• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 129
  • 94
  • 14
  • 11
  • 3
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 294
  • 294
  • 294
  • 137
  • 135
  • 107
  • 104
  • 44
  • 42
  • 39
  • 37
  • 36
  • 35
  • 34
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Shape Optimization for Acoustic Wave Propagation Problems

Udawalpola, Rajitha January 2010 (has links)
Boundary shape optimization is a technique to search for an optimal shape by modifying the boundary of a device with a pre-specified topology. We consider boundary shape optimization of acoustic horns in loudspeakers and brass wind instruments. A horn is an interfacial device, situated between a source, such as a waveguide or a transducer, and surrounding space. Horns are used to control both the transmission properties from the source and the spatial power distribution in the far-field (directivity patterns). Transmission and directivity properties of a horn are sensitive to the shape of the horn flare. By changing the horn flare we design transmission efficient horns. However, it is difficult to achieve both controllability of directivity patterns and high transmission efficiency by using only changes in the horn flare. Therefore we use simultaneous shape and so-called topology optimization to design a horn/acoustic-lens combination to achieve high transmission efficiency and even directivity. We also design transmission efficient interfacial devices without imposing an upper constraint on the mouth diameter. The results demonstrate that there appears to be a natural limit on the optimal mouth diameter. We optimize brasswind instruments with respect to its intonation properties. The instrument is modeled using a hybrid method between a one-dimensional transmission line analogy for the slowly flaring part of the instrument, and a finite element model for the rapidly flaring part. An experimental study is carried out to verify the transmission properties of optimized horn. We produce a prototype of an optimized horn and then measure the input impedance of the horn. The measured values agree reasonably well with the predicted optimal values. The finite element method and the boundary element method are used as discretization methods in the thesis. Gradient-based optimization methods are used for optimization, in which the gradients are supplied by the adjoint methods.
202

Modelling the Effect of Suspended Bodies on Cavitation Bubbles near a Ridgid Boundary using a Boundary Integral Approach

McGregor, Peter Stanley January 2003 (has links)
Cavitation is the spontaneous vaporisation of a liquid to its gaseous state due to the local absolute pressure falling to the liquid's vapour pressure (Douglas, Gasiorek et al. 1995). Cavitation is present in a wide range of mechanical systems ranging from ship screws to journal bearing. Generally, cavitation is unavoidable and may cause considerable damage and efficiency losses to these systems. This thesis considers hydraulic systems specifically, and uses a modified Greens equation to develop a boundary integral method to simulate the effect that suspended solid bodies have on a single cavitation bubble. Because of the limitations of accurately modelling cavitation bubbles beyond touchdown, results are only presented for cases up to touchdown. The aim of the model is to draw insight into the reasons there is a measurable change in cavitation erosion rate with increasing oil-in-water emulsion percentage. This principle was extended to include the effect that ingested particulates may have on cavitation in hydraulic machinery. Two particular situations are modelled; the first consists of stationary rigid particles in varying proximity to a cavitation bubble near a rigid boundary. The second case is similar; however the suspended particle is allowed to move under the influence of the pressure differential caused by the expanding/contracting cavitation bubble. Numerous characteristics of the domain are considered, including domain pressures and fluid field motion, and individual boundary surface characteristics. The conclusion of the thesis is that solid bodies, either stationary or moving, have little effect on the cavity from an energy perspective. Regardless of size or density, all energy transferred from the cavity to the solid body is returned indicating that there is no net change. As this energy is ultimately responsible for the peak pressure experienced by the domain (and hence responsible for eroding the rigid boundary) as the cavity rebounds, it then serves that a cavity with a solid body will rebound at the same pressure as a cavity without a suspended body present. If this is coupled with the observation that the cavity centroid at touchdown is largely unaffected by the presence of a suspension, then it would appear that the bubble near a solid would rebound at a very similar position as a cavity without a solid. Consequently, the damage potential of a cavity is unaffected by a suspension. However, there is one point of contention as the profile of the re-entrant jet of the cavity is altered by the presence of a suspension. As energy is radiated away from the cavity during penetration, it is possible that the shape of the jet may alter the rate that energy is radiated away during penetration. However, this requires further research to be definitive.
203

