• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 44
  • 28
  • 8
  • 6
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 118
  • 34
  • 26
  • 25
  • 18
  • 18
  • 17
  • 16
  • 15
  • 14
  • 13
  • 13
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Internationalization through Acquisition : A Case Study of Getinge AB

Huang, Jinlong, Wang, Hui January 2010 (has links)
Business has seen tremendous growth through internationalization over the last several decades.  As  one  of  the  strategies  for  companies  to  internationalize,  acquisition  has since then been a well-studied subject. Various steps have to be gone through in order to  acquire  a  company.  Afterwards,  companies  need  to  take  different  measures  to ensure  the  success  of  the  acquisition.  Culture  is  usually  considered  as  the  most important  aspect  which  determines  post-acquisition  success.  The  purpose  of  this master dissertation is to thus investigate company’s internationalization via acquisition regarding    the    pre-acquisition    decision-making    and    post-acquisition    cultural management. The  theoretical  framework  consists  of  literature  of  pre-acquisition  decision-making process and post-acquisition culture management. These theories are put together in an analytical  model  where  possible  connections  are  intended  to  achieve.  It  will  also  be used as a foundation in gathering and analyzing the empirical data.   In  a  qualitative  approach,  the  empirical  data  was  gathered  through  semi-structured interview with the president of Getinge International Group. These findings were also complemented with secondary data such as corporate websites, documents and various scientific articles. The findings of the study show that planning, evaluating, negotiating, making the deal and    integration    are    the    five    essential    steps    concerning    the    process    of internationalization  through  acquisition.  The  authors  find  out  that  identifying  of acquisition  candidates  is  not  necessarily  a  part  of  pre-acquisition  as  the  theory  may suggest.  The  distinction  between  bolt-on  and  platform  acquisition  is  of  critical importance to determine the different criteria and procedure certain company is going to take. This proves to be much more practical, where theoretical support has not been fully established. Both national and corporate cultures are of crucial importance for the success of company’s post-acquisition culture management. According to the finding of this research, two factors seem to link pre and post acquisition process; one is the planning of how future organization is managed; the other is the appropriate choice of managing director.
32

Punching Shear Retrofit Method Using Shear Bolts for Reinforced Concrete Slabs under Seismic Loading

Bu, Wensheng January 2008 (has links)
Reinforced concrete slab-column structures are widely used because of their practicality. However, this type of structures can be subject to punching-shear failure in the slab-column connections. Without shear reinforcement, the slab-column connection can undergo brittle punching failure, especially when the structure is subject to lateral loading in seismic zones. The shear bolts are a new type of transverse reinforcement developed for retrofit of existing structures against punching. This research focuses on how the shear bolts can improve the punching-shear capacity and ductility of the existing slab-column connections under vertical service and lateral seismic loads. A set of nine full-scale reinforced concrete slab-column connection specimens were tested under vertical service and cyclic loads. The vertical (gravity) load for each specimen was kept at a constant value throughout the testing. The cyclic lateral drift with increasing intensity was applied to the columns. The specimens were different in number of bolts, concrete strength, number of openings, and level of gravity punching load. Strains in flexural rebars in the slabs, crack widths, lateral loads, and displacements were obtained. The peak lateral load (moment) and its corresponding drift ratio, connection stiffness, crack width, and ductility were compared among different specimens. The testing results show that shear bolts can increase lateral peak load resisting capacity, lateral drift capacity at peak load, and ductility of the slab-column connections. Shear bolts also change the failure mode of the slab-column connections and increase the energy dissipation capacity. The thesis includes also research on the development of guidelines for shear bolt design for concrete slab retrofitting, including the punching shear design method of concrete slab (with shear bolts), dimensions of bolts, spacing, and influence of bolt layout patterns. Suggestions are given for construction of retrofitting method using shear bolts. Recommendations are also presented for future research.
33

Punching Shear Retrofit Method Using Shear Bolts for Reinforced Concrete Slabs under Seismic Loading

