• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Carbon Intensity Estimation of Publicly Traded Companies / Uppskattning av koldioxidintensitet hos börsnoterade bolag

Ribberheim, Olle January 2021 (has links)
The purpose of this master thesis is to develop a model to estimate the carbon intensity, i.e the carbon emission relative to economic activity, of publicly traded companies which do not report their carbon emissions. By using statistical and machine learning models, the core of this thesis is to develop and compare different methods and models with regard to accuracy, robustness, and explanatory value when estimating carbon intensity. Both discrete variables, such as the region and sector the company is operating in, and continuous variables, such as revenue and capital expenditures, are used in the estimation. Six methods were compared, two statistically derived and four machine learning methods. The thesis consists of three parts: data preparation, model implementation, and model comparison. The comparison indicates that boosted decision tree is both the most accurate and robust model. Lastly, the strengths and weaknesses of the methodology is discussed, as well as the suitability and legitimacy of the boosted decision tree when estimating carbon intensity. / Syftet med denna masteruppsats är att utveckla en modell som uppskattar koldioxidsintensiteten, det vill säga koldioxidutsläppen i förhållande till ekonomisk aktivitet, hos publika bolag som inte rapporterar sina koldioxidutsläpp. Med hjälp av statistiska och maskininlärningsmodeller kommer stommen i uppsatsen vara att utveckla och jämföra olika metoder och modeller utifrån träffsäkerhet, robusthet och förklaringsvärde vid uppskattning av koldioxidintensitet. Både diskreta och kontinuerliga variabler används vid uppskattningen, till exempel region och sektor som företaget är verksam i, samt omsättning och kapitalinvesteringar. Sex stycken metoder jämfördes, två statistiskt härledda och fyra maskininlärningsmetoder. Arbetet består av tre delar; förberedelse av data, modellutveckling och modelljämförelse, där jämförelsen indikerar att boosted decision tree är den modell som är både mest träffsäker och robust. Slutligen diskuteras styrkor och svagheter med metodiken, samt lämpligheten och tillförlitligheten med att använda ett boosted decision tree för att uppskatta koldioxidintensitet.
2

Artificial intelligence and Machine learning : a diabetic readmission study

Forsman, Robin, Jönsson, Jimmy January 2019 (has links)
The maturing of Artificial intelligence provides great opportunities for healthcare, but also comes with new challenges. For Artificial intelligence to be adequate a comprehensive analysis of the data is necessary along with testing the data in multiple algorithms to determine which algorithm is appropriate to use. In this study collection of data has been gathered that consists of patients who have either been readmitted or not readmitted to hospital within 30-days after being admitted. The data has then been analyzed and compared in different algorithms to determine the most appropriate algorithm to use.
3

Event categorisation and Machine-learning Techniques in Searches for Higgs Boson Pairs in the ATLAS Experiment at the LHC

Emadi, Milads January 2023 (has links)
This thesis investigates the pair production of Higgs bosons (di-Higgs events) at the ATLAS experiment in the Large Hadron Collider (LHC), focusing on the channel where one Higgs boson decays into two bottom quarks and the other decays into two tau leptons. The main objective was to determine whether introducing a split in the invariant mass of the decay products from the two Higgs bosons (the di-Higgs mass) and using this as an analysis variable improves the sensitivity of the Boosted Decision Tree (BDT) machine learning algorithm to the di-Higgs signal. A mass split was performed at 350 GeV, and the BDT algorithm was trained on both the split and un-split data sets, where the split data set included a high-mass region (di-Higgs mass above 350 GeV) using the Standard Model Higgs boson coupling constant of 1 and a low-mass region (di-Higgs mass below 350 GeV) using the enhanced coupling constant of 10 to create a low-mass region more sensitive to the signal.  The results showed that the BDT algorithm training performed on the split data set provided a 3.6% improvement in the exclusion limits, indicating an improvement in the algorithm's sensitivity to the di-Higgs signal compared to the training performed on the un-split data set. This finding suggests that the introduction of a split at 350 GeV can enhance the accuracy and efficiency of machine learning algorithms in detecting di-Higgs boson production at the LHC.  The improvement in sensitivity was attributed to the enhanced discrimination between signal and background events provided by the split in the di-Higgs mass analysis variable. The improved separation between the signal and background events lead to a higher signal-to-background ratio and a corresponding increase in the BDT algorithm's sensitivity to the di-Higgs signal.  In conclusion, this thesis provided evidence that introducing a split in the di-Higgs mass analysis variable can improve the sensitivity of machine learning algorithms to the di-Higgs signal in the channel where one Higgs boson decays into two bottom quarks and the other into two tau particles. This finding has important implications for future research on di-Higgs boson production at the LHC and could lead to more accurate and efficient detection of this rare and important process.
4

Estimating Per-pixel Classification Confidence of Remote Sensing Images

Jiang, Shiguo 19 December 2012 (has links)
No description available.

Page generated in 0.0873 seconds