Vibro-acoustic analysis of inverter driven induction motors

Wang, Chong, Aerospace & Mechanical Engineering, Australian Defence Force Academy, UNSW January 1998 (has links)
With the advent of power electronics, inverter-driven induction motor are finding increased use in industries because of applications that demand variable speed operations and because of the potential savings in energy usage. However, these drives sometimes produce unacceptably high levels in vibration and acoustic noise. A literature survey has revealed that while there has been intensive research on the design of inverters to minimize acoustic noise radiation from these drives, the vibro-acoustic behaviour of an induction motor structure has received relatively little attention. The primary objective of this research project, therefore, is to develop a general strategy/algorithm for estimating the acoustic noise radiated from inverter-driven induction motors. By using a three-phase, 2.2 kW induction motor, the vibration modes due to various structural components (such as the rotor, the stator/casing, the endshields and the base plate) of the motor structure were analysed by experimental modal testing. Results indicate that the vibration modes due to the rotor are only important at low frequencies. It has been found that the power injection method gives more accurate measurement of the damping of a motor structure than the modal testing and the time decay methods. If a point force excitation is used, then it is more accurate to measure the sound radiation efficiency than the power conversion efficiency for motor structures. The effect of three different inverter designs (an ideal ???almost sinusoidal??? controller and two commercially available PWM inverters) on the radiated acoustic power were assessed for both no-load and load conditions using sound intensity measurements conducted in an anechoic room. The results indicate that although the sound power level due to aerodynamic and mechanical noise increases at a rate of 12 dB per doubling of the motor speed, the electromagnetic noise dominates at low motor speeds and is still a significant noise source even at high motor speeds. For inverters with low switching frequencies, the radiated sound power level is almost 15 dB higher than the ideal case at low speeds and is relatively insensitive to the motor speed. For inverters that implement the random modulation technique, the change in the total sound power level with the level of the random modulation is very small but the tonal nature of the noise is greatly reduced. The vibration behaviour of a motor structure was modeled using the finite element method (FEM) and validated using the experimental modal testing results. It has been found that it is essential to model the laminated stator as an orthotropic structure. While the details of other structural components (such as the endshields, the teeth in the stator and the windings) are not so important, it is essential that they are incorporated into the structural model as simplified structures to account for their mass, stiffness and boundary conditions imposed on the motor structure. Based on this structural model, the radiated acoustic power for various operating conditions has been predicated using the boundary element (BEM) and the electromagnetic force calculated from an electromagnetic finite element model. The predicted results agree reasonably well with experimental measurements. Despite the success of the FEM/BEM approaches, they can be prohibitively expensive (in terms of computer resources required) to apply to large motors and high frequencies. Thus the feasibility of using a statistical method, namely, the statistical energy analysis (SEA), to estimate the radiated acoustic sound power from an inverter-driven induction motor has been examined. In order to carry out this analysis, analytical expressions for calculating the natural frequencies and radiation efficiency of finite length circular cylindrical shells (which are simplified models of the stator and casing of a motor structure) were firstly derived. The internal loss factors and coupling loss factors of the motor structure were determined experimentally using the power injection method. Then by introducing an equivalent surface mobility of circular cylindrical shells for the electromagnetic force, the vibration response and the acoustic noise radiated from each part of the motor structure were estimated. Results indicate that SEA method is potentially an efficient and effective tool in estimating the noise radiated from inverter-driven induction motors.
204

Intensidade acústica útil: um novo método para identificação de regiões radiantes em superfícies com geometrias arbitrárias / Useful acoustic intensity: a new method for the identification of radiant regions on surfaces with arbitrary geometries