Bu, Wensheng January 2008 (has links)
Reinforced concrete slab-column structures are widely used because of their practicality. However, this type of structures can be subject to punching-shear failure in the slab-column connections. Without shear reinforcement, the slab-column connection can undergo brittle punching failure, especially when the structure is subject to lateral loading in seismic zones. The shear bolts are a new type of transverse reinforcement developed for retrofit of existing structures against punching. This research focuses on how the shear bolts can improve the punching-shear capacity and ductility of the existing slab-column connections under vertical service and lateral seismic loads. A set of nine full-scale reinforced concrete slab-column connection specimens were tested under vertical service and cyclic loads. The vertical (gravity) load for each specimen was kept at a constant value throughout the testing. The cyclic lateral drift with increasing intensity was applied to the columns. The specimens were different in number of bolts, concrete strength, number of openings, and level of gravity punching load. Strains in flexural rebars in the slabs, crack widths, lateral loads, and displacements were obtained. The peak lateral load (moment) and its corresponding drift ratio, connection stiffness, crack width, and ductility were compared among different specimens. The testing results show that shear bolts can increase lateral peak load resisting capacity, lateral drift capacity at peak load, and ductility of the slab-column connections. Shear bolts also change the failure mode of the slab-column connections and increase the energy dissipation capacity. The thesis includes also research on the development of guidelines for shear bolt design for concrete slab retrofitting, including the punching shear design method of concrete slab (with shear bolts), dimensions of bolts, spacing, and influence of bolt layout patterns. Suggestions are given for construction of retrofitting method using shear bolts. Recommendations are also presented for future research.
34

Die Stress And Friction Behaviour Analysis In Bolt Forming

Aygen, Mert 01 December 2006 (has links) (PDF)
In cold forming operations, tool geometry has a direct influence on the product quality, forming force, load acting on dies and tool life. Finite element method provides a means to analyse these parameters to predict forming defects and die failures. In this study, shrink fitting the components of a bolt forming die is modelled and the finite element results are compared with the analytical solutions and experiments. In order to perform die stress analyses, deformable die models are implemented in the forging simulations. Furthermore, effect of using rigid and deformable dies on the stress distributions in the tools, forming force and product dimensions are examined. Some applications of tool geometry improvements and optimization of prestressing are presented in the case studies. In the second part of the study, the appropriate friction model for the cold forming operation of bolts is investigated. For this purpose, ring compression and forward rod extrusion tests are conducted. Dimensional variations and deformation forces are compared with the finite element simulations performed for different friction models and constants. The results of shrink fit analyses of die prestressing are in good agreement with the elasticity formulations and real applications. In the studied bolt production cases, after improving the die stress distributions by using FE simulations, longer tool lives are achieved. Finally, for more accurate results, Coulomb friction model is determined as an appropiate model for bolt forming analyses.
35

Effect of Bolted Joint Preload on Structural Damping

Xu, Weiwei 01 January 2013 (has links)
Bolted joints are integral parts of mechanical systems, and bolt preload loss is one of the major failure modes for bolted joint structures. Understanding the damping and frequency response to a varying preload in a single-bolted lap-joint structure can be very helpful in predicting and analyzing more complicated structures connected by these joints. In this thesis, the relationship between the bolt preload and the natural frequency, and the relationship between the bolt preload and the structural damping, have both been investigated through impact hammer testing on a single-bolted lap-joint structure. The test data revealed that the bolt preload has nonlinear effects on the structural damping and on the natural frequency of the structure. The damping ratios of the test structure were determined to increase with decreasing preload. An increase in structural damping is beneficial in most engineering circumstances, for it will reduce the vibrational response and noise subjected to external excitations. It was also observed that the modal frequency increased with increasing preload, but remained approximately constant for preload larger than 30% in the bolt yield strength. One application for studying the preload effect is the detection for loose bolts in structures. The possibility of using impact testing for estimating preload loss has been confirmed, and the modal damping was determined to be a more sensitive indicator than the natural frequency in a single-bolted lap-joint structure.
36

