• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 174
  • 33
  • 29
  • 15
  • 12
  • 11
  • 6
  • 6
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 333
  • 333
  • 68
  • 63
  • 57
  • 54
  • 51
  • 51
  • 46
  • 40
  • 40
  • 35
  • 33
  • 32
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
271

Herstellung von funktionellen und nanostrukturierbaren Blockcopolymeren und deren Verhalten in dünnen Filmen

Riedel, Maria 02 May 2018 (has links)
Das Ziel der Arbeit bestand in der Präparation von multifunktionellen phasenseparierten Blockcopolymerfilmen, die an der Oberfläche über polymeranaloge Reaktionen modifiziert werden können. Dafür wurden zunächst phasenseparierte Blockcopolymere über RAFT-Polymerisation synthetisiert, in die sowohl funktionelle als auch Vernetzergruppen integriert wurden. Als funktionelle Monomere kamen dabei Propargylmethacrylat, Propargyloxystyrol, Vinylbenzylchlorid und Pentafluorostyrol zum Einsatz. Die Vernetzergruppen wurden über die Monomere Vinylpyridin, Glycidylmethacrylat, 4-Benzoyl-3-hydroxyphenylmethacrylat und Dimethylmaleinimidobutylmethacrylat eingebaut. Die erhaltenen Polymere wurden hinsichtlich ihrer Molmasse und ihrer thermischen Eigenschaften mit GPC, NMR, DSC und TGA untersucht. Des Weiteren erfolgten polymeranaloge Reaktionen, wie die kupferkatalysierte Cycloaddition von Aziden an Alkinen, eine cäsiumvermittelte Veresterung der Vinylbenzylchloridgruppe mit Liponsäure als auch eine Substitution am Pentafluorostyrol mit Thiolen, an den synthetisierten Blockcopolymeren. Dünne Filme dieser Blockcopolymere wurden mit Rasterkraftmikroskopie untersucht und dabei teilweise Phasenseparation erhalten. Die Filme wurden darauf chemisch, thermisch als auch photochemisch vernetzt, um die erhaltenen Strukturen zu fixieren. Dabei konnte ein vollständiger Erhalt der Phasenstrukturen nicht erreicht werden. Allerdings zeigten die thermischen als auch photochemischen Vernetzungen die vielversprechendsten Ergebnisse.
272

Membranen aus [(A)n(B)m]x-Multiblockcopolymeren für den Einsatz in der Direkt-Methanol-Brennstoffzelle (DMFC)

Taeger, Antje 07 November 2005 (has links)
Aramide and arylene ether multiblock copolymers of (AB)n-type with various degrees of sulfonation have been prepared for use in direct methanol fuel cells. / Aramid- und Arylethersulfon-Multiblockcopolymere vom Typ (AB)n mit unterschiedlichem Sulfonierungsgrad wurden hergestellt und hinsichtlich ihrer Eignung als Polymerelektrolyte in der Direkt-Methanol-Brennstoffzelle getestet.
273

Rheological and Mechanical behaviour of Block copolymers, Multigraft copolymers and Block copolymer Nanocomposites

Thunga, Mahendra 18 June 2009 (has links)
Block copolymers are commercially significant and fundamentally interesting class of polymeric materials. The ability to undergo interfacial thermodynamics-controlled microphase separation from a completely disordered state in the melt to a specifically defined ordered structure through self-organization makes the block copolymers based materials unique. Block copolymer are strongly replacing many of the commercially available polymers due to their unique microstructure and properties. The most practical interests of block copolymers lie in the area of thermoplastic elastomers (TPEs). The objective of the present thesis work is to developing novel roots for enhancing the physical and mechanical properties in block copolymer and multigraft copolymers. Initially the properties are tailored by controlling chemical architecture at synthesis level and by selective blending at production level. This gives an easy access for improvement of the material properties and this is one of my major tasks in the present research modules. Further the block copolymer based TPEs are cross-linked in presence of electron beam (EB) radiation for developing materials with superior properties. The electron beam radiation has the ability to alter material parameters at molecular level for enhancing the macroscopic properties. The desirable physical and chemical properties can be easily attained by varying the radiation beam parameters. In addition to that, controlling the material at nanometer scale is one of the greatest challenges for current nanocomposite research. In elastomeric materials it is very prominent to fill the rubber matrix with nano particles from carbon or silica by melt mixing technique for enhancing the material properties. Other than conventional melt mixing technique, sol–gel processing is also a versatile technique, which making it possible to produce a wide variety of materials and to provide existing materials with novel properties. A combination of in situ sol-gel reaction with electron beam cross-linking in TPEs from triblock copolymer has been demonstrated for the first time as one of the novel nanocomposite system in this work. The main advantage of this system lies in controlling the material behaviour by finely tuning the size of silica nano particle generated inside TPE during in situ sol-gel reaction. Finally, the various roots employed for enhancing the material behaviour in block copolymers in the above research module were secussfully employed on super elastic multigraft copolymers for improving their strength withour sacrificing the super elastic nature.
274