Cleber de Almeida Corrêa Junior 16 March 2012 (has links)
Fundação Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro / Neste trabalho é descrita a teoria necessária para a obtenção da grandeza denominada intensidade supersônica, a qual tem por objetivo identificar as regiões de uma fonte de ruído que efetivamente contribuem para a potência sonora, filtrando, consequentemente, a parcela referente às ondas sonoras recirculantes e evanescentes. É apresentada a abordagem de Fourier para a obtenção da intensidade supersônica em fontes com geometrias separáveis e a formulação numérica existente para a obtenção de um equivalente à intensidade supersônica em fontes sonoras com geometrias arbitrárias. Este trabalho apresenta como principal contribuição original, uma técnica para o cálculo de um equivalente à intensidade supersônica, denominado aqui de intensidade acústica útil, capaz de identificar as regiões de uma superfície vibrante de geometria arbitrária que efetivamente contribuem para a potência sonora que será radiada. Ao contrário da formulação numérica existente, o modelo proposto é mais direto, totalmente formulado na superfície vibrante, onde a potência sonora é obtida através de um operador (uma matriz) que relaciona a potência sonora radiada com a distribuição de velocidade normal à superfície vibrante, obtida com o uso do método de elementos finitos. Tal operador, chamado aqui de operador de potência, é Hermitiano, fato crucial para a obtenção da intensidade acússtica útil, após a aplicação da decomposição em autovalores e autovetores no operador de potência, e do critério de truncamento proposto. Exemplos de aplicações da intensidade acústica útil em superfícies vibrantes com a geometria de uma placa, de um cilindro com tampas e de um silenciador automotivo são apresentados, e os resultados são comparados com os obtidos via intensidade supersônica (placa) e via técnica numérica existente (cilindro), evidenciando que a intensidade acústica útil traz, como benefício adicional, uma redução em relação ao tempo computacional quando comparada com a técnica numérica existente. / This work describes the theory necessary to obtain the greatness called supersonic intensity, which aims to identify the regions of a sound source that effectively contribute to the sound power radiated, filtering recirculating and evanescent sound waves. The Fourier approach to obtain the supersonic intensity in sources having separable geometries, and the existent numerical formulation to obtain an equivalent to supersonic intensity on noise sources with arbitrary geometry. This work presents a new numeric technique for the computation of the numerical equivalent to the supersonic acoustic intensity. The technique provides the identification of the regions of a noise source with arbitrary geometry that effectively contribute to the sound power radiated to the far field by filtering recirculating and evanescent sound waves. The proposed technique is entirely formulated on the vibrating surface. The acoustic power radiated is obtained through a numerical operator that relates it with the distribution of superficial normal velocity, which is obtained by the boundary element method. Such power operator, possesses the property of being Hermitian. The advantage of this characteristic is that their eigenvalues are real and their eigenvectors form an orthonormal set for the velocity distribution. It is applied to the power operator the decomposition in eigenvalues and eigenvectors, becoming possible to compute the numerical equivalent to the supersonic intensity, called here useful intensity, after applying a cutoff criterion to remove the non propagating components. Some numerical tests confirming the effectiveness of the convergence criterions are presented. Examples of the application of the useful intensity technique in vibrating surfaces such as a plate, a cylinder with flat caps and an automotive muffler are presented and the numerical results are discussed, showing that the useful intensity brings, as additional benefit, a reduction of the computational effort, when compared to existent numerical technique.
205

Numerical methods for modelling the viscous effects on the interactions between multiple wave energy converters

