Cells And Live Cell Imaging Using Bis(thiosemicarbazone) Complexes Of Copper And Zinc

Duraippandi, P 07 1900 (has links) (PDF)
Transition metal bis(thiosemicarbazone) complexes have been of great interest in the last five decades. One of the most striking features of these complexes is that they possess a wide range of biological properties including antimalarial, antibacterial and anticancer activity. Zinc and copper bis(thiosemicarbazone) complexes have recently attracted attention due to their intracellular fluorescence and anticancer activity, respectively. The present work “Targeting Cancer Cells and Live Cell Imaging Using Bis(thiosemicarbazone) Complexes of Copper and Zinc” is an effort to target cancer cells using folic acid or biotin linked anticancer active copper bis(thiosemicarbazone) complexes. Interestingly, bis(thiosemicarbazone) ligands form zinc complexes that could be used to image cancer cells and one of the ligands could be used for imaging zinc in the cells. Chapter 1, provides a brief introduction to metal complexes in medicine. Different classes of metallodrugs and their mechanism of action are listed. A short discussion on different types of diagnostic drugs and transition metal complexes possessing anticancer activity is presented. An overview of the strategies available to target cancer cells is included. Furthermore, the use of thiosemicarbazone compounds for anticancer activity is reviewed in detail. Recent examples of bis(thiosemicarbazone) compounds in medicinal studies is briefly mentioned. This section ends with the scope of the present work which involves bis(thiosemicarbazone) complexes of zinc and copper. Chapter 2, “Zinc bis(thiosemicarbazone) complexes for live cell imaging and anticancer activity” deals with the synthesis and characterization of a series of mononuclear and binuclear zinc bis(thiosemicarbazone) complexes by varying substituents at the diketone moiety or at the thiosemicarbazide fragment of the ligand. The crystal structures of mononuclear ligand benzil-bis(4-pyrrolidine-3-thiosemicarbazone) (BTSCH2), zinc glyoxal-bis(4-methyl-4-phenyl-3-thiosemicarbazone) [Zn(GTSC)]3 and [Zn(BTSC)(DMSO)] complexes were determined using single-crystal X-ray crystallography. Here, the mononuclear zinc complexes were utilized as live cell imaging agents whereas binuclear zinc complexes proved to be anticancer agents. Among the many mononuclear complexes prepared, the trimeric zinc complex derived from glyoxal- bis(4-methyl-4-phenyl-3¬thiosemicarbazone) was found to be the most fluorescent complex owing to its unique structure. This permitted live cell imaging in a number of cancer cell lines. In comparison with the well studied zinc biacetyl-bis(4-methyl-3-thiosemicarbazone) Zn(ATSM) complex, which was used as a reference, [Zn(GTSC)]3 had a 2.5 fold higher fluorescence quantum yield in DMSO. The cellular fluorescence was measured in collaboration with Prof. K.Somasundaram’s laboratory at MCBL using flow cytometry. It was observed that [Zn(GTSC)]3 had 3 to 12 fold higher fluorescence than Zn(ATSM) in various cell lines (n = 9) of different tissue origin. Confocal fluorescence microscopy studies established that [Zn(GTSC)]3 localizes in the nucleus of human breast cancer MCF-7 and MDA-MB-231 cells within 30 minutes of addition. Moreover, [Zn(GTSC)]3 showed relatively less cytotoxicity compared to the Zn(ATSM) complex in all the cancer cell lines tested. DNA interaction studies such as binding and cleavage showed that [Zn(GTSC)]3 was less harmful to DNA as well. All these features make [Zn(GTSC)]3 a good fluorescent imaging agent for live cells. Binuclear zinc bis(thiosemicarbazone) complexes were also synthesized and their cytotoxicity was evaluated in different cancer cells. One of the ligands, 1,3-bis{biacetyl-2′-"-N-pyrrolidinethiosemicarbazide)-3′-(4"-N-thiosemicarbazide)} propane (ProBATpyrH4), and its zinc complex were found to show excellent anticancer activity against human hepatocellular cancer (HepG2) cell line. However, the cellular uptake studies as followed by flow cytometry revealed that these compounds do not fluoresce inside the cells. However, the DNA interaction studies using ethidium bromide displacement assay revealed that these complexes have better binding ability to DNA than mononuclear zinc complexes and the viscometric titrations suggested the binding mode to DNA is through partial intercalation. Apparently, these complexes do not induce DNA cleavage as evident from the cleavage experiments performed on pBR322 DNA. It is likely that their anticancer activity is due to unique DNA binding properties. Imaging zinc is important in the field of metallomics as alteration of zinc concentration in cells is associated with, or attributed to various diseases. In this regard, bis(thiosemicarbazone) ligands are useful. Chapter 3, “Imaging intracellular zinc using glyoxal-bis(4-methyl-4-phenyl-3-thiosemicarbazone) ligand” deals with imaging zinc in live cells using the bis(thiosemicarbazone) ligand, GTSCH2. Since the trimeric zinc complex is fluorescent, the corresponding ligand, GTSCH2, was utilized to visualize the zinc present within cells. The ligand GTSCH2 is found to be a selective