Fullerenhaltige Donor-Akzeptor-Blockcopolymere als Additive für organische Bulk-Heterojunction-Solarzellen

Heuken, Maria 08 August 2012 (has links)
Fullerenhaltige Bulk-Heterojunction-Solarzellen auf Polymerbasis zeigen derzeit eine geringe Langzeitstabilität, die unter anderem auf der Entmischung der Bulkphasen beruht. In dieser Arbeit wurden daher auf neuartige Weise Blockcopolymere entwickelt, die zur Stabilisierung der Phasen dienen können. Ausgehend von Poly-3-hexylthiophen-Makroinitiatoren wurde ein zweiter Block mit reaktivem Comonomer polymerisiert, das zur Anbindung von reinem Fullerens bzw. von Fullerenderivaten diente. Die fullerenfunktionalisierten Polymere wurden in Modell-Systeme eingemischt und zeigten erste Verbesserungen bezüglich der Phasenstabilisierung.:1 Einleitung und Zielstellung 2 Grundlagen 2.1 Polymere Solarzellen 2.1.1 Theoretische Grundlagen und Funktionsweise 2.1.2 Materialien und Materialoptimierung 2.1.3 Stabilisierung der Blendmorphologien 2.2 Blockcopolymere – Eigenschaften und Aufbau 2.2.1 Kontrolliert radikalische Polymerisationen 2.2.2 Kumada-Catalyst Transfer Polycondensation 2.3 Fullerene – Eigenschaften und Funktionalisierung 3 Ergebnisse und Diskussion 3.1 Darstellung von Akzeptor-Polymeren 3.1.1 Synthese der Copolymere 3.1.2 Bingel-Reaktion 3.1.3 Polymeranaloge Reaktionen und Anbindung von Fullerenen an Copolymere 3.2 Synthesen von Donor-Akzeptor-Blockcopolymeren 3.2.1 Synthese und Charakterisierung des Makroinitiators und der Blockcopolymere 3.2.2 Polymeranaloge Reaktionen an Blockcopolymeren 3.3 Charakterisierung der Eigenschaften von Donor-Akzeptor-Blockcopolymeren in Blends 3.3.1 Blends mit fullerenhaltigen Blockcopolymeren 3.3.2 Blends mit azidfunktionalisiertem Blockcopolymer 3.3.3 Solarzellen-Tests 4 Zusammenfassung und Ausblick 5 Experimenteller Teil 5.1 Verwendete Chemikalien und Reagenzien 5.2 Geräte und Hilfsmittel 5.3 Synthesen niedermolekularer Verbindungen 5.4 Polymersynthesen 5.5 Polymeranaloge Reaktionen 6 Literaturverzeichnis Anhang
275

Synthesis of Photo Crosslinked and pH Sensitive Polymersomes and Applications in Synthetic Biology

Gaitzsch, Jens 14 March 2013 (has links)
As an inspiration from nature, polymeric vesicles can be formed from amphiphilic block-copolymers. These vesicles are called polymersomes and have applications in drug delivery and as nanoreactors. Within this thesis, photo cross-linked and pH sensitive polymersomes were synthesized, characterized and applied on cells as well as bionanoreactors. The stability due to the crosslinking yielded polymersomes which show a distinct and reproducible swelling upon repeated pH changes. If the non cross-linked vesicles were exposed to a plasma-cleaned surface, they formed a tethered singly and multiple bilayers. Upon studying these membranes, they turned out to harden upon crosslinking and showed a completely non-fluid behaviour. Additionaly, the polymersome-cell interactions were studied and yielded a high influence of the crosslinking conditions on cellular toxicity. If crosslinked for a long time in a phosphate-free enviroment, the polymersomes proved to be least toxic. Finally, an enzyme was incorporated into the polymersomes to create bionanoreactors. Due to the pH sensitivity and swelling, the vesicles created yielded a pH controlled nanoreactor with enzymatic activity and a swollen, e.g. acidic, state only.
276