McCallum, Peter Duncan January 2017 (has links)
The vast and rich body of literature covering the numerical modelling of hydrodynamic floating body systems has demonstrated their great power and versatility when applied to offshore marine energy systems. It is possible to model almost any type of physical phenomenon which could be expected within such a system, however, limitations of computing power continue to restrict the usage of the most comprehensive models to very narrow and focused design applications. Despite the continued evolution of parallel computing, one major issue that users of computational tools invariably face is how to simplify their modelled systems in order to achieve practically the necessary computations, whilst capturing enough of the pertinent physics, with great enough ‘resolution’, to give robust results. The challenge is, in particular, to accurately deliver a complete spectrum of results, that account for all of the anticipated sea conditions and allow for the optimisation of different control scenarios. This thesis examines the uncertainty associated with the effects of viscosity and nonlinear behaviour on a small scale model of an oscillating system. There are a wide range of Computational Fluid Dynamics (CFD) methods which capture viscous effects. In general however, the oscillating, six degree-of-freedom floating body problem is best approached using a linear potential flow based Boundary Element Method (BEM), as the time taken to process an equivalent model will differ by several orders of magnitude. For modelling control scenarios and investigating the effects of different sea states, CFD is highly impractical. As potential flows are inviscid by definition, it is therefore important to know how much of an impact viscosity has on the solution, particularly when different scales are of interest during device development. The first aim was to develop verified and validated solutions for a generic type decaying system. The arrangement studied was adapted from an array tank test experiment which was undertaken in 2013 by an external consortium (Stratigaki et al., 2014). Solutions were delivered for various configurations and gave relatively close approximations of the experimental measurements, with the modelling uncertainties attributed to transient nonlinear effects and to dissipative effects. It was not possible however to discern the independent damping processes. A set of CFD models was then developed in order to investigate the above discrepancies, by numerically capturing the nonlinear effects, and the effects of viscosity. The uncontrolled mechanical effects of the experiment could then be deduced by elimination, using known response patterns from the measurements and derived results from the CFD simulations. The numerical uncertainty however posed a significant challenge, with the outcomes supported by verification evidence, and detailed discussions relating to the model configuration. Finally, the impact of viscous and nonlinear effects were examined for two different interacting systems – for two neighbouring devices, and an in-line array of five devices. The importance of interaction behaviour was tested by considering the transfer of radiation forces between the model wave energy converters, due to the widely accepted notion that array effects can impact on energy production yields. As there are only very limited examples of multi-body interaction analysis of wave energy devices using CFD, the results with this work provide important evidence to substantiate the use of CFD for power production evaluations of wave energy arrays. An effective methodology has been outlined in this thesis for delivering specific tests to examine the effects of viscosity and nonlinear processes on a particular shape of floating device. By evaluating both the inviscid and viscous solutions using a nonlinear model, the extraction of systematic mechanical effects from experimental measurements can be achieved. As these uncontrolled frictional effects can be related to the device motion in a relatively straightforward manner, they can be accommodated within efficient potential flow model, even if it transpires that they are nonlinear. The viscous effects are more complex; however, by decomposing into shear and pressure components, it may in some situations be possible to capture partially the dynamics as a further damping term in the efficient time-domain type solver. This is an area of further work.
206

Formulation courants et charges pour la résolution par équations intégrales des équations de l'électromagnétisme / Currents and charges formulation for the numerical solution by integrals equations of equation of electromagnetism