fluorescence “turn-on” sensor for zinc. This sensor exhibited excellent sensitivity and selectivity towards zinc over other physiologically relevant cations. The binding affinity of GTSCH2 to zinc was estimated to be 0.59 nM in an aqueous MOPS (50 mM, NaCl; 100 mM; pH 7.3) buffer containing 30% DMSO, from competitive binding experiments carried out with ethylene glycol tetraacetic acid (EGTA). The sensor displayed maximal fluorescence response to zinc ion when present in the ratio of 1:1 and displayed stable fluoresence in the pH range 5.0 to 7.8, which suggests that the probe may be suitable for imaging zinc in both normal and cancer cells. The potential of GTSCH2 to image zinc inside the cell has been demonstrated in two human breast cancer cell lines using confocal fluorescence microscopy. Unlike mononuclear zinc complexes, the mononuclear copper bis(thiosemicarbazone) complexes are cytotoxic. Chapter 4, “Anticancer activity of copper bis(thiosemicarbazone) complexes” deals with the synthesis, characterization and anticancer activity of mononuclear copper bis(thiosemicarbazone) complexes. All of them were characterized by spectroscopic methods and in three cases by single crystal X-ray diffraction. The redox properties, studied by cyclic voltammetry, showed reversible one electron- reduction process that varied from –0.53 V to –0.18 V vsSCE. Anticancer activity for the synthesized complexes and their ligands were tested against many human cancer cell lines where the complexes Cu(GTSC) and Cu(GTSCHCl) derived from glyoxal-bis(4-methyl-4-phenyl-3-thiosemicarbazone) are found to be most cytotoxic (GI50 <0.1 µM to 2.1 µM) in five cancer cell lines tested. Moreover, the cytotoxicity is similar to that of adriamycin, a known anticancer drug, in all cell lines. However, it is less potent than a copper bis(thiosemicarbazone) analog, copper biacetyl-bis(4-methyl-3-thiosemicarbazone) Cu(ATSM), a well studied anticancer agent in many cell lines. Cellular studies were carried out for the selected complexes Cu(GTSC) and Cu(GTSCHCl) along with Cu(ATSM) on HCT116 colon cancer cells. The order of lipophilicity and cellular uptake as studied by ICP-OES are correlated with their cytotoxicity. Based on the interaction of these complexes with DNA using the ethidium bromide displacement assay, DNA -melting, -viscosity and -cleavage studies, it is suggested that these complexes intercalate partially with DNA. DNA cleavage studies using pBR322 DNA revealed that only Cu(GTSCHCl) complex cleaves DNA. Mechanistic discrimination studies suggest that the complex cleaves DNA through the hydrolytic pathway. Since the topoisomerase IIα (Topo IIα), a nuclear enzyme resolving topological problems of DNA, is considered as one of the possible molecular targets for a number of anticancer drugs including some of the copper thiosemicarbazone complexes, Topo IIαinhibition studies were carried out in human Topo IIα. Interestingly, many copper bis(thiosemicarbazone) complexes are able to inhibit Topo IIα activity by acting as Topo IIα poison. Cu(GTSCHCl) complex was found to be the most active in this series of complexes (90 % inhibition at 100 µM) and it inhibits the enzyme in a dose dependant manner. Based on the results, it was concluded that the cell death may be mediated, at least in part, through DNA cleavage and Topo IIαinhibition. Severe side effects, poor distribution profiles and or organ specific toxicity make the conventional chemotherapy of limited value with metal based drugs. Therefore, developing cancer-specific drug delivery systems is an urgent need in cancer therapy. Among the many strategies available to target cancer, targeting the receptors that are overexpressed in the cancer cell membrane is a novel strategy being used in recent studies. Therefore the last part my work, “Copper bis(thiosemicarbazone) complexes linked to poly(ethylene glycol) and multiwalled carbon nanotubes for targeted delivery to cancer cells ” was designed to target cancer cells. Here, copper complexes (therapeutic molecule) were attached with PEG and MWCNT (carrier) along with folic acid or biotin (targeting molecule). First, CuATSM–A was functionalized with a disulfide linker and connected with folic acid via a poly(ethylene glycol) (PEG600) linker. This was synthesized to target KB (human nasopharyngeal carcinoma) cells, a cell line that overexpresses the folate receptor on the cell surface. In order to investigate the targeting efficacy, the corresponding fluorescent labeled analogs and non-targeted PEG conjugates were synthesized. Flow cytometry studies with fluorescent marker (fluorescein isothiocyanate) labeled PEG analogs showed the targeting efficacy on KB cells. The copper complex, CuATSM–A, attached with biotin–PEG2000 also was synthesized to target high-biotin-using HeLa (human cervical carcinoma) cells. Multiwalled carbon nanotubes (MWCNT) were also used as nanocarriers. Here, the MWCNT was decorated with PEG600 diamine and then functionalized with the copper complex (therapeutic molecule), folic acid (targeting molecule), and FITC (fluorescent molecule). The conjugation of all the molecules with MWCNT is characterized by various spectroscopic techniques.
135