Block copolymer micellization, and DNA polymerase-assisted structural transformation of DNA origami nanostructures

Agarwal, Nayan Pawan 14 August 2019 (has links)
DNA Nanotechnology allows the synthesis of nanometer sized objects that can be site specifically functionalized with a large variety of materials. However, many DNA structures need a higher ionic strength than that in common cell culture buffers or in bodily fluids to maintain their integrity and can be degraded quickly by nucleases. The aim of this dissertation was to overcome this deficiency with the help of cationic PEG-poly-lysine block copolymers that can electrostatically cover the DNA nanostructures to form “DNA origami polyplex micelles” (DOPMs). This straightforward, cost-effective and robust route to protect DNA-based structures could therefore enable applications in biology and nanomedicine, where un-protected DNA origami would be degraded. Moreover, owing to high polarity, the DNA-based structures are restricted to the aque-ous solution based buffers only. Any attempt to change the favorable conditions, leads to the distortion of the structures. In this work it was demonstrated that, by using the polyplex micellization strategy, the organic solubility of DNA origami structures can be improved. The strategy was also extended to functional ligands that are otherwise not soluble in organic solvents. With this strategy, it is now also possible to perform organic solution reactions on the DNA-based structures, opening up the possibility to use hydro-phobic organic reagents to synthesize novel materials. The polyplex micellization strategy therefore presents a cheap, robust, modular, reversible and versatile method to not only solubilize DNA structures in organic solvents but also improve their stability in biological environments. A third project was based on the possibility to synthesize complementary sequences to single-stranded gap regions in the DNA origami scaffold cost-effectively by a DNA polymerase rather than by a DNA synthesizer. For this purpose, four different wireframe DNA origami structures were designed to have single-stranded gap regions. The introduction of flexible gap regions resulted in fully collapsed or partially bent structures due to entropic spring effects. These structures were also used to demonstrate structural transformations with the help of DNA polymerases, expanding the collapsed bent structures to straightened tubes. This approach presents a powerful tool to build DNA wireframe structures more material-efficiently, and to quickly prototype and test new wireframe designs that can be expanded, rigidified or mechanically switched.:Abstract v Publications vii Acknowledgements ix Contents xiii Chapter 1 Introduction 1 1.1 Nanotechnology 1 1.1.1 History of nanotechnology 1 1.1.2 Phenomena that occur at nanoscale 4 1.1.3 Nature’s perspective of nanotechnology 4 1.1.4 Manufacturing nanomaterials 6 1.2 Deoxyribonucleic acid (DNA) 8 1.2.1 DNA, the genetic material, “The secret of life” 8 1.2.2 Structure of DNA 9 1.2.3 DNA synthesis 15 1.2.4 Stability of DNA 18 1.3 DNA nanotechnology 20 1.3.1 Historical development 20 1.3.2 DNA tile motifs 21 1.3.3 Directed nucleation assembly and algorithmic assembly 23 1.3.4 Scaffolded DNA origami and single-stranded DNA tiles 25 1.3.5 Expanding the design space offered by DNA 27 1.3.6 Assembling heterogeneous materials with DNA 30 1.3.7 Functional devices built using DNA nanostructures 35 Chapter 2 Motivation and objectives 40 Chapter 3 Block copolymer micellization as a protection strategy for DNA origami 42 3.1 Introduction 42 3.1.1 Cellular delivery of DNA nanostructures 42 3.1.2 The need for stability of DNA nanostructures 43 3.1.3 Non-viral gene therapy 44 3.2 Results and discussions 46 3.2.1 Strategy to form DNA origami polyplex micelles (DOPMs) 46 3.2.2 Optimizations 46 3.2.3 Decomplexation 53 3.2.4 Stability tests 55 3.2.5 Short PEG-PLys block copolymer 58 3.2.6 Compatibility with bulky ligands 59 3.2.7 Accessibility of handles on DOPMs 63 3.3 Conclusion 64 3.4 Outlook and state of the art 65 3.5 Methods 67 3.5.1 DNA origami folding 67 3.5.2 Preparation of ssDNA functionalized AuNPs 68 3.5.3 Agarose gel electrophoresis 69 3.5.4 Block copolymer preparation 70 3.5.5 DNA origami polyplex micelle preparation 70 3.5.6 Decomplexation of DOPM using dextran sulfate 73 3.5.7 Stability tests 74 3.5.8 tSEM characterization 75 3.5.9 AFM imaging 76 Chapter 4 Improving organic solubility and stability of DNA origami using polyplex micellization 77 4.1 Introduction 77 4.2 Results and discussions 79 4.2.1 Strategy for organic solubility of DNA origami 79 4.2.2 Proof of concept using AuNPs functionalized with ssDNA 80 4.2.3 Extending the strategy to DNA origami 82 4.2.4 Optimizations 86 4.2.5 Compatibility with functional ligands 88 4.2.6 Functionalization of DNA origami in organic solvent 94 4.3 Conclusion and outlook 95 4.4 Methods 97 4.4.1 Conjugation of functional ligands to DNA origami 97 4.4.2 Organic solubility 98 4.4.3 Reactions in organic solution on DOPMs 99 4.4.4 Fluorescence imaging using gel scanner 100 Chapter 5 Structural transformation of wireframe DNA origami via DNA polymerase assisted gap-filling 101 5.1 Introduction 101 5.2 Results and discussion 102 5.2.1 Design of the structures 102 5.2.2 Folding of gap-structures 105 5.2.3 Single-stranded DNA binding proteins 107 5.2.4 Gap filling with different polymerases 109 5.2.5 Gap filling with Phusion high-fidelity DNA polymerase 111 5.2.6 Optimization of the extension reaction using T4 DNA polymerase 115 5.2.7 Secondary structures 121 5.2.8 Folding kinetics of gap origami 124 5.2.9 Bending of tubes 125 5.3 Conclusion 126 5.4 Outlook 127 5.5 Methods 128 5.5.1 DNA origami folding 128 5.5.2 Gap filling of the wireframe DNA origami structures 128 5.5.3 Agarose gel electrophoresis 130 5.5.4 PAGE gel analysis 130 5.5.5 tSEM characterization 131 5.5.6 AFM imaging 131 5.5.7 AGE based folding-yield estimation 132 5.5.8 Gibbs free energy simulation using mfold 132 5.5.9 Staple list for folding the DNA origami triangulated structures 132 Appendix 134 A.1 Additional figures from chapter 3 134 A.2 Additional figures from chapter 4 137 A.3 Additional figures from chapter 5 149 Bibliography 155 Erklärung 171
277