Steif, Bassam 09 July 2012 (has links)
Cette thèse a consisté à élaborer une méthode qui permet de résoudre l’équation intégrale comportant comme inconnues les courants et les charges introduite récemment par Taskinen et Ylä-Oijala par une méthode d’éléments frontière sans aucune contrainte de continuité au niveau des interfaces des éléments aussi bien pour les courants que pour les charges. Nous avons d’abord montré comment on pouvait construire cette équation de façon simple et similaire à celle des formulations intégrales usuelles en imposant au problème intérieur relatif au système de Picard, qui est en fait une extension du système de Maxwell, des conditions aux limites adéquates. Pour des géométries régulières de l’objet diffractant, nous avons établi de façon théorique la stabilité et la convergence des schémas numériques ci-dessus en montrant que cette équation peut être décomposée sous la forme d’un système elliptique coercif et d’un opérateur compact dans le cadre des fonctions de carré intégrable.Toute cette étude a été confirmée par des tests numériques tridimensionnels. Comme pour les équations intégrales usuelles de seconde espèce, le cadre théorique valable pour des surfaces régulières ne l’est plus pour des surfaces avec des singularités. L’utilisation formelle de cette équation,pour des surfaces singulières, a donné des résultats entachés d’erreur. Nous avons mis en évidence l’origine des instabilités numériques à l’origine de ces erreurs lorsque les géométries sont singulières en développant une version bidimensionnelle de cette équation. Cette version nous a permis en particulier de montrer que les instabilités étaient dues à des oscillations parasites concentrées autour des singularités de la géométrie. Dans ce cadre nous avons pu mettre en oeuvre plus aisément des approches pour supprimer ou atténuer ces oscillations parasites ou leur effet sur les calculs en champ lointain. Nous avons montré qu’un procédé d’augmentation des degrés de liberté pour la charge par rapport au courant pouvait sensiblement réduire ces instabilités. A la suite de l’amélioration observée sur les résultats dans le cas 2D, nous avons transposé cette procédure au cas tridimensionnel. A travers divers tests, nous avons constaté l’amélioration de la qualité de l’approximation amenée par la procédure de stabilisation / The objective of this thesis was to develop a method that solves the integral equation whose unknowns are the currents and the charges, recently introduced by Taskinen and Ylä-Oijala, by a boundary element method without any continuity constraint at the interfaces of the elements,for both the unknowns. We first show how to construct this equation in a simple way, similar tothe usual integral formulations, through imposing to the internal problem related to the Picard system,which is an extension of the Maxwell system, appropriate boundary conditions. For regular geometries, we have established a theoretical background ensuring the stability and the convergence of numerical scheme, by proving that this equation can be decomposed in a coercive elliptic and a compact parts in the context of square integrable functions. Our study was validated by three-dimensional numerical tests. In the case of usual integral equations of the second kind, the theoretical background for smooth surfaces is no longer valid when the surfaces is singular. The formal use of this equation for singular surfaces gave erroneous results. We pointed out the origin of numerical instabilities bydeveloping a two-dimensional version of this equation. This version has allowed us to show that the instabilities were due to parasitic oscillations accumulating on the geometrical singularities. In this context, we have implemented some approaches to reduce this parasitic oscillations on the calculations in the far field.We have shown that the method of increasing the freedom degrees for the charges relatively to the current could significantly reduces these instabilities. As a result, we have implemented this procedure in three-dimensional case. Throughout various tests, we noted the improvement on the approximation brough bay to the stabilization procedure
207

Intensidade acústica útil: um novo método para identificação de regiões radiantes em superfícies com geometrias arbitrárias / Useful acoustic intensity: a new method for the identification of radiant regions on surfaces with arbitrary geometries