Novel bisnaphthalimidopropyl polyamine derivatives : their mode of action in a breast cancer cell system

Barron, Gemma A. January 2010 (has links)
The synthesis and characterisation of novel bisnaphthalimidopropyl polyamine (BNIPP) derivatives, has gained pace over the last couple of years, as they have enhanced aqueous solubility, without loss of biological activity, in contrast to parent bisnaphthalimide derivatives. Recent work has shown that bisnaphthalimidopropyl spermidine (BNIPSpd) bis-intercalates to DNA, induces oxidative DNA damage, depletes polyamine levels and causes cell death, by apoptosis, in human colon cancer CaCO-2 and HT-29 cells. The aim of this thesis was to synthesise new BNIPP derivatives to highlight the important structural features required for biological activity, particularly, bisnaphthalimidopropyl functionality, and investigate their subsequent modes of action in breast cancer MDA-MB-231 and breast epithelial MCF-10A cells. Initially, work focused on determining the DNA binding affinities and biological activity of BNIPP derivatives. All BNIPP derivatives, except bisphthalimidopropyl diaminodecane (BPHPDadec) and mononaphthalimidopropylamine (NPA) (Δ Tm values of 15.8 and 10.2 °C, respectively, C50 values of > 10 μM, IC50 values of > 40 μM), exhibited strong DNA binding affinities and cytotoxic properties in both cell lines. Results indicate that BNIPP derivatives interact with DNA by bis-intercalation suggesting, therefore, that BNIPP derivatives target DNA. For the first time, an investigation into the mechanism of cellular entry, via the polyamine transport (PAT) system, was studied. However, none of the BNIPP derivatives utilised the MGBG-specific PAT system, suggesting that BNIPP derivatives utilise other modes of cellular entry. Two BNIPP derivatives, BNIPSpd and BNIPDaCHM, were further investigated, and results show that these derivatives significantly induced a dose dependent increase in DNA strand breaks from ≥ 0.1 μM, after 4 hours. BNIPSpd and BNIPDaCHM (at non toxic concentrations) also inhibited the repair of oxidative (H2O2) and methylative (MMS)-induced DNA strand breaks. Based on phosphatidylserine exposure and membrane integrity analyses, early apoptotic cell death was determined as a mode of cell death utilised by both BNIPSpd and BNIPDaCHM (5 μM), after only 0.5 hours treatment in MDA-MB-231 cells. Interestingly, BNIPDaCHM was identified, using HDAC assay kits, as a potent and selective SIRT2 enzyme inhibitor, thus, identifying, a novel structural backbone for the selective inhibition of HDAC enzymes.
136