Scalable 1D and 2D polymer-based nanoparticles via crystallization-driven self-assembly

Ellis, Charlotte Emily 21 April 2022 (has links)
Self-assembly is ubiquitous in nature. A diverse range of materials with exceptional properties are accessed from a limited number of sub-units, through controlling structural order on all length-scales. Achieving the same level of control to access functional materials akin to those in nature is a key challenge in chemistry. Self-assembly of block copolymers (BCPs) offers a valuable bottom-up route, governed by non-covalent interactions, to access ordered assemblies on the nanoscale. Anisotropic nanostructures, such as one- and two-dimensional (1D and 2D) micelle morphologies, are of particular interest for various applications including those in biomedicine, catalysis, optoelectronics, and materials engineering. Crystallization-driven self-assembly (CDSA) of BCPs containing a crystallizable core-forming segment presents a robust route to preparing 1D and 2D micelles. Significantly, the use of pre-existing seed micelles in a process termed living CDSA allows access to 1D and 2D nanostructures of controlled size and low size-dispersity. Although CDSA protocols represent powerful tools for the formation controlled 1D and 2D nanostructures, key challenges associated with scale-up of these processes remain. In most cases, increasing the concentration at which living CDSA is performed results in competitive self-nucleation, compromising micelle size-control and dispersity. Living polymerization-induced crystallization-driven self-assembly (PI-CDSA) has been presented as a promising alternative route to accessing scalable 1D micelles. In this case, the polymerization, self-assembly, and seeded growth of a BCP containing a crystallizable core-forming segment occur in situ. However, the scope of living PI-CDSA is currently limited to the use of polyferrocenylsilane (PFS)-based BCPs. Owing to the diverse range of crystalline core chemistries compatible with CDSA protocols, and therefore various promising applications of 1D and 2D micelles, scale-up is essential to facilitate their further investigation and application. The work presented in this thesis focusses on upscaling the preparation and processing of controlled 1D and 2D micelles with a crystalline core. The scalable preparation of low dispersity 2D platelet micelles by living CDSA of a charge-terminated PFS homopolymer with surfactant counteranions is presented in Chapter 2. Here, fundamental insight into the effects of living CDSA concentration on platelet dimensions, structure fidelity, and aggregation behaviour is provided. In Chapter 3, the scope of living PI-CDSA is extended to access scalable length-controlled low dispersity 1D nanofibers containing a biodegradable poly(fluorenetrimethylenecarbonate) (PFTMC) crystalline core. PFTMC-based 1D fibers are of interest for biomedical applications, hence, in this work, it is demonstrated that living PI-CDSA can be used to prepare fibers exhibiting biologically-relevant lengths at scalable concentrations. In Chapter 4, the scalable formation of low dispersity 1D micelles by living CDSA of a PFS-based BCP in a continuous flow setup is explored. Processing of 1D micelles into microfibers using simple, low cost, and high throughput electrospinning techniques is demonstrated in Chapter 5. Finally, Chapter 6 summarises the contribution of this thesis to improving the scalability of CDSA protocols and provides future directions for this work. / Graduate / 2023-04-12
278