Cleber de Almeida Corrêa Junior 16 March 2012 (has links)
Fundação Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro / Neste trabalho é descrita a teoria necessária para a obtenção da grandeza denominada intensidade supersônica, a qual tem por objetivo identificar as regiões de uma fonte de ruído que efetivamente contribuem para a potência sonora, filtrando, consequentemente, a parcela referente às ondas sonoras recirculantes e evanescentes. É apresentada a abordagem de Fourier para a obtenção da intensidade supersônica em fontes com geometrias separáveis e a formulação numérica existente para a obtenção de um equivalente à intensidade supersônica em fontes sonoras com geometrias arbitrárias. Este trabalho apresenta como principal contribuição original, uma técnica para o cálculo de um equivalente à intensidade supersônica, denominado aqui de intensidade acústica útil, capaz de identificar as regiões de uma superfície vibrante de geometria arbitrária que efetivamente contribuem para a potência sonora que será radiada. Ao contrário da formulação numérica existente, o modelo proposto é mais direto, totalmente formulado na superfície vibrante, onde a potência sonora é obtida através de um operador (uma matriz) que relaciona a potência sonora radiada com a distribuição de velocidade normal à superfície vibrante, obtida com o uso do método de elementos finitos. Tal operador, chamado aqui de operador de potência, é Hermitiano, fato crucial para a obtenção da intensidade acússtica útil, após a aplicação da decomposição em autovalores e autovetores no operador de potência, e do critério de truncamento proposto. Exemplos de aplicações da intensidade acústica útil em superfícies vibrantes com a geometria de uma placa, de um cilindro com tampas e de um silenciador automotivo são apresentados, e os resultados são comparados com os obtidos via intensidade supersônica (placa) e via técnica numérica existente (cilindro), evidenciando que a intensidade acústica útil traz, como benefício adicional, uma redução em relação ao tempo computacional quando comparada com a técnica numérica existente. / This work describes the theory necessary to obtain the greatness called supersonic intensity, which aims to identify the regions of a sound source that effectively contribute to the sound power radiated, filtering recirculating and evanescent sound waves. The Fourier approach to obtain the supersonic intensity in sources having separable geometries, and the existent numerical formulation to obtain an equivalent to supersonic intensity on noise sources with arbitrary geometry. This work presents a new numeric technique for the computation of the numerical equivalent to the supersonic acoustic intensity. The technique provides the identification of the regions of a noise source with arbitrary geometry that effectively contribute to the sound power radiated to the far field by filtering recirculating and evanescent sound waves. The proposed technique is entirely formulated on the vibrating surface. The acoustic power radiated is obtained through a numerical operator that relates it with the distribution of superficial normal velocity, which is obtained by the boundary element method. Such power operator, possesses the property of being Hermitian. The advantage of this characteristic is that their eigenvalues are real and their eigenvectors form an orthonormal set for the velocity distribution. It is applied to the power operator the decomposition in eigenvalues and eigenvectors, becoming possible to compute the numerical equivalent to the supersonic intensity, called here useful intensity, after applying a cutoff criterion to remove the non propagating components. Some numerical tests confirming the effectiveness of the convergence criterions are presented. Examples of the application of the useful intensity technique in vibrating surfaces such as a plate, a cylinder with flat caps and an automotive muffler are presented and the numerical results are discussed, showing that the useful intensity brings, as additional benefit, a reduction of the computational effort, when compared to existent numerical technique.
208

Estudo de campo elétrico em linha de transmissão utilizando o método dos elementos de contorno