Analysis Of Bolt Production By Metal Forming

Onder, Canderim 01 August 2004 (has links) (PDF)
Bolts and rivets are produced by cold forging technique. A great majority of metal forming companies prefer to use their dexterity rather than science and technology. The main aim of this thesis is to establish an environment for developing technology in bolt production by reducing trial and error. In this thesis finite element method is utilized to model bolt forming for correcting tooling designs, removing production defects and estimating forging forces. Material characterization, precise determination of boundary conditions and verification of numerical results are also investigated. It is shown how efficient the finite element method is for technology development in metal forming industry. Furthermore, two anomalies in extrusion process are presented: The hump and the force hill in extrusion force-displacement curve. Reasons of these two anomalies are studied using finite element simulations and verified by experiments. Thesis also explains reduction methods of three-dimensional problems to axisymmetric models and compares the results.
37

Metallurgical Influences on the Stress Corrosion Cracking of Rock Bolts

Ernesto Villalba Unknown Date (has links)
The influence of steel metallurgy on rock bolt SCC was studied using a series of commercial carbon and low-alloyed steels. The chemical composition, their mechanical properties and the microstructures of these steels varied considerably in order to gather information for the discussion of the metallurgical influences under Hydrogen Embrittlement (HE) and Stress Corrosion Cracking (SCC) conditions. In order to understand the metallurgical influences on Rock Bolt SCC, an evaluation was carried out to fifteen commercial steels. The experiments reproduced the Stress Corrosion Cracking condition at which commercial rock bolts had failed in Australians mines. Due to the selected materials, stress and electrolyte condition it is expected that Hydrogen Embrittlement (HE) will affect the steel failure. The approach was to use the Linearly Increasing Stress Test (LIST) and exposing the sample to a dilute pH 2.1-sulphate solution, in accordance with prior studies. Stress Corrosion Cracking was evaluated by analysing the decrease in tensile strength, loss of ductility and fractography observed using Scanning Electron Microscopy (SEM). The initial series of test to the fifteen steels were performed at the free corrosion potential (f.c.p.) vs. Ag/AgCl. From this initial test only five steels (AISI 1008, AISI 4140, AISI 4145H, pipeline X-65 and X-70) did not show Stress Corrosion Cracking features. These five steel were tested in accordance with the Linearly Increased Stress Test (LIST) in the dilute pH 2.1 sulphate solution at different electronegative applied potential to minimum value of -1500mV. The experimental procedure tried to reproduce the Stress Corrosion Cracking condition to identify the most aggressive condition the steel is able to support before failing due to Stress Corrosion Cracking to then compare the theory of SCC and HE in low carbon and low alloy steel with the obtained experimental results. The investigation compared the well-known theory of SCC and HE in low carbon and low alloy steel with the obtained experimental results. Surprisingly, the experimental result did not always agree with the theory.
38

A Reliability Study of Steel Bridge Connections with Bolts Designed with Threads Excluded but Installed with Threads Not Excluded

Brown, Lisa 04 October 2021 (has links)
No description available.
39

Simulation of vehicle impact into a steel building : A parametric study on the impacted column end-connections

Cravotta, Stefan, Grimolizzi, Emanuele January 2015 (has links)
Understanding the true behaviour of impacted structures is the only way to assess their robustness under exceptional events such as vehicle collision. The primary objective of this master’s thesis was to perform a finite element parametric investigation on the influence that some parameters have in steel buildings subjected to vehicle impacts. The parameters chosen for the study, involved uncertainties in the material definition and in the load configuration of the bolts used in the impacted column end-connections. By using the Abaqus software, a finite element model of the structure has been created. The five storey steel building considered has been modelled in a simplified manner with the exception of the impacted area which, instead, has been defined in a more detailed fashion. During the simulations, different preload conditions have been used, comparing cases with and without the preload force. Regardless its variation, it has not been observed any increase in the structural resistance. On the other hand, the simulation provided interesting results for what concerns the material variations in the bolts. Although the changes have been small in magnitude, the effect on the structural response during the impact was remarkable. For all the cases considered, an increase of the material ductility, achieved by increasing the ultimate strain at failure, entailed higher resistance of the connections. Various failure modes have been observed when the material properties have been changed. Having clarified the influence of the assumptions made, the results provided helpful information in sight of future studies. Although the model still needs to be validated, the research clarified which of the parameters investigated are to be collected with more attention. Keywords: Vehicle collision, steel building, FE model, Abaqus/Explicit, parametric investigation, bolt preload, bolt material.
40