BIOMIMETIC NON-IRIDESCENT STRUCTURAL COLORATION VIA PHASE-SEPARATION OF COMPATIBILIZED POLYMER BLEND FILMS

Nallapaneni, Asritha 15 July 2020 (has links)
No description available.
279

Semiconducting Organosilicon-based Hybrids for the Next Generation of Stretchable Electronics

Ditte, Kristina 12 May 2023 (has links)
During past years, organic-based electronic devices revealed high promise to supplement the ubiquitous silicon-based electronic devices and enable new fields of applications. At the center of this development is the considerable progress regarding π-conjugated polymer semiconductors (PSCs): Due to their processability from solution, light-weight, as well as low-cost, PSCs are now evolving towards production-scale of new technologies, e.g., in organic solar cells (OSCs), organic field-effect transistors (OFETs), and organic light emitting diodes (OLEDs). Especially OFETs are of fundamental importance, as they constitute the switching units in all logic circuits and display technologies. However, the future world is expected to be full with smart electronics and communication devices integrated in clothes, tools and even interacting with the human body, e.g., as on-skin wearable sensors. For this the electrically-active material, just as a human tissue, requires to combine several properties in addition to being charge conducting: They need to show (i) mechanical softness, (ii) capacity to repair, (iii) multimodal sensitivity, as well as (iv) biodegradability. Here, PSCs still face challenges as they are brittle and break upon applying a mechanical stress. When trying to address this issue, the existing knowledge on mechanical properties of well-established polymeric plastics, e.g., polystyrene, cannot be directly applied for several reasons, e.g., (i) the bulkiness of monomers (including long side-chains), (ii) the rigid π-conjugated backbone, (iii) the low degree of polymerization, (iv) the small quantities in which PSCs are available, etc. Moreover, these kinds of materials should not only be mechanically compliant and stretchable, but furthermore retain their charge mobility upon stretching, and withstand numerous of mechanical stretching cycles. Considering this complex problem, researchers have been developing and investigating several approaches to combine good electrical properties and mechanical compliance within one material. These approaches include (i) stress-accommodating engineering, (ii) blending of PSCs into elastic matrix, as well as (iii) molecular engineering approach. The latter seeks to interlink mechanical and electrical properties on the molecular level, i.e., synthesize polymers that are charge conducting and stretchable. Different strategies were tested, from the modification of side chains, to the introduction of conjugation breakings spacers into the backbone. Selected works sought to incorporate stretchability and conductivity by utilizing block copolymers, i.e., covalently linking a conjugated and a non-conjugated polymer chain, resulting in a phase separation of both constituents and preserving their respective properties. The ultimate goal of this work is to achieve an intrinsically stretchable and electrically high-performing PSC via the block copolymer approach. This is done by connecting organosilicone, namely the polydimethylsiloxane (PDMS) elastomer – possessing outstanding mechanical properties, as well as good environmental and air stability – with a conjugated diketopyrrolopyrrole (DPP)-based donor-acceptor copolymer. The final obtained structure of this polymer is a tri-block copolymer (TBC) consisting of an inner DPP-based polymer block and two outer soft PDMS polymer blocks. The content of PDMS block can be controlled and be very high (up to 67 wt%), and easy processing, e.g., via shear coating, is possible. Relatively high charge carrier mobilities – in the same range as the reference DPP-based copolymer (i.e., without outer PDMS blocks) – are retained, and the block copolymers withstands numerous stretching cycles (up to 1500 cycles) without losing electrical functionality. Finally, one of the block copolymers was successfully incorporated into a biosensor for COVID-19 antibodies and antigens detection. Overall, the findings of this work show that the block copolymer is a highly versatile approach to obtain functional and stretchable semiconductors with high charge carrier mobilities. Block copolymers consisting of a high-performing donor-acceptor PSC and a biocompatible elastomer could contribute towards one of the long-term goals of organic electronics – the realization of mechanically compliant materials for applications in stretchable electronics (e.g., wearable sensors, electronic skin, etc.).
280