Silva Filho, Elson Borges da [UNESP] 28 March 2008 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:22:35Z (GMT). No. of bitstreams: 0 Previous issue date: 2008-03-28Bitstream added on 2014-06-13T20:49:17Z : No. of bitstreams: 1 silvafilho_eb_me_ilha.pdf: 1002165 bytes, checksum: 7b47e608bd37c2b8a03cccc84f847230 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Este trabalho analisa a aplicação em linhas de transmissão do método dos elementos de contorno para cálculo de potencial e campo elétrico, com um enfoque em eletrostática. O método dos elementos de contorno baseia-se numa formulação integral que elimina a discretização do domínio, restando apenas o contorno, permitindo o cálculo do potencial e do campo elétrico no contorno e na região estudada. O trabalho configura-se como uma revisão sobre eletrostática, ressaltando as equações de Laplace e Poisson, que serão utilizadas para encontrar as equações integrais do contorno. Há também vários tópicos relacionados ao campo elétrico de linhas de transmissão, bem como, ás normas brasileiras e recomendações internacionais que devem ser utilizadas no projeto de linhas de transmissão. O método dos elementos de contorno utiliza tais equações integrais para encontrar o potencial e o campo no contorno, e após conhecidos o potencial e o campo no contorno, pode-se aplicar o método em todo o domínio, obtendo o potencial e o campo. Para isso, apenas o contorno do domínio de interesse deve ser discretizado, o que trás uma enorme vantagem sobre os métodos que utilizam formulação diferencial. Neste trabalho, serão descritas as principais características do código computacional desenvolvido e suas sub-rotinas mais importantes. Para validar o programa, os resultados serão comparados com aqueles calculados por um procedimento analítico, sendo mostrada a eficiência da discretização do solo. São apresentados os resultados obtidos da análise do campo elétrico gerado por algumas silhuetas de linhas de transmissão. Os valores do campo elétrico gerado por estruturas compactas são comparados com estruturas convencionais e estruturas reduzidas (semi-compactas), também serão comparados os valores do gradiente de potencial na superfície dos condutores e suas capacitâncias equivalentes. / This paper analyses the application in transmission lines of the Boundary Element Method (BEM) of the calculation of potential and electric field, with a focus on electrostatic. The Boundary Element Method is based on an integral formulation that eliminates the discretisation of the domain, remaining only the contour, allowing the calculation of the potential and the electric field in the contour and in the region studied. The work is configured as revision on electrostatic, underscoring the equations of Laplace and Poisson, which will be used to find the integral equations of the contour. There are also several topics related to the electric field of transmission lines, as well as to the standards Brazilian and international recommendations to be used in the design of transmission lines. The Boundary Element Method uses such integral equations for finding the potential and electric field in the contour, and after having known the potential and electric field in the contour, the BEM can be applied in the whole domain, and getting the potential and electric field. Therefore, only the contours of the domain of interest should just be discretized, which backward an enormous advantage on the methods that use formulation differential. This paper will describe the main characteristics of computer code developed and their sub-routines more important. To validate the program, the results will be compared with those calculated by an analytic procedure, being shown the efficiency of discretisation of the soil. The results obtained from analysis of the electric field generated by some silhouettes of transmission lines are presented. The values of the electric field generated by compact structures are compared with conventional structures and reduced structures, also will be compared the values of the gradient of potential on the surface of the conductors and their equivalents capacitances.
209

Contribuição à análise estática e dinâmica de pórticos pelo Método dos Elementos de Contorno

Cruz, José Marcílio Filgueiras 18 October 2012 (has links)
Made available in DSpace on 2015-05-08T14:59:48Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 7220631 bytes, checksum: d36ace240b1aa4b1c66a0ca9ae99326d (MD5) Previous issue date: 2012-10-18 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / This paper describes elastic, static and dynamic analysis of frames using the Boundary Element Method (BEM). The superstructure is modeled for two frame structure cases (that is, plane frame and space frame) and algebraic specific representations are developed for these purposes. According to the specific cases, bending effects (Euler- Bernoulli or Timoshenko models), torsional effects (under Saint Venant assumptions) are properly operated as well as the explicit forms of displacements and efforts influence matrices and the body force vector. Special attention is paid to the problem of static soil-structure interaction. In this case the superstructure (space frame) is modeled by BEM and the soil (assumed as semiinfinite elastic solid) is represented by integral equations and algebraically systematized in BEM fashion as well. Then, the superstructure and soil algebraic systems are coupled in order to allow the soil-structure interaction analysis. Open section thin-walled beams under Vlasov torsional-flexure assumptions receive also special attention, so that a direct BEM formulation for static and vibration analysis is established. Hence, here it is propposed integral equations, fundamental solution and algebraic representations which incorporate all secondary fields (forces, moments and bimoment) and primary fields (displacements, rotations and warping). For vibration case, both integral and algebraic equations are deduced for bi-coupled problems ( monosymmetric cross-section) and triply-coupled problems (nonsymmetric cross-sections). / Neste trabalho são descritas análises elásticas (estática e vibratória) de pórticos, utilizando o Método dos Elementos de Contorno (MEC). A superestrutura é modelada para duas famílias de estruturas reticuladas (pórtico plano, pórtico espacial) e representações algébricas específicas são desenvolvidos para esse fim. Nos casos pertinentes, os efeitos de flexão (segundo as teorias de Euler-Bernoulli e Timoshenko), de torção (segundo as hipóteses de Saint Venant), são devidamente explorados assim como as formas explícitas das matrizes de influência de deslocamentos, de esforços e o vetor de forças de volume. Um enfoque especial é dado para o problema de interação solo-estrutura em regime estático. Nesse caso a superestrutura (pórtico espacial) é modelada pelo MEC e o solo (admitido como um sólido elástico semi-infinito) é representado por equações integrais e sistematizado algebricamente, também, pelo MEC. Então, os sistemas algébricos da superestrutura e do solo são compatibilizados permitindo assim a análise da interação soloestrutura. As barras de seção abertas de paredes finas incorporando o modelo de flexo-torção de Vlasov também recebem uma atenção especial, de forma que uma formulação direta do MEC para a análise estática e vibratória é estabelecida. Assim, aqui são propostas as equações integrais, soluções fundamentais e representações algébricas, que incorporam todos os campos secundários (forças, momentos e bi-momentos) e os campos primários (deslocamentos, rotações, empenamentos). No caso do problema de vibração, as representações integrais e algébricas são deduzidas para os problemas bi-acoplados (seções monossimétricas) e tri-acoplados (seções não-simétricas).
210