Charting New Territory in Bis(imino)pyridine Coordination Chemistry

Jurca, Titel 17 July 2012 (has links)
This work was initially launched to study the synthesis of low-valent group 13 compounds bearing the bis(imino)pyridine ligand framework. Since its inception, this project has grown beyond the boundaries of group 13 to include low valent tin, silver, and rhenium. Alongside the reports of novel coordination compounds, we utilized computational chemistry to uncover unprecedented interactions which challenge conventional concepts of bonding. Synthesis, characterization, and complimentary computational studies are presented herein. Chapter 1 presents a historical overview of the bis(imino)pyridine ligand as well as our synthetic methodology and characterization of new ligand variants we have contributed to the literature. Chapter 2 presents the synthesis of a series of In(I) and In(III) bis(imino)pyridine complexes with varied sterics. Ligand-metal interaction and effect of ligand steric bulk on complex stability, as well as computational studies highlighting weak covalent interactions will be discussed. Chapter 3 presents the synthesis of Ga(III) bis(imino)pyridine complexes. Reactivity with “GaI” synthon as well as varied-stoichiometry one-pot synthesis attempts to generate low valent Ga-bis(imino)pyridine complexes will be discussed. Chapter 4 presents the synthesis of a series of Tl(I) bis(imino)pyridine complexes with varied sterics analogous to the approach taken with indium(I). Unprecedented weak ligand-metal as well as Tl-arene interactions will be discussed. Chapter 5 presents the synthesis of a series of Sn(II) bis(imino)pyridine complexes with varied sterics and halide substituents. Preferential cation-anion pair formation and attempted reactivity will be discussed. Chapter 6 presents the synthesis of a series of Ag(I) bis(imino)pyridine complexes with varied sterics. Resulting ligand-metal interactions as well as reactivity towards Lewis basic donor ligands will be discussed. Chapter 7 presents the synthesis of first crystallographically authenticated examples of rhenium(I) pincer complexes utilizing the bis(imino)pyridine ligand. Chapter 8 presents a general conclusion to the work.
137

Synthesis and X-ray Diffraction Structure of 8,9-Dichloropyrrolo[1,2-a]perimidin-10-one

Chen, Tao 08 1900 (has links)
Treatment of dichloromaleic anhydride and 1,8-diaminonaphthalene in either benzene or toluene under refluxing conditions gives low yields of the new heterocyclic compound 8,9-dichloropyrrolo[1,2-a]perimidin-10-one. This product has been isolated and characterized in solution by NMR, IR, and UV/vis spectroscopies, and the solid-state structure of 8,9-dichloropyrrolo[1,2-a]perimidin-10-one has been established by X-ray crystallography. The nature of the HOMO and LUMO levels of 8,9-dichloropyrrolo[1,2-a]perimidin-10-one has been studied by extended Hückel molecular orbital calculations.
138