Helical Ordering in Chiral Block Copolymers

Zhao, Wei 01 February 2013 (has links)
The phase behavior of chiral block copolymers (BCPs*), namely, BCPs with at least one of the constituent block is formed by chiral monomers, is studied both experimentally and theoretically. Specifically, the formation of a unique morphology with helical sense, the H* phase, where the chiral block forms nanohelices hexagonally embedded in the matrix of achiral block, is investigated. Such unique morphology was first observed in the cast film of polystyrene-b-poly(L-lactide) (PS-b-PLLA) from a neutral solvent dichloromethane at room temperature with all the nanohelices being left-handed, which would switch to right-handed if the PLLA block changes to PDLA. Further studies revealed that such morphology only forms when the chiral PLLA block possesses certain volume fraction (from 0.32 to 0.36), and the molecular weight exceeds certain critical value (around 20,000 to 25,000 g/mol). Achiral phases such as lamellae, gyroid, cylinder, and sphere will form if the above criteria are not satisfied. Even though the unique H* phase has been extensively studied and utilized for many applications, many fundamental and important questions remain unanswered for such BCP* system. Specifically, how does the molecular level chirality transfer from the several-angstrom scale of the lactide monomer to the tens-of-nanometer size scale of the H* domain morphology? Why is the chirality transfer not automatic for this BCP* system? Is H* phase a thermodynamic stable or metastable phase? Are there other novel phases other than the H* phase that could form within the BCP* system? We aimed at providing answers to the abovementioned questions regarding the formation of chiral H* phase, which is no longer limited to the PS-b-PLLA/PDLA system. We divided our studies into both experimental and theoretical parts. In the experiments, we studied the effect of solvent casting conditions, including solvent removal rate and polymer-solvent interactions, on the formation of the H* phase in PS-b-PLLA/PDLA BCPs*. In addition, we monitored the morphological evolution during solvent casting using time-resolved x-ray scattering technique. We found that good solubility towards both PS and PLLA/PDLA blocks are required for the formation of the H* phase, and microphase separation has to happen prior to crystallization of chiral block. Most importantly, we found that crystalline ordering is not necessary for the H* phase formation. This result led us to propose melt-state twisted molecular packing as the underlying driving force for such helical phase to form, and began our work on the theory for BCPs*. First we built the theoretical tool by incorporating the orientational segmental interactions into the self-consistent field theory (SCFT) for BCPs. As a demonstration, we constructed the phase diagrams for one-dimensional (1D) and two-dimensional (2D) phases, for achiral BCPs with different orientational stiffness. We found that orientational stiffness could serve as another parameter to introduce asymmetry into BCP systems, in addition to conformational and architectural asymmetry. This model was further applied to study the phase behavior of BCPs*, and two phase diagrams were constructed. Another chiral phase, wavy lamellae (L* phase), was observed for BCPs*. The H* phase was found to be a thermodynamic stable phase, as long as the segregation strength ����and chiral strength ��! exceed certain critical values. Energetically favorable cholesteric texture was observed for the chiral segment packing inside the H* phase, which is believed to drive such unusual morphology to form. A simple geometrical argument based on bending of cylindrical microdomain and twisted packing of the bended microdomain can be given to explain the nonlinear chiral sensitivity of BCP* morphology, which further explains the non-automatic feature of chirality transfer in such system.

Page generated in 0.082 seconds