Análise da estabilidade estatíca e dinâmica de vigas pelo método dos elementos de contorno

Passos, José Jarbson Salustiano dos 29 September 2014 (has links)
Made available in DSpace on 2015-05-08T14:59:59Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 2498464 bytes, checksum: f14d53abab590dc87f310472963c08ad (MD5) Previous issue date: 2014-09-29 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work new solutions based on the direct Boundary Element Method (BEM) for static and dynamic stability beam problems are presented. Both Euler-Bernoulli and Timoshenko models are used to represent the beam responses. All discussions on mathematical steps to write down the BEM representation are presented. Alternative fundamental solutions for static and dynamic Euler-Bernoulli beam stability problems are proposed, resulting in the simpler forms than conventional fundamental solutions commonly used for the problems. In addition, the effects of Pasternak elastic foundations are incorporated into the expressions of proposed fundamental solutions. For the case of the Timoshenko static and dinamic stability, all the direct BEM representation (integral equations, fundamental solutions and algebraic equations) here proposed are inovative. Their fundamental solutions incorporate Pasternak foundation effects as well. A convenient strategy is also presented in order to deal with elastic end supports and discontinuities at beam domain such as abrupt change of cross section geometry (stepped beams), internetiated axial load, rigid or elastic supports at beam domain. Numerical examples incorporating various types of boundary conditions and domain discontinuities in order to validate the proposed BEM solution are presented. / Neste trabalho, novas soluções, baseadas no Método dos Elementos de Contorno (MEC) direto, são apresentadas para os problemas de estabilidade estática e dinâmica de vigas. Ambos modelos de Euler-Bernoulli e Timoshenko são usados para representar as respostas da viga. Todas as discussões sobre os passos matemáticos para escrever a representação do MEC são apresentadas. Soluções fundamentais alternativas são propostas para o problema da estabilidade estática e dinâmica de vigas de Euler-Bernoulli, resultando em formas mais simples que as comumente usadas para esses problemas. Além disso, os efeitos de fundações elásticas de Pasternak são incorporadas nas expressões das soluções fundamentais propostas. Para o caso da estabilidade estática e dinâmica de Timoshenko, toda a representação do MEC (equações integrais, soluções fundamentais e equações algébricas) aqui proposta é inovadora. Suas soluções fundamentais incorporam os efeitos da base elástica de Pasternak também. Uma estratégia conveniente é também apresentada para lidar com apoios elásticos no contorno e com discontinuidades no domínio tais como: mudança abrupta de geometria da seção transversal (viga escalonada), carga axial intermediária, apoios rígidos ou elásticos no domínio. Exemplos numéricos incorporando vários tipos de condições de contorno e discontinuidades no domínio são apresentadas para validar as soluções do MEC propostas.

Page generated in 0.3383 seconds