Radiolabelled copper complexes for cancer imaging

Hueting, Rebekka January 2011 (has links)
Chapter One introduces molecular irnaging and the modalities available for oncological irnaging. The radioisotopes and imaging agents for Positron Emission Tomography (PET) and Single Photon Emission Computed Tomography (SPECT) are discussed together with the bifunctional chelator approach for radio labelling of biomolecules. Finally, the chemistry and radioisotopes of copper are described, and copper bis(thiosemicarbazonato) complexes introduced in the context of PET irnaging. Chapter Two describes the synthesis and characterisation of novel carboxylate- and maleirnide- functionalised bis(thiosemicarbazonates) and their conjugation to biologically active molecules. Radiolabelling of a chelator-bombesin conjugate demonstrated site-specific labelling at room temperature and preliminary in vitro and in vivo studies confirmed its potential as an imaging agent. Bioconjugation to a model protein and subsequent radiolabelling was also investigated. Chapter Three introduces molecular irnaging of hypoxia with a focus on CuATSM. An overview of the currently accepted mechanism of hypoxia selectivity is presented. The emphasis is placed on the relationship between oxygenation status, uptake and retention which display cell- and tumour- line dependency. Chapter Four presents the synthesis of copper bis(thiosemicarbazonates), radiolabelled either at the metal (64CU) or at the ligand e8F or 123n for mechanistic studies. The physicochemical characteristics of the copper complexes were measured and the complexes evaluated for their in vitro hypoxia selectivity. Chapter Five describes in vitro and in vivo studies of the orthogonally radiolabelled complexes, inclusive of control experiments with [64Cu]CuATS~, the radiolabelled proligand and [64CU]CU2+ salts. In vitro cellular assays, as well as in vivo biodistribution studies including dynamic PET and SPECT were performed. Stability studies contrasting the in vitro and in vivo behaviour were carried out. The collective data suggest that the currently proposed redox trapping mechanism might not provide a full understanding of the factors governing biodistribution and tumour uptake. Chapter Six contains full experimental details for the work described in this thesis.
139

Solid phase strategies for the preparation of phosphorus ligand libraries

Samuels, Michiel C. January 2014 (has links)
Catalysis plays a key role in chemical conversions by making them faster and more selective. Despite its widespread use and decades of academic and industrial research, limited catalyst selectivity and stability still call for major improvements in catalyst performance to meet the demands of a sustainable society. Phosphine ligands are ubiquitous in transition metal chemistry and lead to extremely reactive and versatile homogeneous catalysts. Fast development of tailor-made catalysts and catalyst recovery are key issues in (asymmetric) homogeneous catalysis. Therefore libraries of ligands have to be synthesised and screened in an efficient way, which could be facilitated by Solid Phase Synthesis (SPS). Currently, most polymer bound ligands are anchored to the support after the synthesis in solution. However, the main advantages of synthesising the ligands directly on the polymeric support are not only easy catalyst recycling and product separation, but also the ease of purification during the synthesis steps, namely by simple washing and filtration. The use of SPS is very efficient for high throughput synthesis and screening of ligand libraries, however applications of SPS towards libraries of phosphorus ligands are rare, because the synthetic methodologies are still lacking. Here we present the development of methodologies towards novel immobilised bis(phosphine) ligands synthesised on polystyrene and JandaJel™ resin. By performing the synthesis steps on a solid support, the advantages of SPS are fully utilised. Successful routes have been developed towards immobilised secondary phosphine-boranes, which were versatile synthons to prepare a variety of new polymer-supported (C-chiral) bis(phosphine) ligands. These ligands were then tested for their catalytic activity in rhodium catalysed hydrogenation reactions.
140

Mass Spectral Study of Trimethylsilylmethyl Substituted Chlorosilanes

Pope, Keith Randal 12 1900 (has links)
The mass spectra of the compounds [Me 3 SiCH2 nSiCl 4 n (n=1-3) were studied in detail. MIKES and CID spectra were used in conjunction with the observance of metastable processes to develop consistent fragmentation schemes. Particular attention is drawn to the formation of charged and neutral species containing the silicon-carbon double bond, including 2-silaallene, under conditions of electron impact.

Page generated in 0.037 seconds