Att utforma förband i limträkonstruktioner för demontering : En studie av förbandstyperna pelar-balk och balk-balk i en hallbyggnad

Westlund, Cecilia January 2021 (has links)
I takt med att fler stora byggnader uppförs i trä ökar medvetenheten om resurshantering. Förbanden i dagens träbyggnader sågas isär och bränns vid rivning på grund av att förbandet inte går att demontera. Demonterbara förband skulle möjliggöra flyttandet av byggnader eller materialåteranvändning av bärande element. För att svara på forskningsfrågan ”Hur kan förband i limträkonstruktioner utformas, med dagens gängse beräkningsmetoder, för att möjliggöra demontering?” studeras en hallbyggnad som projekterats av Sweco. Två förbandstyper, pelar-balk och balk-balk, väljs för utformning av demonterbara förbandslösningar. Flexibel aktionsforskningsmetod har använts i problemlösande syfte. Insamlade data består av kvalitativa dialoger med sakkunniga och kvantitativa beräkningar.  Resultatet av studien är utformningen av två förband med genomgående skruvar. Pelar-balk-förbandet utformas med 8 genomgående skruvar, trälaskar och en invändig ståldymling. Balk-balk-förbandet utformas med en dold balksko med sidoplåtar och totalt 17 genomgående skruvar. Utformningarna med genomgående skruvar anses enkelt demonterbara och dessutom bra ur arbetsmiljösynpunkt. Pelar-balk-förbandets ursprungliga utformning har 72 träskruvar, vars skruvskallar döljs helt av trä och därför inte kan dras ut. Balk-balk-förbandets ursprungliga utformning består av 322 ankarspikar och 26 träskruvar som på grund av förbindarnas antal gör demonteringen så tidskrävande att den inte skulle utföras alls.  Examensarbetet landar i slutsatsen att det går att utforma förband för demonterbarhet genom att välja bort spik och träskruv till förmån för genomgående skruv. Förbanden som tagits fram under studien rekommenderas i byggnader där demonterbarhet eftersträvas. / As more large buildings are built in wood, awareness of resource management increases. The joints in today's wooden buildings are sawn apart and incinerated during demolition due to the fact that the joint cannot be disassembled. Demountable joints would enable the relocation of buildings or the reuse of load-bearing elements. To answer the research question "How can joints in glulam constructions be designed, with today's common calculation methods, to enable disassembly?" an industrial building designed by Sweco is being studied. Two joint types, column-beam and beam-beam, are selected for the design of demountable joint solutions. Flexible action research method has been applied in order to solve a problem. Collected data consists of qualitative dialogues with experts and quantitative calculations.  The result of the study is the design of two bolted joints. The column-beam joint is designed with 8 bolts, external wooden straps and an internal steel dowel. The beam-beam joint is designed with a hidden beam shoe with side plates and a total of 17 bolts. The designs with bolts are considered to be easily dismantled and also good from a work environment point of view. The original design of the column-beam joint has 72 wood screws. The screw´s heads are completely enclosed by wood and therefore cannot be pulled out. The original design of the beam-beam joint consists of 322 anchor nails and 26 wood screws which, due to the number of connectors, make disassembly so time-consuming that it will not not be performed at all.  This report conclude it is possible to design joints for disassembly by opting out of nails and wood screws in favor of bolts. The joints developed during the study are recommended in buildings where disassembly is wanted. / <p>Betyg 2021-06-04</p>

Page generated in 0.0424 seconds